Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Anim Ecol ; 93(10): 1524-1540, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180253

RESUMO

Marine heatwaves (MHWs) are extreme weather events that have major impacts on the structure and functioning of marine ecosystems worldwide. Due to anthropogenic climate change, the occurrence of MHWs is predicted to increase in future. There is already evidence linking MHWs with reductions in biodiversity and incidence of mass mortality events in coastal ecosystems. However, because MHWs are unpredictable, the quantification of their effects on communities is challenging. Here, we use the Helgoland Roads long-term time series (German Bight, North Sea), one of the richest marine time series in the world, and implement a modified before-after control-impact (BACI) design to evaluate MHW effect on mesozooplankton communities. Mesozooplankton play an essential role in connecting primary producers to higher trophic levels, and any changes in their community structure could have far-reaching impacts on the entire ecosystem. The responses of mesozooplankton community to MHWs in terms of community structure and densities occurred mainly in spring and autumn. Abundances of seven taxa, including some of the most abundant groups (e.g. copepods), were affected either positively or negatively in response to MHWs. In contrast, we observed no clear evidence of an impact of summer and winter MHWs; instead, the density of the most common taxa remained unchanged. Our results highlight the seasonally dependent impacts of MHWs on mesozooplankton communities and the challenges in evaluating those impacts. Long-term monitoring is an important contributor to the quantification of effects of MHWs on natural populations.


Assuntos
Zooplâncton , Animais , Zooplâncton/fisiologia , Mar do Norte , Mudança Climática , Estações do Ano , Biodiversidade , Calor Extremo , Ecossistema
2.
Environ Sci Technol ; 58(16): 7045-7055, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38587903

RESUMO

Despite decades of research and management efforts, eutrophication remains a persistent threat to inland waters. As nutrient pollution intensifies in the coming decades, the implications for aquatic greenhouse gas (GHG) emissions are poorly defined, particularly the responses of individual GHGs: carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The biogeochemical controls of each gas can differ, making it difficult to predict the overall effect of nutrient pollution on the net radiative forcing of aquatic ecosystems. Here, we induced eutrophication of small nitrogen (N)-limited agricultural reservoirs and measured changes in diffusive GHG emissions within a before-after-control-impact (BACI) study design during June to September 2021. Each gas exhibited a unique response to 300% increases in primary production, with a shift from an overall CO2 source to a sink, a modest increase in N2O flux, and, unexpectedly, no significant change in CH4 emissions. The lack of net directional change in CO2-equivalent GHG emissions in fertilized reservoirs during the summer contrasts findings from empirical studies of eutrophic lakes. Our findings illustrate the difficulty in extrapolating among different sized ecosystems and suggest that forecast 2-fold increases in agricultural N fertilization by 2050 may not result in consistently elevated GHG emissions during summer, at least from small reservoirs in continental grassland regions.

3.
Oecologia ; 204(2): 401-411, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37486411

RESUMO

Increases in the intensity and frequency of wildfires highlight the need to understand how fire disturbance affects ecological interactions. Though the effects of wildfire on free-living aquatic communities are relatively well-studied, how host-parasite interactions respond to fire disturbance is largely unexplored. Using a Before-After-Control-Impact design, we surveyed 10 stream sites (5 burned and 5 unburned) in the Willamette River Basin, Oregon and quantified snail host infection status and trematode parasite community structure 1 year before and two years after historic wildfires. Despite the severity of the wildfires, snail host populations did not show significant shifts in density or size distributions. We detected nine taxa of trematode parasites and overall probability of infection remained consistent over the three-year study period. However, at the taxon-specific level, we found evidence that infection probability by one trematode decreased and another increased after fire. In a larger dataset focusing on the first year after fire (9 burned, 8 unburned sites), we found evidence for subtle differences in trematode community structure, including higher Shannon diversity and evenness at the burned sites. Taken together, host-parasite interactions were remarkably stable for most taxa; for trematodes that did show responses, changes in abundance or behavior of definitive hosts may underlie observed patterns. These results have implications for using parasites as bioindicators of environmental change and suggest that aquatic snail-trematode interactions may be relatively resistant to wildfire disturbance in some ecosystems.


Assuntos
Rios , Incêndios Florestais , Interações Hospedeiro-Parasita , Ecossistema , Água Doce
4.
J Fish Biol ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034631

RESUMO

This investigation compared the spatial ecology and population dynamics of brown trout Salmo trutta L. between reservoirs with (impact; Langsett Reservoir) and without (control; Grimwith Reservoir) barriers to fish movements into headwater tributaries, and the effectiveness of a fish pass intended to remediate connectivity. Passive integrated transponder (PIT) telemetry revealed that fish that emigrated from Langsett and Grimwith tributaries were 1-3 and 0-2 years old, respectively, and predominantly did so in spring and autumn-early winter in both systems. Weirs at Langsett Reservoir appeared to thwart emigration rate (26%) relative to Grimwith Reservoir (85%). Acoustic telemetry (two-dimensional positions) in the impacted reservoir revealed that the largest home range was in October-December (95% monthly activity space S.D. up to 26.9 ± 6.69 ha in November), activity was influenced by both month and time of day, and fish occupied shallow water depths (relative to reservoir depth), especially at night. Brown trout tagged in Grimwith and Langsett Reservoirs (42.9% and 64.1%, respectively) and fish tagged in the tributaries that emigrated (37.2% and 27.7%, respectively) were detected immigrating into tributaries throughout the year. At both reservoirs, peak immigration for ≥3-year-old trout occurred primarily in autumn-early winter. Overall passage efficiency went from 3% prior to remediation to 14% after and there was no significant increase in fish densities following the construction of the fish pass. Fish were attracted towards and entered the fish pass under a wide range of river levels, but only succeeded in passing upstream during low levels, which are uncommon druing the main migration period. Overall, this investigation significantly furthers our understanding of brown trout spatial ecology and population dynamics in reservoirs and headwater tributaries.

5.
J Environ Manage ; 365: 121561, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924890

RESUMO

An experimental study was conducted to test the effectiveness of olfactory repellents (ORE) as a mitigation measure to reduce ungulate-vehicle collisions (UVC). In the first phase, an extensive field survey was undertaken while employing the Before-After Control-Impact (BACI) study design. On the basis of ungulate mortality, 134 road sections were monitored on foot along both roadsides once a week. The monitoring lasted fourteen weeks per year in both 2021 (Before period) and 2022 (After period). In the after period, 2022, ORE were applied within the impact segments. The second phase consisted of data verification and statistical analysis. The data revealed a decrease in UVC of 68%. The confidence interval of this estimate suggested, however, a great deal of uncertainty about the true value. Therefore, the data were pooled, and the Bayesian inference was applied. On the level of moderate evidence, ORE decreased the number of UVC by at least 43% and at most 60%. We also observed that the ORE effect was more pronounced in the first seven weeks after installation than in the following seven weeks, suggesting ungulate habituation to ORE. We have therefore concluded that for a short period (ideally corresponding to UVC peaks) ORE could be considered an effective safety measure for secondary roads.


Assuntos
Acidentes de Trânsito , Animais , Acidentes de Trânsito/prevenção & controle , Teorema de Bayes
6.
J Environ Manage ; 325(Pt A): 116442, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244282

RESUMO

Mass development of macrophytes is an increasing problem in many aquatic systems worldwide. Dense mats of macrophytes can negatively affect activities like boating, fishing or hydropower production and one of the management measures often applied is mechanical removal. In this study, we analyzed the effect of mechanical macrophyte removal on phytoplankton, zooplankton, and macroinvertebrate (pelagic and benthic samples) assemblages. Our study covered five sites in four countries in Europe and Africa with highly variable characteristics. In all sites, dense mats of different macrophyte species (Juncus bulbosus in a river in Norway; a mix of native macrophytes in a German river, Elodea nuttallii in a lake in Germany, Ludwigia spp. In a French lake and Pontederia crassipes in a South African lake) are problematic and mechanical removal was applied. In every country, we repeated the same BACI (Before-After-Control-Impact) design, including "before", "one week after", and "six weeks after" sampling in a control and an impact section. Repeating the same experimental design at all sites allowed us to disentangle common effects across all sites from site-specific effects. For each taxonomic group, we analyzed three structural and three functional parameters, which we combined in a scoring system. Overall, the removal of macrophytes negatively affected biodiversity, in particular of zooplankton and macroinvertebrate assemblages. In contrast, plant removal had positive effects on the phytoplankton assemblages. Effects were more pronounced one week after removal than six weeks after. Consequently, we suggest a stronger consideration of the effect of plant removal on biodiversity to arrive at more sustainable management practices in the future.


Assuntos
Lagos , Rios , Animais , Biodiversidade , Ecossistema , Lagos/química , Fitoplâncton , Plantas , Zooplâncton
7.
J Environ Manage ; 345: 118510, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390732

RESUMO

Wastewater treatment plants (WWTPs) have greatly improved water quality globally. However, treated effluents still contain a complex cocktail of pollutants whose environmental effects might go unnoticed, masked by additional stressors in the receiving waters or by spatiotemporal variability. We conducted a BACI (Before-After/Control-Impact) ecosystem manipulation experiment, where we diverted part of the effluent of a large tertiary WWTP into a small, unpolluted stream to assess the effects of a well-treated and highly diluted effluent on riverine diversity and food web dynamics. We sampled basal food resources, benthic invertebrates and fish to search for changes on the structure and energy transfer of the food web with the effluent. Although effluent toxicity was low, it reduced diversity, increased primary production and herbivory, and reduced energy fluxes associated to terrestrial inputs. Altogether, the effluent decreased total energy fluxes in stream food webs, showing that treated wastewater can lead to important ecosystem-level changes, affecting the structure and functioning of stream communities even at high dilution rates. The present study shows that current procedures to treat wastewater can still affect freshwater ecosystems and highlights the need for further efforts to treat polluted waters to conserve aquatic food webs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Ecossistema , Cadeia Alimentar , Poluentes Químicos da Água/análise , Rios/química
8.
J Environ Manage ; 307: 114571, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085970

RESUMO

The enormous biodiversity of tropical freshwater combined with a considerable increase in the construction of reservoirs urges to understand the ecological effects caused by damming. Using rarely available data obtained before (one year) and after (four years) the filling of a hydroelectric plant on the Teles Pires River (Amazon River basin), the effects on abundance, biomass, and diversity of the fish assemblage were evaluated using two complementary approaches: a BACI (before-after-control-impact) design with mixed models and analyses of covariance. Significant Before-After × Control-Impact interactions in abundance, biomass, and species richness were observed, with decreases of abundance and species richness and more stable biomass after filling. Some abundant species, such as Jupiaba polylepis, Jupiaba acanthogaster, Knodus cf. heteresthes, and Moenkhausia lepidura among others, declined in abundance or disappeared from the impact sites. However, temporal and particularly spatial variation independent of damming explained more variation in all the response variables analyzed, including species composition, and analyses of covariance demonstrated general negative trends irrespective of damming. This study illustrates the usefulness of BACI designs to assess the effects of damming but also that other statistical approaches are complementary, given the difficulty of identifying control sites and the short length of most ecological time series. The results also suggest that preserving tributaries upstream of reservoirs and natural regimes of spatial and temporal environmental variation might help to mitigate the impacts of damming in tropical ecosystems.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Peixes , Água Doce
9.
Mar Policy ; 144: 105239, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35911785

RESUMO

The responses of small-scale coastal fisheries to pauses in effort and trade are an important test of natural resource management theories with implications for the many challenges of managing common-pool resources. Three Covid-19 curfews provided a natural experiment to evaluate fisheries responses adjacent a marine reserve and in a management system that restricted small-mesh drag nets. Daily catch weights in ten fish landings were compared before and after the curfew period to test the catch-only hypothesis that the curfew would reduce effort and increase catch per unit effort, per area yields, and incomes. Interviews with key informants indicated that fisheries effort and trade were disrupted but less so in the gear-restricted rural district than the more urbanized reserve landing sites. The expected increase in catches and incomes was evident in some sites adjacent the reserve but not the rural gear restricted fisheries. Differences in compliance and effort initiated by the curfew, changes in gear, and various negative environmental conditions are among the explanations for the variable catch responses. Rates of change over longer periods in CPUE were stable among marine reserve adjacent landing sites but declined faster after the curfew in the gear-restricted fisheries. Two landing sites nearest the southern end of the reserve displayed a daily 45 % increase in CPUE, 25-30 % increase in CPUA, and a 45-56 % increase in incomes. Results suggest that recovering stocks will succeed where authorities can achieve compliance, near marine reserves, and fisheries lacking additional environmental stresses.

10.
Urban Ecosyst ; : 1-11, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36588777

RESUMO

Bird-window collisions are a major source of human-caused mortality for which there are multiple mitigation and prevention options available. Despite growing availability of products designed to reduce collisions (e.g., glass with etched patterns or markers and films adhered over existing glass), few replicated field tests have been conducted to assess their effectiveness after installation on glass. We conducted a field study to evaluate the effectiveness of a commercially marketed product (Feather Friendly® markers) in reducing bird-window collisions at glass-walled bus shelters in Stillwater, Oklahoma, USA. This study included a before-after control-impact (BACI) analysis comparing numbers of collisions at 18 bus shelters in both pre-treatment (2016) and post-treatment (2020) periods, and an analysis comparing 18 treated and 18 untreated shelters during 2020. For the BACI analysis, collisions were significantly reduced between 2016 and 2020 at shelters treated with the Feather Friendly® markers even though collisions increased at shelters that remained untreated. For the 2020 analysis, there were significantly fewer collisions at treated than untreated shelters. Relative to a baseline study in 2016, we estimated that treating half of Stillwater's bus shelters resulted in a 64% reduction in total annual bird collisions. Together, these analyses provide a rigorous field test of the effectiveness of this treatment option in reducing bird-window collisions. Our research provides a model for similar studies at both bus shelters and buildings to evaluate and compare products designed to reduce bird-window collisions, and therefore, contribute to reducing this major mortality source affecting bird populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11252-022-01304-w.

11.
Ecol Appl ; 31(4): e02304, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33587791

RESUMO

Distinguishing between human impacts and natural variation in abundance remains difficult because most species exhibit complex patterns of variation in space and time. When ecological monitoring data are available, a before-after-control-impact (BACI) analysis can control natural spatial and temporal variation to better identify an impact and estimate its magnitude. However, populations with limited distributions and confounding spatial-temporal dynamics can violate core assumptions of BACI-type designs. In this study, we assessed how such properties affect the potential to identify impacts. Specifically, we quantified the conditions under which BACI analyses correctly (or incorrectly) identified simulated anthropogenic impacts in a spatially and temporally replicated data set of fish, macroalgal, and invertebrate species found on nearshore subtidal reefs in southern California, USA. We found BACI failed to assess very localized impacts, and had low power but high precision when assessing region-wide impacts. Power was highest for severe impacts of moderate spatial scale, and impacts were most easily detected in species with stable, widely distributed populations. Serial autocorrelation in the data greatly inflated false impact detection rates, and could be partly controlled for statistically, while spatial synchrony in dynamics had no consistent effect on power or false detection rates. Unfortunately, species that offer high power to detect real impacts were also more likely to detect impacts where none had occurred. However, considering power and false detection rates together can identify promising indicator species, and collectively analyzing data for similar species improved the net ability to assess impacts. These insights set expectations for the sizes and severities of impacts that BACI analyses can detect in real systems, point to the importance of serial autocorrelation (but not of spatial synchrony), and indicate how to choose the species, and groups of species, that can best identify impacts.


Assuntos
Kelp , Animais , Ecossistema , Peixes , Florestas , Humanos , Dinâmica Populacional
12.
Biol Conserv ; 260: 109149, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35722248

RESUMO

Research is underway to examine how a wide range of animal species have responded to reduced levels of human activity during the COVID-19 pandemic. In this perspective article, we argue that raptors (i.e., the orders Accipitriformes, Cariamiformes, Cathartiformes, Falconiformes, and Strigiformes) are particularly well-suited for investigating potential 'anthropause' effects: they are sensitive to environmental perturbation, affected by various human activities, and include many locally and globally threatened species. Lockdowns likely alter extrinsic factors that normally limit raptor populations. These environmental changes are in turn expected to influence - mediated by behavioral and physiological responses - the intrinsic (demographic) factors that ultimately determine raptor population levels and distributions. Using this population-limitation framework, we identify a range of research opportunities and conservation challenges that have arisen during the pandemic, related to changes in human disturbance, light and noise pollution, collision risk, road-kill availability, supplementary feeding, and persecution levels. Importantly, raptors attract intense research interest, with many professional and amateur researchers running long-term monitoring programs, often incorporating community-science components, advanced tracking technology and field-methodological approaches that allow flexible timing, enabling continued data collection before, during, and after COVID-19 lockdowns. To facilitate and coordinate global collaboration, we are hereby launching the 'Global Anthropause Raptor Research Network' (GARRN). We invite the international raptor research community to join this inclusive and diverse group, to tackle ambitious analyses across geographic regions, ecosystems, species, and gradients of lockdown perturbation. Under the most tragic of circumstances, the COVID-19 anthropause has afforded an invaluable opportunity to significantly boost global raptor conservation.

13.
J Environ Manage ; 280: 111691, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33272660

RESUMO

Reducing the impacts of invasive predators is a key objective for conservation managers, livestock producers and human health agencies globally. The efficacy of invasive predator control programs, however, is highly variable. To improve control efficacy, managers require a fundamental understanding of the factors that contribute to the success or failure of a control program. Using a predator baiting program as a case study, we measured the efficacy of baiting as a control tool to significantly reduce feral cat (Felis catus) populations. We used camera traps and cat-borne GPS collars to monitor changes in feral cat populations at a baited site and an unbaited site, using a Before-After, Control-Impact (BACI) design. We also identified five key elements required for a successful baiting program (bait encounter rate, availability, attractiveness, palatability and lethality) and simultaneously measured these to identify areas for potential improvement. Baiting was ineffective at reducing feral cat populations; collared cat mortality was only 11% (1/9), with camera traps revealing negligible reductions in the number of cat detection events (9%), naïve occupancy (15%), and no significant change in the relative abundance of feral cats (F1,54 = 0.8641, P = 0.357). Several factors contributed to the poor control efficacy. Bait encounter rates were low, with cats active along tracks (where baits were laid) < 4% of the time. Cats encountered only 14% (7/50) of monitored baits, but none were eaten. Initially, baits appeared attractive to cats; however meat ants and desiccation rapidly decreased bait palatability. Bait availability to cats declined rapidly, with 36% of monitored baits (18/50) removed by non-target species within the first 48 h. The mortality of one collared cat and chemical assays confirmed that, on average, each bait contained sufficient 1080 to kill a large (>5 kg) feral cat. Our findings suggest that altering bait deployment patterns, increasing bait densities and improving bait palatability could potentially improve the efficacy of baiting programs to reduce feral cat populations. Our study provides a framework to measure and evaluate the key elements that contribute to efficacy of pest control programs, and to identify opportunities for improving outcomes of future control programs.


Assuntos
Animais Selvagens , Controle de Pragas , Animais , Gatos
14.
Ecol Appl ; 29(2): e01838, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30549390

RESUMO

Before-After-Control-Impact (BACI) designs are powerful tools to derive inferences about environmental perturbations (e.g., hurricanes, restoration programs) when controlled experimental designs are unfeasible. Applications of BACI designs mostly rely on testing for a significant interaction between periods and treatments (so-called BACI contrast) to demonstrate the effects of the perturbation. However, significant interactions can emerge for several reasons, including when changes are larger in control sites, such that additional diagnostics must be performed to determine the full complexity of system changes. We propose two measures that detail the nature of change implied by BACI contrasts, along with its uncertainty. CI-divergence (Control-Impact divergence) quantifies to what extent control and impact sites have diverged between the after and the before period, whereas CI-contribution (Control-Impact contribution) quantifies to what extent the change between periods is stronger in impact sites relative to control sites. To illustrate how these two CI measures can be combined with BACI contrast to gain insights about effects of environmental perturbations, we used count data from the Swedish Breeding Bird Survey to investigate how hurricane Gudrun affected the long-term abundances of four bird species in forested areas of southern Sweden. Before-After-Control-Impact contrasts suggested the hurricane affected all four species. However, the values of the two CI measures strongly differed, even among species showing similar BACI contrasts. Those differences highlight qualitatively distinct population trajectories between periods and treatments requiring different ecological explanations. Overall, we show that BACI contrasts do not provide the full story in assessing the effects of environmental perturbations. The two CI measures can be used to assist ecological interpretations, or to specify detailed hypotheses about effects of restoration actions to allow stronger confirmatory inference about their outcomes. By providing a framework to develop more detailed explanations and hypotheses about ecological changes, the two CI measures can improve conclusions and strengthen evidence of effects of conservation actions and impact assessments under BACI designs.


Assuntos
Tempestades Ciclônicas , Ecologia , Animais , Aves , Florestas , Suécia
15.
Conserv Biol ; 32(1): 159-170, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28678422

RESUMO

Reducing the capture of small fish, discarded fish, and bycatch is a primary concern of fisheries managers who propose to maintain high yields, species diversity, and ecosystem functions. Modified fishing gear is one of the primary ways to reduce by-catch and capture of small fish. The outcomes of gear modification may depend on competition among fishers using other similar resources and other gears in the same fishing grounds and the subsequent adoption or abandonment of modified gears by fishers. We evaluated adoption of modified gear, catch size, catch per unit effort (CPUE), yield, and fisher incomes in a coral reef fishery in which a 3-cm escape gap was introduced into traditional traps. There were 26.1 (SD 4.9) fishers who used the experimental landing sites and 228(SD 15.7) fishers who used the control landing sites annually over 7 years. The size of fish increased by 10.6% in the modified traps, but the catch of smaller fish increased by 11.2% among the other gears. There was no change in the overall CPUE, yields, or per area incomes; rather, yield benefits were redistributed in favor of the unmodified gears. For example, estimated incomes of fishers who adopted the modified traps remained unchanged but increased for net and spear fishers. Fishers using escape-gap traps had a high proportion of income from larger fish, which may have led to a perception of benefits, high status, and no abandonment of the modified traps. The commensal rather than competitive outcome may explain the continued use of escape-gap traps 3 years after their introduction. Trap fishers showed an interest in negotiating other management improvements, such as increased mesh sizes for nets, which could ultimately catalyze community-level decisions and restrictions that could increase their profits.


Assuntos
Ecossistema , Pesqueiros , Animais , Conservação dos Recursos Naturais , Recifes de Corais , Peixes
16.
Conserv Biol ; 32(3): 576-583, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28856730

RESUMO

Conservation operates within complex systems with incomplete knowledge of the system and the interventions utilized. This frequently results in the inability to find generally applicable methods to alleviate threats to Earth's vanishing wildlife. One approach used in medicine and the social sciences has been to develop a deeper understanding of positive outliers. Where such outliers share similar characteristics, they may be considered exceptional responders. We devised a 4-step framework for identifying exceptional responders in conservation: identification of the study system, identification of the response structure, identification of the threshold for exceptionalism, and identification of commonalities among outliers. Evaluation of exceptional responders provides additional information that is often ignored in randomized controlled trials and before-after control-intervention experiments. Interrogating the contextual factors that contribute to an exceptional outcome allow exceptional responders to become valuable pieces of information leading to unexpected discoveries and novel hypotheses.


Assuntos
Conservação dos Recursos Naturais
17.
J Environ Manage ; 215: 345-357, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579727

RESUMO

Land use-land cover (LULC) changes towards artificial covers are one of the main global threats to biodiversity conservation. In this comprehensive study, we tested a number of methodological and research hypotheses, and a new covariate control technique in order to address common protected area (PA) assessment issues and accurately assess whether different PA networks have had an effect at preventing development of artificial LULCs in Spain, a highly biodiverse country that has experienced massive socioeconomic transformations in the past two decades. We used digital census data for four PA networks designated between 1990 and 2000: Nature Reserves (NRs), Nature Parks (NPs), Sites of Community Importance (SCIs) and Special Protection Areas (SPAs). We analysed the effect of explanatory variables on the ecological effectiveness of protected polygons (PPs): Legislation stringency, cummulative legal designations, management, size, age and bio-physical characteristics. A multiple Before-After-Control-Impact (BACI) semi-experimental research design was used whereby artificial land cover increase (ALCI) and proportional artificial land cover increase (PALCI) results were compared inside and outside PAs, using 1 km and 5 km buffer areas surrounding PAs as controls. LULC data were retrieved from Corine Land Cover (CLC) 1990 and 2006 data. Results from three spatial-statistical models using progressively restrictive criteria to select control areas increasingly more accurate and similar to the assessed PPs were compared. PAs were a generally effective territorial policy to prevent land development in Spain. NRs were the most effective PA category, with no new artificial land covers in the assessed period, although exact causality could not be attributed due to legal overlaps. SPAs were the least effective category, with worse ALCI data than their control areas. Legal protection was effective against land development, which was influenced by most bio-physical variables. However, cumulative legal designations and PA management did not seem to influence land development. The spatial-statistical technique used to make cases and control environmentally similar did not produce consistent outcomes and should be refined.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espanha
18.
Environ Monit Assess ; 190(12): 709, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413967

RESUMO

Short-term impacts of aerial application of Bacillus thuringiensis israelensis (Bti) on Culicidae and Chironomidae were investigated over several years in temporary waters of the Dyje and Morava floodplains in Eastern Austria. The sampling followed a Before-After-Control-Impact (BACI) approach with sampling dates immediately before and shortly after the application and was repeated for 3 years. To test for effects of the Bti treatment on the two Diptera families, linear mixed-effects models were used. Data analysis included the factors Before-After and Control-Impact as fixed effects, while general temporal and spatial variables were random effects. One hundred sixteen taxa of chironomids were identified. Abundance varied between 2 and 1125 larvae per m2, while culicid densities reached values of several 100 ind. per liter. Total culicid abundance significantly decreased after the Bti treatment, whereas no significant effects were found on the abundance of total chironomids and dominant chironomid subfamilies, tribes, and genera, on relative proportions of chironomid feeding guilds, diversity, and species composition. Further studies from this area are needed to extend the investigation over a period of several weeks in order to reveal possible delayed effects of the larvicide application.


Assuntos
Bacillus thuringiensis/metabolismo , Chironomidae/crescimento & desenvolvimento , Culicidae/crescimento & desenvolvimento , Larva/microbiologia , Controle de Mosquitos/métodos , Animais , Áustria , Chironomidae/microbiologia , Culicidae/microbiologia , Monitoramento Ambiental
19.
J Environ Manage ; 203(Pt 1): 29-39, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28778003

RESUMO

The effects of drain maintenance on fish habitat and benthic macroinvertebrate assemblages (fish prey) were investigated for eight agricultural drains in southwestern Ontario, Canada. Our investigation employed a replicated Before-After-Control-Impact (BACI) design where each maintained section of a drain was paired with an unmaintained section downstream and an unmaintained section on a nearby reference drain of similar size and position in the watershed. Seven variables characterizing physical habitat features important to fishes and three variables characterizing the taxonomic abundance, densities, and relative densities of benthic macroinvertebrates were measured before drain maintenance and 10-12 times over 2 years following maintenance. Pulse responses were detected for three habitat variables quantifying vegetative cover: percent vegetation on the bank, percent in-stream vegetation, and percent cover. All three variables returned to pre-maintenance levels within two years of maintenance. No consistent changes were observed in the remaining habitat features or in the richness and densities of benthic invertebrate assemblages following drain maintenance. Our findings suggest that key features of fish habitat, structural properties and food availability, are resistant to drain maintenance.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Peixes , Invertebrados , Ontário , Rios
20.
Environ Manage ; 60(2): 340-356, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28488088

RESUMO

Multidisciplinary monitoring of the impact of offshore gas platforms on northern and central Adriatic marine ecosystems has been conducted since 1998. Beginning in 2006, 4-5 year investigations spanning the period before, during, and after rig installation have explored the effects of its construction and presence on macrozoobenthic communities, sediment, water quality, pollutant bioaccumulation, and fish assemblages. In this study, sediment samples collected at increasing distance from an offshore gas platform before, during and after its construction were subjected to chemical analysis and assessment of benthic communities. Ecological indices were calculated to evaluate the ecological status of the area. Ecotoxicological analysis of sediment was performed to establish whether pollutants are transferred to biota. The study applied a before-after control-impact design to assess the effects of rig construction and presence and provide reference data on the possible impacts of any further expansion of the gas extraction industry in the already heavily exploited Adriatic Sea. Only some of the metals investigated (barium, chromium, cadmium, and zinc) showed a different spatial and/or temporal distribution that may be platform-related. In the early phases, the sediment concentrations of polycyclic aromatic hydrocarbons were below the detection limit at all sites; they then became detectable, but without significant spatial differences. The present findings suggest that the environmental effects of offshore gas platforms may be difficult to quantify, interpret, and generalize, because they are influenced by numerous, often local, abiotic, and biotic variables in different and unpredictable ways.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Indústria de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Peixes/crescimento & desenvolvimento , Itália , Oceanos e Mares , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa