Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 692
Filtrar
1.
J Proteome Res ; 23(8): 3269-3279, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334954

RESUMO

Protein-protein interactions (PPIs) are fundamental to understanding biological systems as protein complexes are the active molecular modules critical for carrying out cellular functions. Dysfunctional PPIs have been associated with various diseases including cancer. Systems-wide PPI analysis not only sheds light on pathological mechanisms, but also represents a paradigm in identifying potential therapeutic targets. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for defining endogenous PPIs of cellular networks. While proteome-wide studies have been performed in cell lysates, intact cells and tissues, applications of XL-MS in clinical samples have not been reported. In this study, we adopted a DSBSO-based in vivo XL-MS platform to map interaction landscapes from two breast cancer patient-derived xenograft (PDX) models. As a result, we have generated a PDX interaction network comprising 2,557 human proteins and identified interactions unique to breast cancer subtypes. Interestingly, most of the observed differences in PPIs correlated well with protein abundance changes determined by TMT-based proteome quantitation. Collectively, this work has demonstrated the feasibility of XL-MS analysis in clinical samples, and established an analytical workflow for tissue cross-linking that can be generalized for mapping PPIs from patient samples in the future to dissect disease-relevant cellular networks.


Assuntos
Neoplasias da Mama , Mapas de Interação de Proteínas , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Animais , Espectrometria de Massas/métodos , Camundongos , Proteoma/metabolismo , Proteoma/análise , Proteômica/métodos , Mapeamento de Interação de Proteínas/métodos
2.
Small ; 20(25): e2307796, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38185802

RESUMO

A crystalline porous bipyridine-based Bpy-COF with a high BET surface area (1864 m2 g-1) and uniform mesopore (4.0 nm) is successfully synthesized from 1,3,5-tris-(4'-formyl-biphenyl-4-yl)triazine and 5,5'-diamino-2,2'-bipyridine via a solvothermal method. After Cu(I)-loading, the resultant Cu(I)-Bpy-COF remained the ordered porous structure with evenly distributed Cu(I) ions at a single-atom level. Using Cu(I)-Bpy-COF as a heterogeneous catalyst, high conversions for cycloaddition reactions are achieved within a short time (40 min) at 25 °C in water medium. Moreover, Cu(I)-Bpy-COF proves to be applicable for aromatic and aliphatic azides and alkynes bearing various substituents such as ester, hydroxyl, amido, pyridyl, thienyl, bulky triphenylamine, fluorine, and trifluoromethyl groups. The high conversions remain almost constant after five cycles. Additionally, the antiepileptic drug (rufinamide) is successfully prepared by a simple one-step reaction using Cu(I)-Bpy-COF, proving its practical feasibility for pharmaceutical synthesis.

3.
Chemistry ; 30(43): e202401501, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806409

RESUMO

Visible-light-mediated [2+2] photocycloaddition reaction can be considered an ideal solution due to its green and sustainable properties, and is one of the most efficient methods to synthesize four-membered ring motifs. Although research on the [2+2] photocycloaddition of alkynes is challenging because of the diminished reactivity of alkynes, and the more significant ring strain of the products, remarkable achievements have been made in this field. In this article, we highlight the recent advances in visible-light-mediated [2+2] photocycloaddition reactions of alkynes, with focus on the reaction mechanism and the late-stage synthetic applications. Advances in obtaining cyclobutenes, azetines, and oxetene active intermediates continue to be breakthroughs in this fascinating field of research.

4.
Chemistry ; 30(43): e202401386, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38837287

RESUMO

Vinyl sulfones are crucial building blocks in synthetic chemistry and core structural units of pharmaceutically active molecules, thus extensive investigations have been conducted on the construction of these skeletons. In contrast to the classical synthetic approaches, the radical sulfonylation of alkynes for producing vinyl sulfones has garnered considerable interest because of its mild conditions and high efficiency. Radical sulfonation of alkynes typically begins with the sulfonyl radical attacking the alkynes, followed by further functionalization. Moreover, the association of metal-catalyst-free systems with multicomponent reactions (MCRs) offers an environmentally friendly pathway for efficiently constructing complex scaffolds from readily available partners. However, there is no comprehensive review summarizing the advancements in metal-catalyst-free multicomponent radical sulfonylation of alkynes. Hence, we provide a categorical overview based on the objects of sulfonylation of alkynes (hydrosulfonylation, carbosulfonylation, aminosulfonylation, oxysulfonylation, sulfosulfonylation, selenosulfonylation, and iodosulfonylation), along with interpretations of the reaction mechanisms.

5.
Chemistry ; : e202401753, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924636

RESUMO

Gold (III) complexes containing trifluromethyl ligands are efficient catalyst in the hydration of alkynes, operating at low catalyst loadings, without additives, using environmentally friendly solvents and at mild conditions (60 ºC). Hydration of terminal and internal alkynes provide the corresponding ketones in quantitative yields without special precautions as dry solvents or inert atmospheres. Remarkably, hydration of asymmetric internal alkynes proceeds with moderate to notable regioselectivities, providing mixtures of the two possible isomers with ratios up to 90:10.

6.
Chemistry ; : e202402085, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926940

RESUMO

We described a copper(I)-catalyzed atom economic and selective hydroamination-cyclization of alkynyl-tethered quinazolinones to prepare a variety of indole-fused pyrazino[1,2-a]quinazolinones in good to excellent yields ranging from 39 %-99 % under mild reaction conditions. Control experiments revealed that coordination-directed method of quinazolinone moiety with copper(I) was important for the selective hydroamination-cyclization of alkynes at the N1-atom instead of N3-atom of quinazolinone. The reaction could be easily performed at gram scales and some prepared indole-fused pyrazino[1,2-a]quinazolinones with donating groups on the indole moiety showed a distinct fluorescence emission wavelength with blue shift under the acid conditions.

7.
Chemistry ; 30(19): e202302807, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305813

RESUMO

α-Silylated diazoalkynes are stabilized diazo compounds that can selectively react with carboxylic residues in buffered aqueous media. In-situ fluoride induced desilylation increases this reactivity, leading to a very fast reaction. Application to the selective functionalization of RNase A, followed by post-functionalization using click chemistry, is described. These new reagents expand the toolbox for native protein modification at carboxylic residues.


Assuntos
Compostos Azo , Proteínas , Proteínas/química , Processamento de Proteína Pós-Traducional , Fluoretos/química , Química Click
8.
Chemistry ; : e202401999, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895743

RESUMO

The cooperative Lewis and Brønsted acid catalysis makes convergent synthesis of 3(2H)-furanones through a three-component coupling of 1,3-diynes, alkyl glyoxylates and water. Control experiments support that Lewis acid-catalyzed highly chemo-, regio- and stereoselective alkyne-carbonyl metathesis of 1,3-diynes and alkyl glyoxylates might be the initial step of this multicomponent annulation. Further chemo- and regioselective hydration of the alkyne-carbonyl metathesis product and subsequent oxa-Michael addition promoted by Brønsted acid results in the formation of two C-O bonds of the five-membered oxygen heterocycle.

9.
Chemistry ; 30(44): e202401490, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39016691

RESUMO

As a novel synthetic method for unsymmetrical macrocycles, we herein developed a post-synthetic modification of calix[4]arenes by insertion of a terminal alkyne into an inert C(methylene)-C(aryl) bond of the macrocyclic framework. In this transformation, C-iridated calix[4]arenes, readily synthesized through C-H bond activation of the parent calix[4]arene, undergoes C(methylene)-C(aryl) bond cleavage followed by insertion of an alkyne to provide a ring-expanded calix[4]arene complex. Removal of the iridium metal from the resulting complex was readily accomplished by a simple treatment with an acid. The developed sequential method affords novel unsymmetrical, monofunctionalized macrocyclic compounds via 3 steps from the parent calix[4]arene in good yield. The unique unsymmetrical structures of the alkyne-inserted macrocycles were evaluated by X-ray single crystal analyses. On the basis of theoretical calculations, we propose a reaction mechanism involving an uncommon C-C bond cleavage step through δ-carbon elimination for the ring enlargement process.

10.
Chemistry ; 30(41): e202401449, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38749918

RESUMO

Divergent nitrogen-containing fused polycyclic ring systems are constructed from simple starting materials via a one-pot aldehyde-alkyne-amine (A3) coupling and intramolecular Diels-Alder reaction. This domino reaction directly furnishes linear 5/5/5 and 5/5/6, or nonlinear 5/5/6/5, polycyclic rings containing an oxa-bridged fused 5/5 bicycle and a 1,6-enyne substructure. One-step derivation of the oxa-bridged 5/5 bicycle leads to a polyfunctionalized 5/5 bicycle with tetrahydrofuran fused back-to-back to pyrroline or a 6/5 bicycle with the hexahydro-1H-isoindole structure, while cycloisomerizing the enyne substructure adds an extra fused 5-membered ring to afford functionalized linear 5/5/5/5 or 5/5/5/5/5 fused ring systems from selected substrates. In addition, the one-pot product can be designed so that the alkyne moiety is hydroalkoxylated to form an additional heterocyle in a linear 5/5/5/6 or nonlinear 5/5/6/5/5 ring system. This diversity-oriented synthetic approach thus allows rapid access to an under-explored structural space for discovery of new biological or non-biological activities or functions.

11.
Chem Rec ; 24(7): e202400069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984737

RESUMO

Recently, transition metal-catalyzed ortho-C-H bond activation/annulations involving two internal alkyne molecules have been extensively used to synthesize highly substituted polycyclic aromatic scaffolds. Such reactions have emerged as a powerful atom and step-economical strategy for the assembly of multifunctional bioactive molecules. In this context, we focused on the recent achievements of dual C-H bond activation/annulations, as well as functionalization reactions involving diaryl/alkyl alkynes.

12.
Bioorg Med Chem Lett ; 109: 129857, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909706

RESUMO

We have synthesized 10 analogs of oxylipins, which are nitrogen signaling factors (NSFs) that mediate cell-to-cell communication in the fission yeast Schizosaccharomyces pombe, and evaluated their structure-activity relationships with the aim of developing molecular probes for NSFs. We found that the OH or OAc group at C10 could be replaced with a compact amide (17) or carbamate (19). Introducing an alkyne as a detection tag at C10 led to decreased, though still sufficient, activity. Introducing an alkyne at the C18 position showed a similar trend, suggesting tolerance is relatively low even for compact functional groups such as alkynes. Although introduction of a diazirine moiety as a photoreactive group at the C5 position decreased the activity, we found that introducing diazirine at the C13 position was acceptable, and compound 38 exhibited potent NSF activity. These findings will be helpful in the development of molecular probes for NSFs.


Assuntos
Schizosaccharomyces , Relação Estrutura-Atividade , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Nitrogênio/química , Oxilipinas/química , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Oxilipinas/síntese química , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
13.
Macromol Rapid Commun ; 45(3): e2300527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990851

RESUMO

Catalytic hydrosilylation is one of the important synthetic approaches to prepare functional organosilicon polymers. Herein, a functional silicon copolymer is constructed by polyhydrosilylation reaction between a novel 3,7-bis(dimethyl silane)-10-(2-ethylhexyl)-10H-phenothiazine monomer and a neutral tetrapyrrolic macrocycle, namely, 5,5,10,15,15,20-hexamethyl-10α, 20α-bis(4-[ethynylphenyl]) calix[4]pyrrole. The as-constructed copolymer (Mn  = 9609, PDI = 2.2) is investigated as an extractant for organic anions as their tetrabutylammonium salts under interfacial aqueous-organic (water-chloroform) conditions. In this context, a distinctive naked-eye colorimetric as well as fluorescence detection method is developed based on anion-directed hydrogen-bonding interactions. This kind of color/fluorescence monitoring serves as a handy tool for rapid screening of anion extraction processes. The copolymer exhibits high selectivity toward extraction of chloride anion. This study augments the field of polycarbosilanes, poly(silylenevinylene)s in particular, allowing access to a new application window that can be further advanced with good grace in near future.


Assuntos
Polímeros , Pirróis , Ânions , Ligação de Hidrogênio , Halogênios
14.
J Biochem Mol Toxicol ; 38(1): e23526, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668402

RESUMO

Cu alkyne-azide cycloaddition was used to easily synthesize a library of novel heterocycles containing benzimidazole and piperidine based 1,2,3-triazole(7a-7l) derivatives. The synthesized analogs were characterized by various spectroscopic techniques like FTIR, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass spectrometry. All these novel bioactive compounds (7a-7l) were evaluated for in vitro antibacterial and antifungal efficacy. Compound 7k exhibited appreciable potent activity against Escherichia coli strain. Compounds 7a, 7b, 7f, and 7i showed excellent potent activity against all bacterial strains. Compound 7b, 7c, 7d, and 7g derivatives showed excellent effects when tested in vitro for antifungal activity against various fungal strains. Additionally, a molecular docking investigation revealed that compound 7k has the ability to bind to the active site of the E. coli DNA gyrase subunit protein and form hydrogen bonds with significant amino acid residues Asp73 and Asp49 in the active sites. In a 100 ns molecular dynamics simulation, the E. coli DNA gyrase protein's steady capacity to bind compound 7k was shown by the low measured root mean square deviation, which was an indication of the complex's conformational stability.


Assuntos
Anti-Infecciosos , Antifúngicos , Antifúngicos/farmacologia , Estrutura Molecular , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Triazóis/química , DNA Girase , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Benzimidazóis/farmacologia , Piperidinas/farmacologia , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
15.
Mol Divers ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687398

RESUMO

The KA2 coupling reaction is a well-explored and versatile method for forming C-C bonds in synthetic chemistry. It is composed of ketone, amine, and alkyne, which play a major role in the synthesis of propargylamines, known for their diverse biological activities and are used in treating neurogenetical disorders. The KA2 coupling is highly challenging due to the low reactivity of ketimines toward nucleophilic attacks with metal acetylide intermediates formed by activating the C-H bond of the alkyne. Despite predominant studies conducted on thermal conditions for KA2 coupling reactions, green and sustainable approaches like non-conventional methods still have a lot to achieve. This review article provides a comprehensive introduction to the non-conventional approach in the KA2 coupling reaction, outlining its mechanisms and exploring future aspects.

16.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349018

RESUMO

Defining protein-protein interactions (PPIs) in their native environment is crucial to understanding protein structure and function. Cross-linking-mass spectrometry (XL-MS) has proven effective in capturing PPIs in living cells; however, the proteome coverage remains limited. Here, we have developed a robust in vivo XL-MS platform to facilitate in-depth PPI mapping by integrating a multifunctional MS-cleavable cross-linker with sample preparation strategies and high-resolution MS. The advancement of click chemistry-based enrichment significantly enhanced the detection of cross-linked peptides for proteome-wide analyses. This platform enabled the identification of 13,904 unique lysine-lysine linkages from in vivo cross-linked HEK 293 cells, permitting construction of the largest in vivo PPI network to date, comprising 6,439 interactions among 2,484 proteins. These results allowed us to generate a highly detailed yet panoramic portrait of human interactomes associated with diverse cellular pathways. The strategy presented here signifies a technological advancement for in vivo PPI mapping at the systems level and can be generalized for charting protein interaction landscapes in any organisms.


Assuntos
Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Chaperoninas/análise , Chaperoninas/química , Chaperoninas/metabolismo , Química Click/métodos , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/química , Complexos Multiproteicos/química , Peptídeos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , Ubiquitina/metabolismo
17.
Chem Biodivers ; 21(6): e202400109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640439

RESUMO

The Huisgen cycloaddition, often referred to as 1,3-Dipolar cycloaddition, is a well-established method for synthesizing 1,4-disubstituted triazoles. Originally conducted under thermal conditions [3+2] cycloaddition reactions were limited by temperature, prolonged reaction time, and regioselectivity. The introduction of copper catalyzed azide-alkyne cycloaddition (CuAAC) revitalized interest, giving rise to the concept of "click chemistry". The CuAAC has emerged as a prominent method for producing 1,2,3-triazole with excellent yields and exceptional regioselectivity even in unfavorable conditions. Copper catalysts conventionally facilitate azide-alkyne cycloadditions, but challenges include instability and recycling issues. In recent years, there has been a growing demand for heterogeneous and porous catalysts in various chemical reactions. Chemists have been more interested in heterogenous catalysts as a result of the difficulties in separating homogenous catalysts from reaction products. These catalysts are favored for their abundant active sites, extensive surface area, easy separation from reaction mixtures, and the ability to be reused. Heterogeneous catalysts have garnered significant attention due to their broad industrial utility, characterized by cost-effectiveness, stability, resistance to thermal degradation, and ease of removal compared to their homogeneous counterparts. The present review covers recent advancements from year 2018 to 2023 in the field of click reactions for obtaining 1,2,3-triazoles through Cu catalyzed 1,3-dipolar azide-alkyne cycloaddition and the properties of the catalyst, reaction conditions such as solvent, temperature, reaction time, and the impact of different heterogeneous copper catalysts on product yield.


Assuntos
Alcinos , Azidas , Cobre , Reação de Cicloadição , Triazóis , Cobre/química , Triazóis/química , Triazóis/síntese química , Azidas/química , Alcinos/química , Catálise , Estrutura Molecular , Química Click
18.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125926

RESUMO

Hollongdione is the first recorded example of the occurrence of a dammarane hexanor-triterpene in nature possessing antiviral and cytotoxic activity. Its simple one-stage transformation into compounds with terminal alkyne and vinyl chloride fragments via the interaction with phosphorus halides is reported. The copper(I)-catalyzed Mannich reaction of 3-oxo-22,23,24,25,26,27-hexanor-dammar-20(21)-in 3 led to a series of aminomethylated products, while 17-carboxylic acid was obtained by ozone oxidation of 3-oxo-22,23,24,25,26,27-hexanor-dammar-20-chloro-20(21)-en 4; the following direct amidation of the latter has been developed. The structures of all new molecules were established by spectroscopic studies that included 2D NMR correlation methods; the molecular structures of compounds 2-5 were determined by X-ray analysis.


Assuntos
Alcinos , Ácidos Carboxílicos , Bases de Mannich , Cloreto de Vinil , Alcinos/química , Ácidos Carboxílicos/química , Bases de Mannich/química , Cloreto de Vinil/química , Triterpenos/química , Estrutura Molecular , Catálise , Espectroscopia de Ressonância Magnética
19.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673948

RESUMO

A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates.


Assuntos
Boranos , Cobalto , Bases de Schiff , Hidrogenação , Cobalto/química , Bases de Schiff/química , Catálise , Boranos/química , Complexos de Coordenação/química , Alcinos/química , Amônia/química , Estrutura Molecular
20.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473851

RESUMO

N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.


Assuntos
Complexos de Coordenação , Compostos Heterocíclicos , Metano/análogos & derivados , Neoplasias , Humanos , Prata/química , Ouro/química , Cafeína , Antibacterianos/farmacologia , Metano/química , Compostos Heterocíclicos/química , Complexos de Coordenação/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa