Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2312959121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300865

RESUMO

The incorporation of multiple metal ions in metal-organic frameworks (MOFs) through one-pot synthesis can induce unique properties originating from specific atomic-scale spatial apportionment, but the extraction of this crucial information poses challenges. Herein, nondestructive solid-state NMR spectroscopy was used to discern the atomic-scale metal apportionment in a series of bulk Mg1-xCox-MOF-74 samples via identification and quantification of eight distinct arrangements of Mg/Co ions labeled with a 13C-carboxylate, relative to Co content. Due to the structural characteristics of metal-oxygen chains, the number of metal permutations is infinite for Mg1-xCox-MOF-74, making the resolution of atomic-scale metal apportionment particularly challenging. The results were then employed in density functional theory calculations to unravel the molecular mechanism underlying the macroscopic adsorption properties of several industrially significant gases. It is found that the incorporation of weak adsorption sites (Mg2+ for CO and Co2+ for CO2 adsorption) into the MOF structure counterintuitively boosts the gas adsorption energy on strong sites (Co2+ for CO and Mg2+ for CO2 adsorption). Such effect is significant even for Co2+ remote from Mg2+ in the metal-oxygen chain, resulting in a greater enhancement of CO adsorption across a broad composition range, while the enhancement of CO2 adsorption is restricted to Mg2+ with adjacent Co2+. Dynamic breakthrough measurements unambiguously verified the trend in gas adsorption as a function of metal composition. This research thus illuminates the interplay between atomic-scale structures and macroscopic gas adsorption properties in mixed-metal MOFs and derived materials, paving the way for developing superior functional materials.

2.
Small ; : e2405176, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115339

RESUMO

The escalating presence of per- and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM-COF and MEL-COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL- and MELEM-COFs achieved 90.0-99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM-COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g-1 adsorption capacity-surpassing all reported COFs to date. MELEM-COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF-based adsorption strategies.

3.
Small ; 20(28): e2311181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361209

RESUMO

Efficient capture and storage of radioactive I2 is a prerequisite for developing nuclear power but remains a challenge. Here, two flexible Ag-MOFs (FJI-H39 and 40) with similar active sites but different pore sizes and flexibility are prepared; both of them can capture I2 with excellent removal efficiencies and high adsorption capacities. Due to the more flexible pores, FJI-H39 not only possesses the record-high I2 storage density among all the reported MOFs but also displays a very fast adsorption kinetic (124 times faster than FJI-H40), while their desorption kinetics are comparable. Mechanistic studies show that FJI-H39 can undergo induced-fit transformations continuously (first contraction then expansion), making the adsorbed iodine species enrich near the Ag(I) nodes quickly and orderly, from discrete I- anion to the dense packing of various iodine species, achieving the very fast adsorption kinetic and the record-high storage density simultaneously. However, no significant structural transformations caused by the adsorbed iodine are observed in FJI-H40. In addition, FJI-H39 has excellent stability/recyclability/obtainability, making it a practical adsorbent for radioactive I2. This work provides a useful method for synthesizing practical radioactive I2 adsorbents.

4.
Langmuir ; 40(31): 16430-16442, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39049428

RESUMO

In order to address the issue of protonation of functional groups and structural instability on the surface of aerogel due to strong acidic wastewater, a three-dimensional bis-pyridine N cellulose aerogel [PEIPD/carboxymethyl cellulose (CMC)] with protonation resistance was prepared in this paper by grafting pyridine onto polyethylenimine. The adsorption capacity for Cu2+ of the as-prepared aerogel is as high as 1.64 mmol/g (pH 5) and is maintained well in high-acidity solutions (1.15 mmol/g at pH = 2). It reveals high selectivity, splendid anti-interference ability, and also reliable on the recycle performance. Through the zeta potential tests, this adsorbent reveals a rather low zero charge point (pHpzc = 2.2). The adsorption of Cu2+ on the adsorbent is consistent with the pseudo-second-order kinetic model and the Langmuir model, suggesting that the adsorption process is dominated by chemisorption in a monolayer. The characterizations by Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy proved pyridine N as responsible binding sites, based on which two possible mechanisms are proposed, including chelation and cation-π interaction. Density functional theory calculations are further used to precisely investigate the pathway. By comparing the binding energies, molecular electrostatic potentials, electron densities, and differential charge densities, the bis-pyridine N functional group is finally determined to be of much higher affinity to Cu2+ following chelation reaction as designated. By integrating bis-pyridine N with the CMC and understanding their crucial roles, this will provide significant insights into the rational design of aerogel adsorbents to enhance the recovery of Cu from strongly acidic wastewaters.

5.
Environ Res ; 247: 118245, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244966

RESUMO

Recovering waste NH3 to be used as a source of nitrogen fertilizer or liquid fuel has recently attracted much attention. Current methods mainly utilize activated carbon or metal-organic frameworks to capture NH3, but are limited due to low NH3 adsorption capacity and high cost, respectively. In this study, novel porous materials that are low cost and easy to synthesize were prepared as NH3 adsorbents by precipitation polymerization with acid optimization. The results showed that adsorption sites (‒COOH, -OH, and lactone) which form chemical adsorption or hydrogen bonds with NH3 were successfully regulated by response surface methods. Correspondingly, the dynamic NH3 adsorption capacity increased from 5.45 mg g-1 to 129 mg g-1, which is higher than most known activated carbon and metal-organic frameworks. Separation performance tests showed that NH3 could also be separated from CO2 and CH4. The findings in this study will advance the industrialization of NH3 polymer adsorbents and provide technical support for the recycling of waste NH3.


Assuntos
Amônia , Estruturas Metalorgânicas , Amônia/química , Fertilizantes , Nitrogênio , Carvão Vegetal/química
6.
Environ Res ; 246: 118159, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218519

RESUMO

Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.


Assuntos
Cádmio , Compostos Férricos , Óxidos , Óxidos/química , Nitratos , Compostos de Manganês/química , Desnitrificação , Tetraciclina , Antibacterianos , Compostos Orgânicos , Adsorção
7.
Environ Res ; 249: 118427, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325780

RESUMO

Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.


Assuntos
Compostos Benzidrílicos , Fenóis , Polímeros , Poluentes Químicos da Água , Adsorção , Fenóis/química , Poluentes Químicos da Água/química , Porosidade , Polímeros/química , Compostos Benzidrílicos/química , Química Verde/métodos , Compostos Azo/química , Reciclagem/métodos , Purificação da Água/métodos
8.
Environ Res ; 260: 119782, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142462

RESUMO

Zeolites possess a microporous crystalline structure, a large surface area, and a uniform pore size. Natural or synthetic zeolites are commonly utilized for adsorbing organic and inorganic compounds from wastewater because of their unique physicochemical properties and cost-effectiveness. The present review work comprehensively revealed the application of zeolites in removing a diverse range of wastewater contaminates, such as dyes, heavy metal ions, and phenolic compounds, within the framework of contemporary research. The present review work offers a summary of the existing literature about the chemical composition of zeolites and their synthesis by different methods. Subsequently, the article provides a wide range of factors to examine the adsorption mechanisms of both inorganic and organic pollutants using natural zeolites and modified zeolites. This review explores the different mechanisms through which zeolites effectively eliminate pollutants from aquatic matrices. Additionally, this review explores that the Langmuir and pseudo-second-order models are the predominant models used in investigating isothermal and kinetic adsorption and also evaluates the research gap on zeolite through scientometric analysis. The prospective efficacy of zeolite materials in future wastewater treatment may be assessed by a comparative analysis of their capacity to adsorb toxic inorganic and organic contaminates from wastewater, with other adsorbents.

9.
Environ Res ; 259: 119542, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969319

RESUMO

Wastewater textile dye treatment is a challenge that requires the development of eco-friendly technology to avoid the alarming problems associated with water scarcity and health-environment. This study investigated the potential of phengite clay as naturally low-cost abundant clay from Tamgroute, Morocco (TMG) that was activated with a 0.1 M NaOH base (TMGB) after calcination at 850 °C for 3 h (TMGC) before its application in the Congo red (CR) anionic dye from the aqueous solution. The effect of various key operational parameters: adsorbent dose, contact time, dye concentration, pH, temperature, and the effect of salts, was studied by a series of adsorption experiments in a batch system, which affected the adsorption performance of TMG, TMGC, and TMGB for CR dye removal. In addition, the properties of adsorption kinetics, isotherms, and thermodynamics were also studied. Experimental results showed that optimal adsorption occurred at an acidic pH. At a CR concentration of 100 mg L-1, equilibrium elimination rates were 68%, 38%, and 92% for TMG, TMGC, and TMGB, respectively. The adsorption process is rapid, follows pseudo-second-order kinetics, and is best described by a Temkin and Langmuir isotherm. The thermodynamic parameters indicated that the adsorption of CR onto TMGB is endothermic and spontaneous. The experimental values of CR adsorption on TMGB are consistent with the predictions of the response surface methodology. These led to a maximum removal rate of 99.97% under the following conditions: pH = 2, TMGB dose of 7 g L-1, and CR concentration of 50 mg L-1. The adsorbent TMGB's relatively low preparation cost of around $2.629 g-1 and its ability to regenerate in more than 6 thermal calcination cycles with a CR removal rate of around 56.98%, stimulate its use for textile effluent treatment on a pilot industrial scale.

10.
Ecotoxicol Environ Saf ; 281: 116608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901170

RESUMO

Water pollution caused by heavy metals is a major environmental problem, threatening water production, food safety, and human health. Cadmium (Cd) pollution is particularly serious because of food-chain biomagnification at toxic concentrations. Modified biochar is promising for heavy metal removal; however, efficient adsorbents for Cd removal are lacking. In the present study, a novel adsorbent, silica gel-modified biochar (SGB), was prepared and applied to treat sewage polluted by Cd. Through the batch adsorption experiments, it is known that SGB possessed outstanding Cd removal ability and recycleability. Furthermore, the adsorption behavior and mechanisms were analyzed by the application of kinetic and isotherm models. The maximum Cd2+ adsorption capacity of SGB was 38.08 mg g-1, and after five recycling processes, the Cd2+ removal rate was still 86.89 %. When the pH of the solution was 7.0, SGB showed the strongest Cd2+ adsorption capacity (29.06 mg g-1). When competitive ions existed, biochar also had high Cd removal efficiency, although the effect of Pb2+ was greater than those of Cu2+ and Zn2+, indicating that SGB was applicable to complex polluted water. Additionally, the main Cd2+ adsorption mechanisms by SGB were electrostatic interactions, π-π interactions, complexation, and co-precipitation. These results showed that SGB can effectively treat Cd-contaminated wastewater as a new adsorbent.


Assuntos
Cádmio , Carvão Vegetal , Sílica Gel , Águas Residuárias , Poluentes Químicos da Água , Cádmio/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Adsorção , Águas Residuárias/química , Sílica Gel/química , Cinética , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Reciclagem/métodos
11.
J Environ Manage ; 357: 120738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574710

RESUMO

The pyrolysis of mint stalks and lemon peels was performed to synthesize mint-stalks (MBC) and lemon-peels (LBC) derived biochars for adsorbing methylene blue (MB). The preparation, characterization, and application of MBC in adsorption have not been reported in the literature. MBC showed higher surface area and carbon content than that of LBC. The removal ratios of MB were 87.5% and 60% within 90 min for MBC and LBC, respectively at pH 7, temperature of 30oC, adsorbent dose of 0.5 g/L, and MB concentration of 5 mg/L. The optimal MBC dose was 1 g/L achieving a removal efficiency of 93.6% at pH 7, temperature of 30oC, contact time of 90 min, and initial dye concentration of 5.0 mg/L. The adsorption efficiency decreased from 98.6% to 31.33% by raising the dye concentration from 3.0 mg/L to 30 mg/L. Further, the increase of adsorbent dose to 10 g/L could achieve 94.2%, 90.3%, 87.6%, and 84.1% removal efficiencies of MB in the case of initial concentrations of 200 mg/L, 300 mg/L, 400 mg/L, and 500 mg/L, respectively. MBC showed high stability in adsorbing MB under five cycles, and the performed analyses after adsorption reaffirmed the stability of MBC. The adsorption mechanism indicated that the adsorption of MB molecules on the biochar's surface was mainly because of the electrostatic interaction, hydrogen bonding, and π-π stacking. Pseudo-second-order and Langmuir models could efficiently describe the adsorption of MB on the prepared biochar. The adsorption process is endothermic and spontaneous based on the adsorption thermodynamics. The proposed adsorption system is promising and can be implemented on a bigger scale. Moreover, the prepared biochar can be implemented in other applications such as photocatalysis, periodate, and persulfate activation-based advanced oxidation processes.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Adsorção , Concentração de Íons de Hidrogênio , Carvão Vegetal/química , Termodinâmica , Cinética
12.
J Environ Manage ; 365: 121565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917539

RESUMO

Animals manure and chemical fertilizers are widely applied to agricultural soils to mitigate soil fertility decline resulting from intensive farming practices. However, the use of antibiotics such as ciprofloxacin (CIP) and enrofloxacin (ENR) in these manures introduces certain environmental risks. The sorption of CIP and ENR in soil is influenced by various factors. Soil cations (i.e., Na+, K+, Mg2+, and Ca2+) and artificially introduced ions (NH4+) can affect the sorption behavior of CIP and ENR in alkaline agricultural soils through mechanisms such as ion exchange and competitive sorption. To investigate the effects of ionic strength and ion type on the sorption of antibiotics in alkaline agricultural soil, batch equilibrium experiments were conducted in this study. The results showed that the affinity of alkaline farmland soil to CIP and ENR was poor, and Kd was only 159 L/kg and 89 L/kg, respectively. Increases in temperature and pH inhibited CIP and ENR sorption on soil. Mineral elements in the soil strongly inhibited CIP and ENR sorption. Conversely, NH4+ promoted the Kd values of CIP and ENR by 46% and 221%, respectively. Additionally, under different influencing factors, both the sorption affinity (Kd) and sorption amount of ENR were lower than those of CIP. These findings indicate that ENR has a greater migration potential and poses a greater environmental risk in agricultural soils. Alkaline soil and mineral elements increase the migration potential of CIP, ENR, but the introduction of NH4+ in agricultural production can weaken the migration potential of them.


Assuntos
Ciprofloxacina , Enrofloxacina , Poluentes do Solo , Solo , Ciprofloxacina/química , Solo/química , Concentração de Íons de Hidrogênio , Enrofloxacina/química , Concentração Osmolar , Poluentes do Solo/química , Adsorção , Agricultura , Antibacterianos/química
13.
J Environ Manage ; 360: 121195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761622

RESUMO

The carbonization of lignocellulosic biomass with ionic liquids (ILs) are considered as an advantageous approach for the preparation of carbonaceous materials. The commonly used imidazolium and pyridinium based ILs have drawbacks such as toxicity, resistance to biodegradation, high cost and viscosity. These issues can be mitigated by diluting ILs with water, although excessive water content above 1 wt% can reduce the solubility of biomass. This research aims to investigate the potential of pretreating wastepaper with a "fully green" ILs, amino acid-based IL with high water content, followed by pyrolysis without IL, in enhancing the properties of biochar. For this purpose, the paper was treated with an aqueous solution of IL cysteine nitrate ([Cys][NO3]), and the IL was not involved in the pyrolysis process to prevent the formation of secondary gaseous pollutants. The findings revealed that the hemicellulose and mineral filler in the paper were eliminated during pretreatment, leading to higher carbon content but lower oxygen content. As a result, the biochar exhibited micropores of 0.42 cm3g-1 and a specific surface area of 1011.21 m2 g-1. The biochar demonstrated high adsorption capacities for Cd2+, enrofloxacin, bisphenol A, ciprofloxacin, and tetracycline, with values of 45.20 mg g-1, 49.82 mg g-1, 49.90 mg g-1, 49.88 mg g-1, and 49.65 mg g-1, respectively. The proposed mechanism for the adsorption of enrofloxacin by the biochar primarily involves physical adsorption such as pore filling and electrostatic interactions, along with chemical adsorption facilitated by graphitic nitrogen.


Assuntos
Aminoácidos , Carvão Vegetal , Líquidos Iônicos , Líquidos Iônicos/química , Carvão Vegetal/química , Adsorção , Aminoácidos/química
14.
J Environ Manage ; 351: 119968, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171130

RESUMO

Inorganic and organic contaminants, such as fertilisers, heavy metals, and dyes, are the primary causes of water pollution. The field of artificial intelligence (AI) has received significant interest due to its capacity to address challenges across various fields. The use of AI techniques in water treatment and desalination has recently shown useful for optimising processes and dealing with the challenges of water pollution and scarcity. The utilization of AI in the water treatment industry is anticipated to result in a reduction in operational expenditures through the lowering of procedure costs and the optimisation of chemical utilization. The predictive capabilities of artificial intelligence models have accurately assessed the efficacy of different adsorbents in removing contaminants from wastewater. This article provides an overview of the various AI techniques and how they can be used in the adsorption of contaminants during the water treatment process. The reviewed publications were analysed for their diversity in journal type, publication year, research methodology, and initial study context. Citation network analysis, an objective method, and tools like VOSviewer are used to find these groups. The primary issues that need to be addressed include the availability and selection of data, low reproducibility, and little proof of uses in real water treatment. The provision of challenges is essential to ensure the prospective success of AI associated with technologies. The brief overview holds importance to everyone involved in the field of water, encompassing scientists, engineers, students, and stakeholders.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Humanos , Inteligência Artificial , Adsorção , Poluentes Químicos da Água/análise , Estudos Prospectivos , Reprodutibilidade dos Testes , Purificação da Água/métodos
15.
J Environ Manage ; 358: 120815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593739

RESUMO

The present research study investigates the performance of pyrolysis oils recycled from waste tires as a collector in coal flotation. Three different types of pyrolysis oils (namely, POT1, POT2, and POT3) were produced through a two-step pressure pyrolysis method followed by an oil rolling process. The characteristics of POTs were adjusted using various oil-modifying additives such as mineral salts and organic solvents. The chemical structure of POTs was explored by employing necessary instrumental analysis techniques, including microwave-assisted acid digestion (MAD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier-transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The collecting performance of POTs in coal flotation was evaluated using an experimental design based on Response Surface Methodology (RSM), considering the ash content and yield of the final concentrate. The effect of the type and dosage of POTs was evaluated in conjunction with other important operating variables, including the dosage of frother, dosage of depressant, and the type of coal. Results of POTs characterization revealed that the pyrolysis oils were a complex composition of light and heavy hydrocarbon molecules, including naphthalene, biphenyl, acenaphthylene, fluorene, and pyrene. Statistical analysis of experimental results showed that among different POTs, POT1 exhibited remarkable superiority, achieving not only a 15% higher coal recovery but also a 12% lower ash content. The outstanding performance of POT1 was attributed to its unique composition, which includes a concentrated presence of carbon chains within the optimal range for efficient flotation. Additionally, the FT-IR spectra of POT1 reveal specific functional groups, including aromatic and aliphatic compounds, greatly enhancing its interaction with coal surfaces, as confirmed by contact angle measurement. This research provides valuable insights into the specific carbon chains and functional groups that contribute to the effectiveness of POT as a collector, facilitating the optimization of coal flotation processes and underscoring the environmental advantages of employing pyrolysis oils as sustainable alternatives in the mining industry.


Assuntos
Carvão Mineral , Pirólise , Reciclagem , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Óleos/química , Automóveis
16.
J Environ Manage ; 367: 122069, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098071

RESUMO

Studying the adsorption behavior of cationic surfactants can help to develop more effective strategies to limit their dispersion in the environment. However, there have few studies on the adsorption of cationic surfactants from the perspective of critical micelle concentration (CMC). In this study, with cetyltrimethylammonium bromide (CTAB) and octadecyl trimethylammonium bromide (OTAB) serving as the model cationic surfactants, the effect of CMC on the adsorption behavior of cationic surfactant onto the surface of sodium alginate/silica (SA/SiO2) microspheres was systematically revealed. The adsorption mechanism relative to CMC was investigated under different conditions, including surfactant concentration, pH, temperature, and adsorption time. The results suggest that at identical concentrations, the smaller the CMC value of the cationic surfactants, the greater the adsorption amount (qt). qt for CTAB and OTAB were 583.2 and 678.0 mg/g respectively, with the concentration higher than their CMC value. When the concentration was lower than the CMC value of the cationic surfactants, qt for CTAB and OTAB were 123.2 and 138.7 mg/g, respectively. The CMC value of CTAB was lower than that of OTAB under identical conditions, suggesting that the adsorption of cationic surfactants is related to their CMC. These results are beneficial for the removal of cationic surfactants by adsorption methods.


Assuntos
Cátions , Micelas , Microesferas , Dióxido de Silício , Tensoativos , Tensoativos/química , Adsorção , Dióxido de Silício/química , Cátions/química , Cetrimônio/química , Compostos de Cetrimônio/química , Alginatos/química , Concentração de Íons de Hidrogênio
17.
J Environ Manage ; 368: 122090, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126848

RESUMO

The saline wastewater produced in industrial activities and seawater use would flow into wastewater treatment plants and affect the characteristic of extracellular polymeric substance (EPS) of activated sludge, which could potentially impact the removal of antibiotics via adsorption. Nonetheless, the effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration and the underlying mechanism remain largely unknown. In this study, the effect of salinity on the adsorption removal of a typical antibiotic, i.e., trimethoprim (TMP) at trace concentration (25.0 µg/L) was evaluated. The results showed the content of EPS was decreased significantly from 56.36 to 21.70 mg/g VSS when the salinity was increased from 0 to 10 g/L. Protein fractions occupied the predominant component of EPS, whose concentration was decreased from 38.17 to 12.83 mg/g VSS. The equilibrium adsorption capacity of activated sludge for TMP was decreased by 49.70% (from 4.97 to 2.50 µg/g VSS). The fluorescence quenching results indicated the fluorescence intensity of tryptophan-like substances was decreased by 30% and the adsorption sites of EPS were decreased from 0.51 to 0.21 when the salinity was increased. The infrared spectrum and XPS results showed that the nitrogen-containing groups from protein were decreased significantly. The circular dichroic analysis showed α helix structure of protein in EPS was decreased with the increase of salinity, which was responsible for the decrease of adsorption capacity for TMP.

18.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276625

RESUMO

Novel CO2- and H3PO4-modified biochars were successfully synthesized from raw honeycomb biomass. They were characterized via several instrumental techniques. The optimal Pt(II) and Pt(IV) adsorption onto the studied biochars was reached for the initial pH of 1.5 and a contact time of 5 min (Pt(II)) and 24-48 h (Pt(IV)). The highest static adsorption capacities for Pt(II) and Pt(IV) were obtained for the H3PO4-modified biochar: 47 mg g-1 and 35 mg g-1, respectively. The Freundlich model described the Pt(II) adsorption isotherms onto both materials and the Pt(IV) adsorption isotherm onto the CO2-activated material, and the Langmuir model was the best fitted to the Pt(IV) adsorption isotherm onto the H3PO4-activated biochar. The best medium for the quantitative desorption of the Pt form from the H3PO4-modified biochar was 1 mol L-1 thiourea in 1 mol L-1 HCl. The adsorption mechanism of both the studied ions onto the synthesized H3PO4-modified biochar was complex and should be further investigated. The H3PO4-modified biochar was successfully applied for the first time for Pt(IV) removal from a spent automotive catalyst leaching solution.


Assuntos
Dióxido de Carbono , Poluentes Químicos da Água , Adsorção , Biomassa , Carvão Vegetal/química , Água/química , Cinética , Poluentes Químicos da Água/química
19.
Molecules ; 29(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792259

RESUMO

The recovery of valuable gold from wastewater is of great interest because of the widespread use of the precious metal in various fields and the pollution generated by gold-containing wastes in water. In this paper, a water-insoluble cross-linked adsorbent material (TE) based on cyanuric chloride (TCT) and ethylenediamine (EDA) was designed and used for the adsorption of Au(III) from wastewater. It was found that TE showed extremely high selectivity (D = 49,213.46) and adsorption capacity (256.19 mg/g) for Au(III) under acidic conditions. The adsorption rate remained above 90% eVen after five adsorption-desorption cycles. The adsorption process followed the pseudo-first-order kinetic model and the Freundlich isotherm model, suggesting that physical adsorption with a multilayer molecular overlay dominates. Meanwhile, the adsorption mechanism was obtained by DFT calculation and XPS analysis, and the adsorption mechanism was mainly the electrostatic interaction and electron transfer between the protonated N atoms in the adsorbent (TE) and AuCl4-, which resulted in the redox reaction. The whole adsorption process was the result of the simultaneous action of physical and chemical adsorption. In conclusion, the adsorbent material TE shows great potential for gold adsorption and recovery.

20.
Molecules ; 29(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792266

RESUMO

The necessity to eliminate nickel (Ni) from wastewater stems from its environmental and health hazards. To enhance the Ni adsorption capacity, this research applied a copper sulfate-ammonia complex (tetraamminecopper (II) sulfate monohydrate, [Cu(NH3)4]SO4·H2O) as a modifying agent for a Phragmites australis-based activated carbon preparation. The physiochemical properties of powdered activated carbon (PAC) and a modified form ([Cu(NH3)4]-PAC) were examined by measuring their surface areas, analyzing their elemental composition, and using Boehm's titration method. Batch experiments were conducted to investigate the impact of various factors, such as Ni(II) concentration, contact time, pH, and ionic strength, on its substance adsorption capabilities. Additionally, the adsorption mechanisms of Ni(II) onto activated carbon were elucidated via Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The findings indicated that modified activated carbon ([Cu(NH3)4]-PAC) exhibited a lower surface area and total volume than the original activated carbon (PAC). The modification of PAC enhanced its surface's relative oxygen and nitrogen content, indicating the incorporation of functional groups containing these elements. Furthermore, the modified activated carbon, [Cu(NH3)4]-PAC, exhibited superior adsorption capacity relative to unmodified PAC. Both adsorbents' adsorption behaviors conformed to the Langmuir model and the pseudo-second-order kinetics model. The Ni(II) removal efficiency of PAC and [Cu(NH3)4]-PAC diminished progressively with rising ionic strength. Modified activated carbon [Cu(NH3)4]-PAC demonstrated notable pH buffering and adaptability. The adsorption mechanism for Ni(II) on activated carbon involves surface complexation, cation exchange, and electrostatic interaction. This research presents a cost-efficient preparation technique for preparing activated carbon with enhanced Ni(II) removal capabilities from wastewater and elucidates its underlying adsorption mechanisms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa