Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642140

RESUMO

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animais , Bacillus amyloliquefaciens/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Filogenia
2.
Prep Biochem Biotechnol ; 54(1): 49-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37114667

RESUMO

Lactic acid bacteria (LAB) are widely exploited in fermented foods and are gaining attention for novel uses due to their safety as biopreservatives. In this study, several organic acid-producing LAB strains were isolated from fermented vegetables for their potential application in fermentation. We identified nine novel strains belonging to four genera and five species, Lactobacillus plantarum PC1-1, YCI-2 (8), YC1-1-4B, YC1-4 (4), and YC2-9, Lactobacillus buchneri PC-C1, Pediococcus pentosaceus PC2-1 (F2), Weissella hellenica PC1A, and Enterococcus sp. YC2-6. Based on the results of organic acids, acidification, growth rate, antibiotic activity and antimicrobial inhibition, PC1-1, YC1-1-4B, PC2-1(F2), and PC-C1 showed exceptional biopreservative potential. Additionally, PC-C1, YC1-1-4B, and PC2-1(F2) recorded higher (p < 0.05) growth by utilizing lower concentrations of glucose (20 g/L) and soy peptone (10 g/L) as carbon and nitrogen sources in optimized culture conditions (pH 6, temperature 32 °C, and agitation speed 180 rpm) at 24hr and acidification until 72hr in batch fermentation, which suggests their application as starter cultures in industrial fermentation.


Assuntos
Lactobacillales , Lactobacillus plantarum , Verduras , Fermentação , China , Microbiologia de Alimentos
3.
J Sci Food Agric ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092901

RESUMO

Concerns about food safety have consistently driven the exploration of potent antimicrobials with probiotic origins. Identification of probiotic-derived bacteriocins as robust alternatives to antibiotics has gained traction following the COVID-19 pandemic. Additionally, the global market is witnessing an increasing preference for minimally processed food products free from chemical additives. Another contributing factor to the search for potent antimicrobials is the escalating number of infections caused by antibiotic-resistant bacteria and the need to mitigate the significant damage inflicted on the commensal human microbiota by broad-spectrum antibiotics. As an alternative bio-preservation strategy, there is substantial enthusiasm for the use of bacteriocins or starter cultures producing bacteriocins in preserving a variety of food items. This review specifically focuses on bacteriocins originating from lactic acid bacteria associated with fermented foods and explores their technological applications as nanobiotics. The food-grade antibiotic alternatives, whether utilized independently or in combination with other antimicrobials and administered directly or encapsulated, are anticipated to possess qualities of safety, stability and non-toxicity suitable for application in the food sector. © 2024 Society of Chemical Industry.

4.
Arch Microbiol ; 205(12): 367, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917273

RESUMO

Due to public apprehension regarding the use of chemical preservatives to prevent food spoilage and food-borne diseases, it is imperative to identify natural alternatives such as antimicrobial peptides as a potential solution. The study aimed at evaluating the effectiveness of the antimicrobial peptide RI12 (K3W) against Listeria monocytogenes. RI12 (K3W) exhibited potent antimicrobial properties, with a minimum inhibitory concentration and minimum bactericidal concentration of 16 µM and 32 µM, respectively. The time-kill assay revealed a consistent reduction in bacterial viability at 8, 16, and 24 h of study. Cytotoxicity testing on mammalian cells demonstrated no apparent change in morphology or cell count. Investigating how well it worked in a food matrix to replicate real-world conditions showed a significant decrease in the bacterial count. The study underscores the potential of RI12 (K3W) as a safe and effective antimicrobial against L. monocytogenes that might also serve as an alternative to chemical preservatives.


Assuntos
Anti-Infecciosos , Listeria monocytogenes , Animais , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Microbiologia de Alimentos , Mamíferos
5.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063352

RESUMO

Consumer's interest for health promoting foods has reshaped the food industry to come up with novel biological compounds with diverse health benefits. Postbiotic are the cell fractions, or cell lysates which have emerged as potential functional food compounds during the last decade. The health benefits of postbiotic are well established while attempts are underway to understand their interaction, production, processing and safety. The review explore the challenges and opportunities to devise better growth mediums, cell lysis and extraction, characterization, stability and applications of postbiotics in both food and pharma industry along with the market trends, success stories and safety concerns regarding postbiotics. The scientific and commercial interest in postbiotic have resulted in extensive investigations and clinical documentation of various physiological benefits and additional bioactivity. The findings validate food and pharma application of the postbiotics and further emphasize on documentation of bioactivity and safety of these compounds.

6.
Crit Rev Food Sci Nutr ; 63(32): 11125-11152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35708071

RESUMO

Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.


Assuntos
Fusarium , Lactobacillales , Micotoxinas , Micotoxinas/análise , Fusarium/química , Lactobacillales/metabolismo , Descontaminação , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Produtos Agrícolas/metabolismo
7.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36708166

RESUMO

Biopreservation is an alternative to prevent the growth of pathogens and reduce microbial spoilage in food based on the use of microorganisms and/or their metabolic products. The objective of this study was to determine the optimal mode of application and the effectiveness of cell-free supernatant (CFS) from Lactobacillus curvatus ACU-1, containing sakacin G, in Vienna-type sausages to control Listeria and spoilage flora. The functionality and the optimal dosage form between CFS, producing bacteria, a combination or concentrate of bacteriocin applied on Vienna-type sausages before and after stuffing the casings on an industrial scale were determined. Sakacin G was effective for the control of Listeria applied to the casing both before and after stuffing. The application of the antimicrobial on the ready sausages inhibits both lactic acid bacteria and mesophilic microorganisms from zero sampling time. The heat resistance of the bacteriocin in the food was verified under industrial manufacturing conditions. The antimicrobial activity of sakacin G was maintained throughout the period studied in all the conditions tested. In conclusion, the application of CFS containing bacteriocin is useful given both before and after casing stuffing; but the application prior to the stuffing is more practical for the process of elaboration.


Assuntos
Bacteriocinas , Listeria , Produtos da Carne , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Lactobacillus/metabolismo , Listeria/metabolismo , Produtos da Carne/microbiologia
8.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37401169

RESUMO

The aim of this study was to investigate the effectiveness of essential oils (EOs) or crude extracts (CEs) of eight aromatic and medicinal plants (AMPs) and its association with enterocin OS1 on Listeria monocytogenes and food spoilage bacteria in Moroccan fresh cheese. The cheese batches were treated with EO of Rosmarinus officinalis, Thymus vulgaris, Syzygium aromaticum, Laurus nobilis, Allium sativum, Eucalyptus globulus, or CE of Crocus sativus and Carthamus tinctorius, and/or enterocin OS1, and stored for 15 days at 8°C. The data were subjected to correlations analysis, variance analysis, and principal components analysis. Results clearly showed a positive correlation between L. monocytogenes reduction and storage time. Moreover, reduction on Listeria counts induced by Allium-EO and Eucalyptus-EO reached 2.68 and 1.93 Log CFU/g with respect to untreated samples after 15 days, respectively. Similarly, enterocin OS1 alone has significantly reduced the L. monocytogenes population with 1.46 Log CFU/g. The most promising result was the synergy observed between many AMPs and enterocin. Indeed, treatments with Eucalyptus-EO + OS1 and Crocus-CE + OS1 decreased the Listeria population to undetectable after only 2 days and throughout the storage period. These findings suggest a promising application/use of this natural combination, which preserves the safety and long-lasting conservation of fresh cheese.


Assuntos
Queijo , Listeria monocytogenes , Plantas Medicinais , Microbiologia de Alimentos , Queijo/microbiologia , Contagem de Colônia Microbiana
9.
Food Microbiol ; 111: 104207, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681394

RESUMO

Nisin is a posttranslationally modified antimicrobial peptide that is widely used as a food preservative. It contains five cyclic thioethers of varying sizes. Nisin activity and stability are closely related to its primary and three dimensional structures. It has nine reported natural variants. Nisin A is the most studied nisin as it was the first one purified. Here, we review the sequence feature of nisin A and its natural variants, and their biosynthesis pathway, mode of action and application as a meat preservative. We systematically illustrate the functional domains of the main enzymes (NisB, NisC, and NisP) involved in nisin synthesis. NisB was shown to dehydrate its substrate NisA via a tRNA associated glutamylation mechanism. NisC catalysed the cyclization of the didehydro amino acids with the neighboring cysteine residues. After cyclization, the leader peptide is removed by the protease NisP. According to multiple sequence alignments, we detected five conserved sites Dha5, Pro9, Gly14, Leu16, and Lys22. These residues are probably the structural and functional important ones that can be modified to produce peptides versions with enhanced antimicrobial activity. Through comparing various application methods of nisin in different meats, the antimicrobial effects of nisin used individually or in combination with other natural substances were clarified.


Assuntos
Anti-Infecciosos , Conservação de Alimentos , Lactococcus lactis , Carne , Nisina , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Proteínas de Membrana , Nisina/farmacologia , Nisina/química , Carne/microbiologia
10.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375149

RESUMO

The content of polyphenols, lactic acid, and antioxidant properties in fermented juice increases more at 30 °C than at 35 °C during the lactic fermentation process in butanol extract and broccoli juice. The concentration of polyphenols is expressed by phenolic acid equivalents as gallic acid-Total Phenolic Content (TPC), ferulic acid (CFA), p-cumaric acid (CPA), sinapic acid (CSA), and caffeic acid (CCA). The polyphenols present in fermented juice exhibit antioxidant properties and the ability to reduce free radicals using total antioxidant capacity (TAC) assay, while also the percentage of the DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) cation radical scavenging activity. Lactic acid concentration (LAC), total flavonoid content as quercetin equivalents (QC), and acidity increases during the work of Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in broccoli juice. The pH was monitored during the process of fermentation in both temperatures (30 °C and 35 °C). Densitometric measurements of lactic bacteria (LAB) showed increasing concentration at 30 °C and 35 °C after 100 h (~4 h), but the value concentration dropped after 196 h. The Gram staining showed only Gram-positive bacilli Lactobacillus plantarum ATCC 8014. The Fourier transform infrared (FTIR) spectrum for the fermented juice showed the characteristic carbon-nitrogen vibrations that may originate from glucosinolates or isothiocyanates. Among the fermentation gases, more CO2 was released from fermenters at 35 °C than at 30 °C. The biopreservation used Lactiplantibacillus plantarum to prevent the problem of food waste of plant origin. The probiotic bacteria used in fermentation have a very beneficial effect on health and the human body.


Assuntos
Brassica , Lactobacillus plantarum , Eliminação de Resíduos , Humanos , Antioxidantes/química , Alimentos , Brassica/metabolismo , Lactobacillus plantarum/metabolismo , Polifenóis , Fermentação , Bactérias/metabolismo , Ácido Láctico
11.
Molecules ; 28(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959814

RESUMO

Penicillium spp. are considered a major spoilage fungus in dairy products. Due to the growing concerns over food safety issues and the demand for "clean label" food products from consumers, the use of lactic acid bacteria (LAB) as a bioprotective tool to control fungal spoilage of dairy products appears to be a promising alternative. Here, the antifungal activities of ten LAB cultures against five dairy-spoilage-associated Penicillium strains were studied in a model system, and the most potent bioprotective cultures were further tested in yoghurt. Lacticaseibacillus rhamnosus (L. rhamnosus) LRH01 and Lactiplantibacillus plantarum (L. plantarum) LP01 exhibited potent antifungal efficacy at low concentrations. The inhibitory effects of cell-containing fermentates (C-fermentates), cell-free fermentates (CF-fermentates), and volatiles produced by the two cultures were tested in a yoghurt serum medium. The C-fermentates showed antifungal effects, while the removal of cells from C-fermentates led to decreased antifungal activities. Volatiles alone displayed some antifungal efficiency, but less than the fermentates. In a yoghurt matrix, the specific effect of manganese depletion by the bioprotective cultures on mold growth was investigated. Here, the LAB cultures could completely suppress the growth of molds, while addition of manganese partially or fully restored the mold growth, demonstrating that manganese depletion played a key role in the antifungal activity of the tested LAB cultures in the yoghurt matrix. Both L. plantarum LP01 and L. rhamnosus LRH01 showed efficient antifungal activities in the yoghurt serum, while L. rhamnosus LRH01 exhibited the most potent inhibitory effects on Penicillium strains when added during the processing of the yoghurt with subsequent storage at 7 °C for 22 days. Our findings suggested that L. rhamnosus LRH01 could be a promising bioprotective culture for yoghurt biopreservation.


Assuntos
Lacticaseibacillus rhamnosus , Lactobacillales , Penicillium , Antifúngicos/farmacologia , Iogurte , Lacticaseibacillus , Manganês/farmacologia , Fungos
12.
Food Technol Biotechnol ; 61(3): 357-377, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38022877

RESUMO

Tailor-made foods, also known as foods with programmable properties, are specialised systems with unique composition prepared by different methods, using the known mechanisms of action of their bioactive ingredients. The development of tailor-made foods involves the evaluation of individual components, including bioactive substances derived from waste products of other productions, such as essential oils. These components are evaluated both individually and in combination within food compositions to achieve specific functionalities. This review focuses on the application of minimal processing technologies for the production and preservation of tailor-made foods. It examines a range of approaches, including traditional and emerging technologies, as well as novel ingredients such as biomolecules from various sources and microorganisms. These approaches are combined according to the principles of hurdle technology to achieve effective synergistic effects that enhance food safety and extend the shelf life of tailor-made foods, while maintaining their functional properties.

13.
Environ Monit Assess ; 195(11): 1365, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874409

RESUMO

The industrial leather sector is one of the most ancient industries globally and continues to influence the global economic system in contemporary times significantly. Regardless of income, the leather sector is widely recognized as a significant environmentally detrimental sector because of the utilization of materials involved in preserving and processing leather. Raw hides, the primary ingredient in the leather industry, are highly susceptible to microbial attack once they have been flayed from animals. The current review provides information about the diverse operational processes employed in the beam house to produce leather goods. This paper primarily focuses on the preservation of various types of hides, including those derived from goats, cows, sheeps, deers, pigs, and other species, with particular emphasis on bio-based preservation methods. It also discusses various salt and salt-free curing methods along with their limitations. Furthermore, it reviews a viable and economically advantageous option for preserving animal hides using plant and microbial sources. Moreover, it focuses on investigating the molecular docking interactions between three critical enzymes in the phytochemical synthesis pathway, namely phenylalanine ammonia-lyase, phosphomevalonate kinase, and dihydroflavonol 4-reductase, and a set of specific modulators, followed by ADMET analyses. The objective was to determine the optimal binding affinity score for these enzyme-modulator complexes through virtual screening. The depiction of protein-ligand interactions offers potential benefits for future research endeavours, as well as valuable insights into the identification of modulators and the evaluation of the potency and efficacy of phytochemicals in the preservation of hides.


Assuntos
Monitoramento Ambiental , Indústrias , Animais , Bovinos , Ovinos , Suínos , Simulação de Acoplamento Molecular , Cabras , Compostos Fitoquímicos
14.
Adv Appl Microbiol ; 120: 33-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243452

RESUMO

Lactic acid bacteria (LAB) are ubiquitous bacteria associated with spontaneous lactic fermentation of vegetables, dairy and meat products. They are generally recognized as safe (GRAS), and they are involved in transformation of probiotic lacto-fermented foods, highly desired for their nutraceutical properties. The antifungal activity is one of the exciting properties of LAB, because of its possible application in food bio-preservation, as alternative to chemical preservatives. Many recent research works have been developed on antifungal activity of LAB, and they demonstrate their capacity to produce various antifungal compounds, (i.e. organic acids, PLA, proteinaceous compounds, peptides, cyclic dipeptides, fatty acids, and other compounds), of different properties (hydrophilic, hydrophobic and amphiphilic). The effectiveness of LAB in controlling spoilage and pathogenic fungi, demonstrated in different agricultural and food products, can be due to the synergistic effect between their antifungal compounds of different properties; where the amphiphilic-compounds allow the contact between the target microbial cell (hydrophilic compartment) and antifungal hydrophobic-compounds. Further studies on the interaction between compounds of these three properties are to de be developed, in order to highlight more their mechanism of action, and make LAB more profitable in improving shelf life and nutraceutical properties of foods.


Assuntos
Lactobacillales , Antifúngicos/farmacologia , Dipeptídeos , Ácidos Graxos , Microbiologia de Alimentos , Peptídeos Cíclicos , Poliésteres
15.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36200872

RESUMO

Pistachio (Pistacia vera L.) is consumed in almost every part of the world enclosed in shells that are thrown out in baskets. Similarly, hulls separated from pistachio are discarded as waste in food processing industries. These waste materials contain functional constituents having immense industrial and nutraceutical applications. This review article summarizes the scientific investigations regarding the functional constituents and bioactive compounds in pistachio shells (PSs) and pistachio hulls (PHs). It also highlights the nutraceutical potential exhibited by functionally active compounds as well as their potential applications in various industries including nutraceutical, medicinal, and feed industries together with biosynthetic development of useful products and wastewater treatment. Pistachio waste (PW) comprising PS and PH is a rich source of various bioactive compounds. PS is full of lignin, cellulose, and hemicellulose. PH is an excellent source of carbohydrates (80.64 ±â€¯0.98%) (including glucose, galactose, rhamnose, arabinose, xylose, mannose, galacturonic acid) as well as ash (6.32 ±â€¯0.26%) and proteins (1.80 ±â€¯0.28%) with small amounts of fats (0.04 ±â€¯0.005%). Owing to its composition, PW can be beneficial in many nutraceuticals, including antioxidation, cytoprotection, anti-obesity, anti-diabetic, anti-melanogenesis, neuroprotection, anti-cancer, anti-mutagenesis, anti-inflammation, and anti-microbial. The waste materials have vast applications in the food industry, such as bio-preservation of oils and meat products, prevention of enzymatic browning in fruits, vegetables, and mushrooms, development of functional cereal and dairy products, production of food enzymes, emulsions, and manufacturing of biodegradable films for food packaging. The use of these waste products to develop and design novel functional foods with improved quality is important for both food industries and food sustainability.

16.
J Appl Microbiol ; 133(1): 212-229, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35238463

RESUMO

Traditionally, fermentation was used to preserve the shelf life of food. Currently, in addition to favouring food preservation, well standardized and controlled industrial processes are also aimed at improving the functional characteristics of the final product. In this regard, starter cultures have become an essential cornerstone of food production. The selection of robust microorganisms, well adapted to the food environment, has been followed by the development of microbial consortia that provide some functional characteristics, beyond their acidifying capacity, achieving safer, high-quality foods with improved nutritional and health-promoting properties. In addition to starters, adjunct cultures and probiotics, which normally do not have a relevant role in fermentation, are added to the food in order to provide some beneficial characteristics. This review focuses on highlighting the functional characteristics of food starters, as well as adjunct and probiotic cultures (mainly lactic acid bacteria and bifidobacteria), with a specific focus on the synthesis of metabolites for preservation and safety aspects (e.g. bacteriocins), organoleptic properties (e.g. exopolysaccharides), nutritional (e.g. vitamins) and health improvement (e.g. neuroactive molecules). Literature reporting the application of these functional cultures in the manufacture of foods, mainly those related to dairy production, such as cheeses and fermented milks, has also been updated.


Assuntos
Queijo , Probióticos , Queijo/microbiologia , Fermentação , Microbiologia de Alimentos , Conservação de Alimentos , Valor Nutritivo , Probióticos/análise
17.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080356

RESUMO

Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives.


Assuntos
Queijo , Hafnia alvei , Acil-Butirolactonas , Bactérias/metabolismo , Hafnia alvei/metabolismo , Humanos , Percepção de Quorum
18.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080398

RESUMO

Probiotic bacteria are used for food biopreservation because their metabolic products might contribute to ensuring food microbiological safety and/or increase its shelf life without the addition of chemical preservatives. Moreover, biopreserved foods are excellent vehicles for the delivery of probiotic bacteria. The aim of the study was to investigate the potential of chocolate mousse food matrix for the delivery of the probiotic strain Lactobacillus helveticus 2/20 (Lb. helveticus 2/20) and to investigate its capacity to inhibit the growth of two foodborne pathogenic bacteria (Staphylococcus aureus and Escherichia coli). Therefore, the populations of free or encapsulated in calcium alginate Lb. helveticus 2/20 cells and/or of each pathogen (used to voluntarily contaminate each sample) were monitored both in complex nutrient medium (MRS broth) and in chocolate mousse under refrigeration conditions and at room temperature. Lb. helveticus 2/20 alone in free or encapsulated state effectively inhibited the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 in chocolate mousse when stored at 20 ± 2 °C. Practically no viable unwanted bacteria were identified on the 7th day from the beginning of the process. High viable Lb. helveticus 2/20 cell populations were maintained during storage under refrigerated conditions (4 ± 2 °C) and at room temperature. Chocolate mousse is thus a promising food matrix to deliver probiotic Lb. helveticus 2/20 cells, which could also protect it from contamination by unwanted bacteria.


Assuntos
Chocolate , Lactobacillus helveticus , Probióticos , Escherichia coli , Probióticos/farmacologia
19.
J Food Sci Technol ; 59(2): 745-753, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35153314

RESUMO

Bacteriocin producing L. plantarum (ATCC 8014) was immobilized (MC) and freeze dried (FD) to conduct preliminary study on its potential in biopreservation of pineapple wine. Cell survival in both simulated gastric and intestinal juice was significantly better for MC and FD than free cells (FC).The antimicrobial activity and bacteriocin production of L. plantarum was detected against L. acidophilus, A. aceti, S. cerevisiae, E. coli, S. aureus and B. subtilis as indicator strains. Bacteriocin activity from MC revealed high zone of inhibition as compared to FC. In wine, bacteriocin found effective at 3.5 pH. Significant decrease of total soluble solids and sugar observed in wine treated with MC and FC. FD and MC treated wine was organolepticaly more accepted as compared to FC however, there was no significant difference in overall acceptability of pineapple wine under all treatments at P < 0.05.

20.
J Appl Microbiol ; 131(3): 1226-1239, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33590587

RESUMO

AIMS: The objective of this study was to isolate a bacteriocin-producing strain and to characterize the expressed bacteriocin for the control of Listeria monocytogenes with aim of biopreservation application. METHODS AND RESULTS: Soil samples from a Korean organic farm were subjected to microbiological analysis for isolation of potential bacteriocinogenic LAB, based on a three-level approach, using L. monocytogenes ATCC 15313 as an indicator test micro-organism. From a total of 17 isolates with inhibitory potential, seven were confirmed to be bacteriocin producers. The selected isolates were differentiated based on their morphology, catalase reaction, sugar fermentation profile obtained by API50CHL and by RAPD-PCR generating two unique profiles. One of the isolates, ST110LD, a specific strong producer of anti-Listeria bacteriocins (12 800 AU ml-1 ) was identified as Leuconostoc citreum. The proteinaceous nature of the inhibitory compound produced by Leuc. citreum ST110LD was confirmed through treatment with pepsin and α-chymotrypsin. Bacteriocin activity was observed to be not affected by the presence of milk, NaCl, SDS, Tween 80 or glycerol. Bacteriocin ST110LD effectively inhibited the growth of exponentially growing L. monocytogenes ATCC 15313 during a 10-h incubation period in BHI at 37°C. In addition, this bacteriocin showed specific inhibition of only Listeria spp., but did not inhibit the growth of beneficial cultures included in the microbial test panel for assessment of the spectrum of activity. CONCLUSIONS: Leuconostoc citreum ST110LD was evaluated as safe bacterium strain, producing bacteriocin with high specificity against listerial and enterococcal species. Specificity of producer strain and expressed bacteriocin can be explored in biopreservation of different fermented food products or applied in biotherapy of antibiotic resistant listerial or enterococcal infections. SIGNIFICANCE AND IMPACT OF THE STUDY: To the best of our knowledge, this is the first report of bacteriocin produced by Leuc. citreum strain with highly specific antimicrobial activity against Listeria sp. and Enterococcus sp.


Assuntos
Bacteriocinas , Leuconostoc/química , Listeria monocytogenes , Bacteriocinas/farmacologia , Fazendas , Alimentos Fermentados , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Agricultura Orgânica , Técnica de Amplificação ao Acaso de DNA Polimórfico , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa