Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Am J Hum Genet ; 108(3): 446-457, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600773

RESUMO

The protein α-actinin-3 expressed in fast-twitch skeletal muscle fiber is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in ACTN3 (R577X). The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance. Here, we show that humans lacking α-actinin-3 (XX) are superior in maintaining core body temperature during cold-water immersion due to changes in skeletal muscle thermogenesis. Muscles of XX individuals displayed a shift toward more slow-twitch isoforms of myosin heavy chain (MyHC) and sarcoplasmic reticulum (SR) proteins, accompanied by altered neuronal muscle activation resulting in increased tone rather than overt shivering. Experiments on Actn3 knockout mice showed no alterations in brown adipose tissue (BAT) properties that could explain the improved cold tolerance in XX individuals. Thus, this study provides a mechanism for the positive selection of the ACTN3 X-allele in cold climates and supports a key thermogenic role of skeletal muscle during cold exposure in humans.


Assuntos
Actinina/genética , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Animais , Temperatura Corporal/genética , Códon sem Sentido/genética , Evolução Molecular , Humanos , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Seleção Genética/genética
2.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822246

RESUMO

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


Assuntos
Proteínas 14-3-3 , Actinina , Autofagia , Quimiotaxia , Estresse do Retículo Endoplasmático , Neoplasias Mamárias Animais , Mucoproteínas , Animais , Cães , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Feminino , Actinina/metabolismo , Actinina/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Linhagem Celular Tumoral , Quimiotaxia/genética , Autofagia/genética , Estresse do Retículo Endoplasmático/genética , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética
3.
Hum Mutat ; 43(12): 1745-1756, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116040

RESUMO

ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.


Assuntos
Actinina , Coração , Humanos , Actinina/genética , Actinina/química , Mutação , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto
4.
Am J Hum Genet ; 102(5): 845-857, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29706347

RESUMO

Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies. Our general meta-analysis using a Bayesian random effects model in elite sprint/power athlete cohorts demonstrated a consistent homozygous-group effect across studies (per allele OR = 1.4, 95% CI 1.3-1.6) but substantial heterogeneity in heterozygotes. In mouse muscle, rAAV-mediated gene transfer overexpressed and rescued α-actinin-3 expression. Contrary to expectation, in vivo "doping" of ACTN3 at low to moderate doses demonstrated an absence of any change in function. At high doses, ACTN3 is toxic and detrimental to force generation, to demonstrate gene doping with supposedly performance-enhancing isoforms of sarcomeric proteins can be detrimental for muscle function. Restoration of α-actinin-3 did not enhance muscle mass but highlighted the primary role of α-actinin-3 in modulating muscle metabolism with altered fatiguability. This is the first study to express a Z-disk protein in healthy skeletal muscle and measure the in vivo effect. The sensitive balance of the sarcomeric proteins and muscle function has relevant implications in areas of gene doping in performance and therapy for neuromuscular disease.


Assuntos
Actinina/genética , Músculo Esquelético/fisiologia , Anaerobiose , Animais , Animais Recém-Nascidos , Atletas , Calcineurina/metabolismo , Dependovirus/metabolismo , Regulação para Baixo/genética , Estudo de Associação Genômica Ampla , Heterozigoto , Homozigoto , Humanos , Camundongos Endogâmicos C57BL , Fadiga Muscular , Fibras Musculares Esqueléticas/metabolismo , Tamanho do Órgão , Oxirredução
5.
J Mol Cell Cardiol ; 141: 54-64, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205183

RESUMO

Cardiovascular disease is often associated with cardiac remodeling, including cardiac fibrosis, which may lead to increased stiffness of the heart wall. This stiffness in turn may cause subsequent failure of cardiac myocytes, however the response of these cells to increased substrate stiffness is largely unknown. To investigate the contractile response of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to increased substrate stiffness, we generated a stable transgenic human pluripotent stem cell line expressing a fusion protein of α-Actinin and fluorescent mRubyII in a previously characterized NKX2.5-GFP reporter line. Cardiomyocytes differentiated from this line were subjected to a substrate with stiffness ranging from 4 kPa to 101 kPa, while contraction of sarcomeres and bead displacement in the substrate were measured for each single cardiomyocyte. We found that sarcomere dynamics in hPSC-CMs on polyacrylamide gels of increasing stiffness are not affected above physiological levels (21 kPa), but that contractile force increases up to a stiffness of 90 kPa, at which cell shortening, deducted from bead displacement, is significantly reduced compared to physiological stiffness. We therefore hypothesize that this discrepancy may be the cause of intracellular stress that leads to hypertrophy and consequent heart failure in vivo.


Assuntos
Actinina/metabolismo , Genes Reporter , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Acrilamida/química , Actinina/genética , Sequência de Bases , Fenômenos Biomecânicos , Diferenciação Celular , Feminino , Fluorescência , Gelatina/química , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Sarcômeros/metabolismo , Especificidade por Substrato
6.
J Card Fail ; 26(10): 841-848, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32791185

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal progressive muscle-wasting disease caused by mutations in the DMD gene. Dilated cardiomyopathy is the leading cause of death in DMD; therefore, further understanding of this complication is essential to reduce morbidity and mortality. METHODS: A common null variant (R577X) in the ACTN3 gene, which encodes α-actinin-3, has been studied in association with muscle function in healthy individuals; however it has not yet been examined in relationship to the cardiac phenotype in DMD. In this study, we determined the ACTN3 genotype in 163 patients with DMD and examined the correlation between ACTN3 genotypes and echocardiographic findings in 77 of the 163 patients. RESULTS: The genotypes 577RR(RR), 577RX(RX) and 577XX(XX) were identified in 13 (17%), 44 (57%) and 20 (26%) of 77 patients, respectively. We estimated cardiac involvement-free survival rate analyses using Kaplan-Meier curves. Remarkably, the left ventricular dilation (> 55 mm)-free survival rate was significantly lower in patients with the XX null genotype (P < 0.01). The XX null genotype showed a higher risk for LV dilation (hazard ratio 9.04). CONCLUSIONS: This study revealed that the ACTN3 XX null genotype was associated with a lower left ventricular dilation-free survival rate in patients with DMD. These results suggest that the ACTN3 genotype should be determined at the time of diagnosis of DMD to improve patients' cardiac outcomes.


Assuntos
Insuficiência Cardíaca , Distrofia Muscular de Duchenne , Actinina/genética , Genótipo , Humanos , Distrofia Muscular de Duchenne/genética , Taxa de Sobrevida
7.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824180

RESUMO

Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.


Assuntos
Actinina/metabolismo , Cardiomiopatias/metabolismo , Citoesqueleto/metabolismo , Distrofina/metabolismo , Filaminas/metabolismo , Actinina/genética , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Distrofina/genética , Filaminas/genética , Humanos
8.
J Biol Chem ; 293(32): 12318-12330, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29903913

RESUMO

The integrin leukocyte function-associated antigen-1 (LFA-1) plays a pivotal role in leukocyte adhesion and migration, but the mechanism(s) by which this integrin is regulated has remained incompletely understood. LFA-1 integrin activity requires phosphorylation of its ß2-chain and interactions of its cytoplasmic tail with various cellular proteins. The α-chain is constitutively phosphorylated and necessary for cellular adhesion, but how the α-chain regulates adhesion has remained enigmatic. We now show that substitution of the α-chain phosphorylation site (S1140A) in T cells inhibits the phosphorylation of the functionally important Thr-758 in the ß2-chain, binding of α-actinin and 14-3-3 protein, and expression of an integrin-activating epitope after treatment with the stromal cell-derived factor-1α. The presence of this substitution resulted in a loss of cell adhesion and directional cell migration. Moreover, LFA-1 activation through the T-cell receptor in cells expressing the S1140A LFA-1 variant resulted in less Thr-758 phosphorylation, α-actinin and talin binding, and cell adhesion. The finding that the LFA-1 α-chain regulates adhesion through the ß-chain via specific phosphorylation at Ser-1140 in the α-chain has not been previously reported and emphasizes that both chains are involved in the regulation of LFA-1 integrin activity.


Assuntos
Actinina/metabolismo , Adesão Celular , Cadeias alfa de Integrinas/metabolismo , Cadeias beta de Integrinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Movimento Celular , Humanos , Células Jurkat , Fosforilação , Ligação Proteica
9.
Acta Neuropathol ; 137(3): 501-519, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30701273

RESUMO

The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.


Assuntos
Actinina/genética , Músculo Esquelético/patologia , Miotonia Congênita/genética , Miotonia Congênita/patologia , Animais , Feminino , Humanos , Masculino , Camundongos , Mutação , Peixe-Zebra
10.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 674-686, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28130124

RESUMO

Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca2+ in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca2+-independent manner with a dissociation constant of 5-12µM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca2+-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca2+ on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca2+ influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca2+, a fact that might power agonist-mediated receptor internalization and function.


Assuntos
Actinina/química , Agonistas do Receptor A2 de Adenosina/química , Adenosina/análogos & derivados , Cálcio/metabolismo , Calmodulina/química , Fenetilaminas/química , Receptor A2A de Adenosina/química , Actinina/genética , Actinina/metabolismo , Adenosina/química , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Motivos de Aminoácidos , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Endocitose/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Cinética , Fenetilaminas/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Am J Physiol Renal Physiol ; 314(5): F921-F925, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29363327

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a histologically defined form of kidney injury typically mediated by podocyte dysfunction. Podocytes rely on their intricate actin-based cytoskeleton to maintain the glomerular filtration barrier in the face of mechanical challenges resulting from pulsatile blood flow and filtration of this blood flow. This review summarizes the mechanical challenges faced by podocytes in the form of stretch and shear stress, both of which may play a role in the progression of podocyte dysfunction and detachment. It also reviews how podocytes respond to these mechanical challenges in dynamic fashion through rearranging their cytoskeleton, triggering various biochemical pathways, and, in some disease states, altering their morphology in the form of foot process effacement. Furthermore, this review highlights the growing body of evidence identifying several mutations of important cytoskeleton proteins as causes of FSGS. Lastly, it synthesizes the above evidence to show that a better understanding of how these mutations leave podocytes vulnerable to the mechanical challenges they face is essential to better understanding the mechanisms by which they lead to disease. The review concludes with future research directions to fill this gap and some novel techniques with which to pursue these directions.


Assuntos
Citoesqueleto de Actina/patologia , Taxa de Filtração Glomerular , Glomerulosclerose Segmentar e Focal/patologia , Mecanotransdução Celular , Podócitos/patologia , Citoesqueleto de Actina/metabolismo , Animais , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Podócitos/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(21): 6619-24, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25918384

RESUMO

The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease.


Assuntos
Actinina/fisiologia , Actinina/química , Actinina/genética , Actinas/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Fenômenos Biomecânicos , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Reagentes de Ligações Cruzadas , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Cinética , Microscopia Confocal , Modelos Biológicos , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Fetal Diagn Ther ; 44(1): 36-43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28743114

RESUMO

OBJECTIVE: To characterize the proteome profile of women with threatened preterm labor (PTL) below 34;0 weeks with and without microbial invasion of the amniotic cavity (MIAC) using mass spectrometry in the amniotic fluid (AF) and Western blot analysis in the cervical mucus and the vaginal fluid. SUBJECTS AND METHODS: In the discovery phase, a case-control study including 8 women with MIAC and 7 without matched for gestational age at sampling was performed. Proteomic profile characterization was done using the LTQ VELOS Orbitrap mass spectrometer in the AF. In the validation phase, a selection of the proteins differentially expressed by mass spectrometry in the genital samples of a prospective cohort of 109 women was validated by Western blot analysis. RESULTS: In the discovery phase, the mass spectrometry analysis identified a total of 444 proteins. Sixteen were chosen for validation, being involved in defense (calgranulin A, B, C, C-reactive protein), cytoskeletal remodeling (alpha-actinin-4 [ACTN-4], plastin-2, α2-antiplasmin, vitronectin), metabolism (cystatin-ß, glucose 6 phosphate isomerase, glutathione S-transferase, prostaglandin D2 synthase, corticosteroid-binding globulin), and vascular (α1-antichymotrypsin, hemopexin, endosialin) pathways. In the validation phase, cervical ACTN-4 was the only significantly upregulated protein in women with MIAC with an odds ratio of 6.8 (p = 0.002). CONCLUSIONS: Cervical ACTN-4 was significantly upregulated in the group of women with PTL with MIAC.


Assuntos
Actinina/metabolismo , Líquido Amniótico/microbiologia , Trabalho de Parto Prematuro/metabolismo , Adulto , Líquido Amniótico/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Gravidez , Proteoma , Regulação para Cima
14.
J Physiol ; 595(7): 2271-2284, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27779751

RESUMO

KEY POINTS: Ion channels are transmembrane proteins that are synthesized within the cells but need to be trafficked to the cell membrane for the channels to function. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are unique subclasses of K+ channels that are regulated by Ca2+ inside the cells; they are expressed in human atrial myocytes and responsible for shaping atrial action potentials. We have previously shown that interacting proteins of SK2 channels are important for channel trafficking to the membrane. Using total internal reflection fluorescence (TIRF) and confocal microscopy, we studied the mechanisms by which the surface membrane localization of SK2 (KCa 2.2) channels is regulated by their interacting proteins. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. ABSTRACT: The normal function of ion channels depends critically on the precise subcellular localization and the number of channel proteins on the cell surface membrane. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are expressed in human atrial myocytes and are responsible for shaping atrial action potentials. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. We have previously demonstrated that the C- and N-termini of SK2 channels interact with the actin-binding proteins α-actinin2 and filamin A, respectively. However, the roles of the interacting proteins on SK2 channel trafficking remain incompletely understood. Using total internal reflection fluorescence (TIRF) microscopy, we studied the mechanisms of surface membrane localization of SK2 (KCa 2.2) channels. When SK2 channels were co-expressed with filamin A or α-actinin2, the membrane fluorescence intensity of SK2 channels increased significantly. We next tested the effects of primaquine and dynasore on SK2 channels expression. Treatment with primaquine significantly reduced the membrane expression of SK2 channels. In contrast, treatment with dynasore failed to alter the surface membrane expression of SK2 channels. Further investigations using constitutively active or dominant-negative forms of Rab GTPases provided additional insights into the distinct roles of the two cytoskeletal proteins on the recycling processes of SK2 channels from endosomes. α-Actinin2 facilitated recycling of SK2 channels from both early and recycling endosomes while filamin A probably aids the recycling of SK2 channels from recycling endosomes.


Assuntos
Actinina/fisiologia , Filaminas/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Endossomos/metabolismo , Células HEK293 , Átrios do Coração/citologia , Humanos , Hidrazonas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Primaquina/farmacologia
15.
Exp Cell Res ; 348(1): 23-35, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27575580

RESUMO

Polycystins 1 and 2, which are mutated in Autosomal Polycystic Kidney Disease, are involved in mechanotransduction through various mechanisms. In renal cells, polycystins not only have an important mechanotransductive role in primary cilia but are also present in intercellular contacts but their role there remains unclear. Here, we address the hypothesis that polycystins are involved in mechanotransduction via intercellular junctions, which would be expected to have consequences on tissue organization. We focused on the role of polycystin 2, which could be involved in mechanical organization at junctions either by its channel activity or by the direct recruitment of cytoskeleton components such as the F-actin cross-linker α-actinin. After mechanical stimulation of intercellular junctions in MDCK renal epithelial cells, α-actinin is rapidly recruited but this is inhibited upon overexpression of PC2 or the D509V mutant that lacks channel activity, and is also decreased upon PC2 silencing. This suggests that a precise dosage of PC2 is necessary for an adequate mechanosensitive α-actinin recruitment at junctions. At the multicellular level, a change in PC2 expression was associated with changes in velocity in confluent epithelia and during wound healing together with a loss of orientation. This study suggests that the mechanosensitive regulation of cytoskeleton by polycystins in intercellular contacts may be important in the context of ADPKD.


Assuntos
Actinina/metabolismo , Junções Intercelulares/metabolismo , Mecanotransdução Celular , Canais de Cátion TRPP/metabolismo , Animais , Cálcio/metabolismo , Movimento Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Estresse Mecânico
16.
J Biol Chem ; 290(1): 338-49, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25411248

RESUMO

Glomerular podocytes are highly specialized terminally differentiated cells that act as a filtration barrier in the kidney. Mutations in the actin-binding protein, α-actinin 4 (ACTN4), are linked to focal segmental glomerulosclerosis (FSGS), a chronic kidney disease characterized by proteinuria. Aberrant activation of NF-κB pathway in podocytes is implicated in glomerular diseases including proteinuria. We demonstrate here that stable knockdown of ACTN4 in podocytes significantly reduces TNFα-mediated induction of NF-κB target genes, including IL-1ß and NPHS1, and activation of an NF-κB-driven reporter without interfering with p65 nuclear translocation. Overexpression of ACTN4 and an actin binding-defective variant increases the reporter activity. In contrast, an FSGS-linked ACTN4 mutant, K255E, which has increased actin binding activity and is predominantly cytoplasmic, fails to potentiate NF-κB activity. Mechanistically, IκBα blocks the association of ACTN4 and p65 in the cytosol. In response to TNFα, both NF-κB subunits p65 and p50 translocate to the nucleus, where they bind and recruit ACTN4 to their targeted promoters, IL-1ß and IL-8. Taken together, our data identify ACTN4 as a novel coactivator for NF-κB transcription factors in podocytes. Importantly, this nuclear function of ACTN4 is independent of its actin binding activity in the cytoplasm.


Assuntos
Actinina/genética , NF-kappa B/genética , Podócitos/metabolismo , Transcrição Gênica , Actinina/antagonistas & inibidores , Actinina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular Transformada , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Podócitos/citologia , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
17.
Biochim Biophys Acta ; 1850(9): 1855-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26025636

RESUMO

BACKGROUND: Actin filament bundling proteins mediate numerous processes in cells such as the formation of cell membrane protrusions or cell adhesions and stress fiber based locomotion. Among them alpha-actinin and fascin are the most abundant ones. This work characterizes differences in molecular motions in actin filaments due to the binding of these two actin bundling proteins. METHODS: We investigated how alpha-actinin and fascin binding modify the conformation of actin filaments by using conventional and saturation transfer EPR methods. RESULTS: The result characteristic for motions on the microsecond time scale showed that both actin bundling proteins made the bending and torsional twisting of the actin filaments slower. When nanosecond time scale molecular motions were described the two proteins were found to induce opposite changes in the actin filaments. The binding of one molecule of alpha-actinin or fascin modified the conformation of numerous actin protomers. CONCLUSION: As fascin and alpha-actinin participates in different cellular processes their binding can serve the proper tuning of the structure of actin by establishing the right conformation for the interactions with other actin binding proteins. Our observations are in correlation with the model where actin filaments fulfill their biological functions under the regulation by actin-binding proteins. GENERAL SIGNIFICANCE: Supporting the general model for the cellular regulation of the actin cytoskeleton we showed that two abundant actin bundling proteins, fascin and alpha-actinin, alter the conformation of actin filaments through long range allosteric interactions in two different ways providing the structural framework for the adaptation to specific biological functions.


Assuntos
Citoesqueleto de Actina/química , Actinina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Conformação Molecular
18.
Cell Biol Int ; 40(3): 241-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26909547

RESUMO

Cell-matrix adhesion and cell-cell contacts are essential for the metabolism, protein synthesis, survival, and cancer metastasis of cells. Major transmembrane receptors are the integrins, which are responsible for cell-matrix adhesions, and the cadherins, which are important for cell-cell adhesions. Adherent cells anchor via focal adhesion proteins to the extracellular matrix, whereas cell-cell contacts connect via focal adherens junction proteins. The temporal formation of these connections is greatly strengthened either through externally applied stresses on the cell or by myosin-driven cell contractility. The mechanism by which protein(s) within these connections sense, transmit, and respond to mechanochemical signaling is currently strongly debated and various candidates have been named. Vinculin has been described as one of the key players in cell-matrix and cell-cell adhesions that build a strong physical connection for transmitting forces between the cytoskeleton, the extracellular matrix, and cell-cell connections.


Assuntos
Mecanotransdução Celular/fisiologia , Vinculina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Adesão Celular , Proteína Substrato Associada a Crk/metabolismo , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Ligação Proteica , Vinculina/química
19.
J Mol Cell Cardiol ; 72: 186-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24657727

RESUMO

Sarcomeres are the basic contractile units of cardiac myocytes. Recent studies demonstrated remodeling of sarcomeric proteins in several diseases, including genetic defects and heart failure. Here we investigated remodeling of sarcomeric α-actinin in two models of heart failure, synchronous (SHF) and dyssynchronous heart failure (DHF), as well as a model of cardiac resynchronization therapy (CRT). We applied three-dimensional confocal microscopy and quantitative methods of image analysis to study isolated cells from our animal models. 3D Fourier analysis revealed a decrease of the spatial regularity of the α-actinin distribution in both SHF and DHF versus control cells. The spatial regularity of α-actinin in DHF cells was reduced when compared with SHF cells. The spatial regularity of α-actinin was partially restored after CRT. We found longitudinal depositions of α-actinin in SHF, DHF and CRT cells. These depositions spanned adjacent Z-disks and exhibited a lower density of α-actinin than in the Z-disk. Differences in the occurrence of depositions between the SHF, CRT and DHF models versus control were significant. Also, CRT cells exhibited a higher occurrence of depositions versus SHF, but not DHF cells. Other sarcomeric proteins did not accumulate in the depositions to the same extent as α-actinin. We did not find differences in the expression of α-actinin protein and its encoding gene in our animal models. In summary, our studies indicate that HF is associated with two different types of remodeling of α-actinin and only one of those was reversed after CRT. We suggest that these results can guide us to an understanding of remodeling of structures and function associated with sarcomeres.


Assuntos
Actinina/química , Terapia de Ressincronização Cardíaca , Citoesqueleto/ultraestrutura , Insuficiência Cardíaca/terapia , Ventrículos do Coração/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Actinina/genética , Actinina/metabolismo , Animais , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Cães , Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Sarcômeros/metabolismo , Sarcômeros/patologia , Sarcômeros/ultraestrutura , Remodelação Ventricular
20.
J Surg Res ; 187(1): 19-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24360118

RESUMO

BACKGROUND: Intercellular adhesion molecule-1 (ICAM-1) modulates cell-cell adhesion and is a receptor for cognate ligands on leukocytes. Upregulation of ICAM-1 has been demonstrated in malignant transformation of adenomas and is associated with poor prognosis for many malignancies. ICAM-1 is upregulated on the invasive front of pancreatic metastases and melanomas. These data suggest that the upregulated ICAM-1 expression promotes malignant progression. We hypothesize that the downregulation of ICAM-1 will mitigate tumor progression. METHODS: Mouse colon adenocarcinoma cells (MC38) were evaluated for the expression of ICAM-1 using Western immunoblot analysis. Short hairpin RNA (shRNA) transduction was used to downregulate ICAM-1. Tumor invasion determined via a modified Boyden chamber was used as a surrogate of tumor progression examining MC38 cells, MC38 ICAM-1 knockdowns, and MC38 transduced with vehicle control. The cells were cultured in full media for 24 h and serum-starved for 24 h. A total of 5 × 10(4) cells were plated and allowed to migrate for 24 h using full media with 10% fetal bovine serum as a chemoattractant. Inserts were fixed and stained with crystal violet. Blinded investigators counted the cells using a stereomicroscope. Statistical analysis was performed by analysis of variance with Fischer protected least significant difference and a P value of <0.05 was considered statistically significant. RESULTS: ICAM-1 was constitutively expressed on MC38 cells. Transduction with anti-ICAM-1 shRNA vector downregulated ICAM-1 protein expression by 30% according to the Western blot analysis (P < 0.03) and decreased ICAM-1 messenger RNA expression by 70% according to the reverse transcription-polymerase chain reaction. shRNA knockdown cells had a significant reduction in invasion >45% (P < 0.03). There were no significant differences between the invasion rates of MC38 and MC38 vehicle controls. CONCLUSIONS: Downregulation of ICAM-1 mitigates MC38 invasion. These data suggest that targeted downregulation of tumor ICAM-1 is a potential therapeutic target.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Progressão da Doença , Regulação para Baixo/fisiologia , Molécula 1 de Adesão Intercelular/genética , Macrófagos/patologia , Camundongos , Invasividade Neoplásica/patologia , Neutrófilos/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa