Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
FASEB J ; 37(11): e23256, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823685

RESUMO

The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Animais , Ovinos , Antígenos CD55/farmacologia , Lectinas/metabolismo , Fatores de Transcrição , Inativadores do Complemento , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo
2.
J Peripher Nerv Syst ; 29(2): 193-201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528725

RESUMO

BACKGROUND AND AIMS: To further substantiate the role of antibody-mediated complement activation in multifocal motor neuropathy (MMN) immunopathology, we investigated the distribution of promotor polymorphisms of genes encoding the membrane-bound complement regulators CD46, CD55, and CD59 in patients with MMN and controls, and evaluated their association with disease course. METHODS: We used Sanger sequencing to genotype five common polymorphisms in the promotor regions of CD46, CD55, and CD59 in 133 patients with MMN and 380 controls. We correlated each polymorphism to clinical parameters. RESULTS: The genotype frequencies of rs28371582, a 21-bp deletion in the CD55 promotor region, were altered in patients with MMN as compared to controls (p .009; Del/Del genotype 16.8% vs. 7.7%, p .005, odds ratio: 2.43 [1.27-4.58]), and patients carrying this deletion had a more favorable disease course (mean difference 0.26 Medical Research Council [MRC] points/year; 95% confidence interval [CI]: 0.040-0.490, p .019). The presence of CD59 rs141385724 was associated with less severe pre-diagnostic disease course (mean difference 0.940 MRC point/year; 95% CI: 0.083-1.80, p .032). INTERPRETATION: MMN susceptibility is associated with a 21-bp deletion in the CD55 promotor region (rs2871582), which is associated with lower CD55 expression. Patients carrying this deletion may have a more favorable long-term disease outcome. Taken together, these results point out the relevance of the pre-C5 level of the complement cascade in the inflammatory processes underlying MMN.


Assuntos
Antígenos CD55 , Regiões Promotoras Genéticas , Humanos , Antígenos CD55/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Proteína Cofatora de Membrana/genética , Antígenos CD59/genética , Deleção de Sequência , Polineuropatias/genética , Polineuropatias/fisiopatologia , Polineuropatias/imunologia , Progressão da Doença , Genótipo
3.
Clin Exp Immunol ; 211(1): 57-67, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36571232

RESUMO

The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , Ativação do Complemento , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Antígenos CD55/genética , Proteínas do Sistema Complemento , Neoplasias do Colo/genética , MicroRNAs/genética , Linhagem Celular Tumoral
4.
Clin Exp Immunol ; 213(2): 221-234, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37249005

RESUMO

Nasopharyngeal carcinoma (NPC) is endemic in Southern China and Southeast Asia. Hyperthermia is widely used in combination with chemotherapy and radiotherapy to enhance therapeutic efficacy in NPC treatment, but the underlying anti-tumor mechanisms of hyperthermia remain unclear. Complement C3 has been reported to participate in the activation of immune system in the tumor microenvironment, leading to tumor growth inhibition. In this study, we aimed to explore the effect and mechanisms of hyperthermia and investigate the functional role of complement C3 in NPC hyperthermia therapy (HT). The serum levels of complement C3 before and after hyperthermia therapy in patients with NPC were analyzed. NPC cell lines SUNE1 and HONE1 were used for in vitro experiment to evaluate the function of complement C3 and HT on cell proliferation and apoptosis. SUNE1 xenograft mouse model was established and tumor-bearing mice were treated in water bath at a constant temperature of 43°C. Tumor samples were collected at different time points to verify the expression of complement C3 by immunohistochemical staining and western blot. The differential expressed genes after hyperthermia were analyzed by using RNA sequencing. We found that complement could enhance hyperthermia effect on suppressing proliferation and promoting apoptosis of tumor cells in NPC. Hyperthermia decreased the mRNA expression of complement C3 in tumor cells, but promoted the aggregation and activation circulating C3 in NPC tumor tissue. By using in vitro hyperthermia-treated NPC cell lines and SUNE1 xenograft tumor-bearing mice, we found that the expression of heat shock protein 5 (HSPA5) was significantly upregulated. Knockdown of HSPA5 abrogated the anti-tumor effect of hyperthermia. Moreover, we demonstrated that hyperthermia downregulated CD55 expression via HSPA5/NFκB (P65) signaling and activated complement cascade. Our findings suggest that therapeutic hyperthermia regulates complement C3 activation and suppresses tumor development via HSPA5/NFκB/CD55 pathway in NPC.


Assuntos
Hipertermia Induzida , Neoplasias Nasofaríngeas , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Chaperona BiP do Retículo Endoplasmático , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Antígenos CD55 , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
5.
Xenotransplantation ; 30(4): e12812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37504492

RESUMO

INTRODUCTION: Expression of human complement pathway regulatory proteins (hCPRP's) such as CD46 or CD55 has been associated with improved survival of pig organ xenografts in multiple different models. Here we evaluate the hypothesis that an increased human CD46 gene dose, through homozygosity or additional expression of a second hCPRP, is associated with increased protein expression and with improved protection from injury when GTKO lung xenografts are perfused with human blood. METHODS: Twenty three GTKO lungs heterozygous for human CD46 (GTKO.heteroCD46), 10 lungs homozygous for hCD46 (GTKO.homoCD46), and six GTKO.homoCD46 lungs also heterozygous for hCD55 (GTKO.homoCD46.hCD55) were perfused with human blood for up to 4 h in an ex vivo circuit. RESULTS: Relative to GTKO.heteroCD46 (152 min, range 5-240; 6/23 surviving at 4 h), survival was significantly improved for GTKO.homoCD46 (>240 min, range 45-240, p = .034; 7/10 surviving at 4 h) or GTKO.homoCD46.hCD55 lungs (>240 min, p = .001; 6/6 surviving at 4 h). Homozygosity was associated with increased capillary expression of hCD46 (p < .0001). Increased hCD46 expression was associated with significantly prolonged lung survival (p = .048),) but surprisingly not with reduction in measured complement factor C3a. Hematocrit, monocyte count, and pulmonary vascular resistance were not significantly altered in association with increased hCD46 gene dose or protein expression. CONCLUSION: Genetic engineering approaches designed to augment hCPRP activity - increasing the expression of hCD46 through homozygosity or co-expressing hCD55 with hCD46 - were associated with prolonged GTKO lung xenograft survival. Increased expression of hCD46 was associated with reduced coagulation cascade activation, but did not further reduce complement activation relative to lungs with relatively low CD46 expression. We conclude that coagulation pathway dysregulation contributes to injury in GTKO pig lung xenografts perfused with human blood, and that the survival advantage for lungs with increased hCPRP expression is likely attributable to improved endothelial thromboregulation.


Assuntos
Pulmão , Animais , Suínos , Humanos , Animais Geneticamente Modificados , Transplante Heterólogo , Xenoenxertos , Perfusão
6.
J Pathol ; 258(2): 199-209, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35851954

RESUMO

High-level expression of decay-accelerating factor, CD55, has previously been found in human gastric cancer (GC) and intestinal metaplasia (IM) tissues. Therapeutic effects of CD55 inhibition in cancer have been reported. However, the role of Helicobacter pylori infection and virulence factors in the induction of CD55 and its association with histological changes of the human gastric mucosa remain incompletely understood. We hypothesised that CD55 would be increased during infection with more virulent strains of H. pylori, and with more marked gastric mucosal pathology. RT-qPCR and immunohistochemical analyses of gastric biopsy samples from 42 H. pylori-infected and 42 uninfected patients revealed that CD55 mRNA and protein were significantly higher in the gastric antrum of H. pylori-infected patients, and this was associated with the presence of IM, but not atrophy, or inflammation. Increased gastric CD55 and IM were both linked with colonisation by vacA i1-type strains independently of cagA status, and in vitro studies using isogenic mutants of vacA confirmed the ability of VacA to induce CD55 and sCD55 in gastric epithelial cell lines. siRNA experiments to investigate the function of H. pylori-induced CD55 showed that CD55 knockdown in gastric epithelial cells partially reduced IL-8 secretion in response to H. pylori, but this was not due to modulation of bacterial adhesion or cytotoxicity. Finally, plasma samples taken from the same patients were analysed for the soluble form of CD55 (sCD55) by ELISA. sCD55 levels were not influenced by IM and did not correlate with gastric CD55 mRNA levels. These results suggest a new link between active vacA i1-type H. pylori, IM, and CD55, and identify CD55 as a molecule of potential interest in the management of IM as well as GC treatment. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Citotoxinas/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Metaplasia/patologia , RNA Mensageiro/metabolismo , Neoplasias Gástricas/patologia
7.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628958

RESUMO

Depending on their central metal atom, metalloporphyrins (MPs) can attenuate or exacerbate the severity of immune-mediated kidney injury, and this has been attributed to the induction or inhibition of heme oxygenase (HO) activity, particularly the inducible isoform (HO-1) of this enzyme. The role of central metal or porphyrin moieties in determining the efficacy of MPs to attenuate injury, as well as mechanisms underlying this effect, have not been assessed. Using an antibody-mediated complement-dependent model of injury directed against rat visceral glomerular epithelial cells (podocytes) and two MPs (FePPIX, CoPPIX) that induce both HO-1 expression and HO enzymatic activity in vivo but differ in their chelated metal, we assessed their efficacy in reducing albuminuria. Podocyte injury was induced using rabbit immune serum raised against the rat podocyte antigen, Fx1A, and containing an anti-Fx1A antibody that activates complement at sites of binding. FePPIX or CoPPIX were injected intraperitoneally (5 mg/kg) 24 h before administration of the anti-Fx1A serum and on days 1, 3, 6, and 10 thereafter. Upon completion of urine collection on day 14, the kidney cortex was obtained for histopathology and isolation of glomeruli, from which total protein extracts were obtained. Target proteins were analyzed by capillary-based separation and immunodetection (Western blot analysis). Both MPs had comparable efficacy in reducing albuminuria in males, but the efficacy of CoPPIX was superior in female rats. The metal-free protoporphyrin, PPIX, had minimal or no effect on urine albumin excretion. CoPPIX was also the most potent MP in inducing glomerular HO-1, reducing complement deposition, and preserving the expression of the complement regulatory protein (CRP) CD55 but not that of CD59, the expression of which was reduced by both MPs. These observations demonstrate that the metal moiety of HO-1-inducing MPs plays an important role in reducing proteinuria via mechanisms involving reduced complement deposition and independently of an effect on CRPs.


Assuntos
Metaloporfirinas , Podócitos , Porfirinas , Feminino , Masculino , Animais , Coelhos , Ratos , Metaloporfirinas/farmacologia , Metaloporfirinas/uso terapêutico , Albuminúria , Proteinúria/tratamento farmacológico
8.
Immunol Rev ; 287(1): 20-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565236

RESUMO

Primary intestinal lymphangiectasia (PIL) or Waldmann's disease was described in 1961 as an important cause of protein-losing enteropathy (PLE). PIL can be the sole finding in rare individuals or occur as part of a multisystemic genetic syndrome. Although genetic etiologies of many lymphatic dysplasia syndromes associated with PIL have been identified, the pathogenesis of isolated PIL (with no associated syndromic features) remains unknown. Familial cases and occurrence at birth suggest genetic etiologies in certain cases. Recently, CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and PLE (the CHAPLE syndrome) has been identified as a monogenic form of PIL. Surprisingly, loss of CD55, a key regulator of complement system leads to a predominantly gut condition. Similarly to other complement disorders, namely paroxysmal nocturnal and hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), CHAPLE disease involves pathogenic cross-activation of the coagulation system, predisposing individuals to severe thrombosis. The observation that complement system is overly active in CHAPLE disease introduced a novel concept into the management of PLE; anti-complement therapy. While CD55 deficiency constitutes a treatable subgroup in the larger pool of patients with isolated PIL, the etiology remains to be identified in the remaining patients with intact CD55.


Assuntos
Antígenos CD55/genética , Proteínas do Sistema Complemento/metabolismo , Linfangiectasia Intestinal/genética , Linfedema/genética , Coagulação Sanguínea/genética , Reações Cruzadas , Humanos , Enteropatias Perdedoras de Proteínas , Síndrome
9.
J Biol Chem ; 296: 100776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33992645

RESUMO

The adhesion G protein-coupled receptor CD97 and its ligand complement decay-accelerating factor CD55 are important binding partners in the human immune system. Dysfunction in this binding has been linked to immune disorders such as multiple sclerosis and rheumatoid arthritis, as well as various cancers. Previous literatures have indicated that the CD97 includes 3 to 5 epidermal growth factor (EGF) domains at its N terminus and these EGF domains can bind to the N-terminal short consensus repeat (SCR) domains of CD55. However, the details of this interaction remain elusive, especially why the CD55 binds with the highest affinity to the shortest isoform of CD97 (EGF1,2,5). Herein, we designed a chimeric expression construct with the EGF1,2,5 domains of CD97 and the SCR1-4 domains of CD55 connected by a flexible linker and determined the complex structure by crystallography. Our data reveal that the two proteins adopt an overall antiparallel binding mode involving the SCR1-3 domains of CD55 and all three EGF domains of CD97. Mutagenesis data confirmed the importance of EGF5 in the interaction and explained the binding specificity between CD55 and CD97. The architecture of CD55-CD97 binding mode together with kinetics suggests a force-resisting shearing stretch geometry when forces applied to the C termini of both proteins in the circulating environment. The potential of the CD55-CD97 complex to withstand tensile force may provide a basis for the mechanosensing mechanism for activation of adhesion G protein-coupled receptors.


Assuntos
Antígenos CD/metabolismo , Antígenos CD55/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD/química , Antígenos CD55/química , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química
10.
Kidney Int ; 102(1): 58-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483525

RESUMO

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Assuntos
Fator 4 Semelhante a Kruppel , Microangiopatias Trombóticas , Animais , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Endotélio , Humanos , Glomérulos Renais/patologia , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Microangiopatias Trombóticas/patologia
11.
Mol Reprod Dev ; 89(5-6): 256-268, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35474595

RESUMO

Decidualization is an essential process for embryo implantation and maintenance of pregnancy, and abnormal decidualization contributed to several pregnancy disorders like a miscarriage. The objective of this study was to explore the regulation and function of CD55 in human decidualization. By immunohistochemical staining, it was found that CD55 expression was higher in first-trimester decidua than in the endometrium. In both primary endometrial stromal cells and immortalized cell line T-hESCs, CD55 was upregulated by induction of in vitro decidualization with medroxyprogesterone acetate (MPA) and 8-Br-cAMP. During decidualization in vitro, CD55 was stimulated by 8-Br-cAMP in a time- and concentration-dependent manner, which was reversed by a PKA inhibitor H89 and partially by an AKT activator SC79. Knocking down CD55 expression diminished the expression of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1), accompanied by inhibition of Src, aberrant activation of ERK and decreased expression of several decidualization-related genes, including FOXO1, EGFR, and STAT3. Furthermore, the decidua of unexplained miscarriage women and the endometrium of unexplained infertile women both exhibited decreased CD55 expression. Collectively, these findings revealed that 8-Br-cAMP promotes CD55 expression via PKA activation and AKT dephosphorylation, and decreased CD55 impairs decidualization by inactivation of Src, aberrant activation of ERK pathway, and compromised expression of decidualization-related genes, indicating that CD55 deficiency may contribute to the pathogenesis of spontaneous miscarriage and infertility.


Assuntos
Aborto Espontâneo , Antígenos CD55 , Decídua , Infertilidade Feminina , Aborto Espontâneo/metabolismo , Antígenos CD55/metabolismo , Células Cultivadas , Decídua/fisiologia , Endométrio/fisiologia , Feminino , Humanos , Infertilidade Feminina/metabolismo , Sistema de Sinalização das MAP Quinases , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Estromais/metabolismo
12.
Mol Biol Rep ; 49(7): 6241-6248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35420385

RESUMO

BACKGROUND: Targeted knock-in assisted by the CRISPR/Cas9 system is an advanced technology with promising applications in various research fields including medical and agricultural sciences. However, improvements in the efficiency, precision, and specificity of targeted knock-in are prerequisites to facilitate the practical application of this technology. To improve the efficiency of targeted knock-in, it is necessary to have a molecular system that allows sensitive monitoring of targeted knock-in events with simple procedures. METHODS AND RESULTS: We developed an assay, named CD55 correction assay, with which to monitor CD55 gene correction accomplished by targeted knock-in. To create the reporter clones used in this assay, we initially introduced a 7.7-kb heterozygous deletion covering CD55 exons 2-5, and then incorporated a truncating mutation within exon 4 of the remaining CD55 allele in human cell lines. The resultant reporter clones that lost the CD55 protein on the cell membrane were next transfected with Cas9 constructs along with a donor plasmid carrying wild-type CD55 exon 4. The cells were subsequently stained with fluorescence-labeled CD55 antibody and analyzed by flow cytometry to detect CD55-positive cells. These procedures allow high-throughput, quantitative detection of targeted gene correction events occurring in an endogenous human gene. CONCLUSIONS: The current study demonstrated the utility of the CD55 correction assay to sensitively quantify the efficiency of targeted knock-in. When used with the PIGA correction assay, the CD55 correction assay will help accurately determine the efficiency of targeted knock-in, precluding possible experimental biases caused by cell line-specific and locus-specific factors.

13.
Immunol Invest ; 50(5): 478-491, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32611246

RESUMO

CD55 and CD59 are complement regulatory proteins suggested to be related with progression of diabetes and its complications. The stromal cell-derived factor 1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR-4) are chemokine proteins. We aimed to investigate the relation of CD55 and CD59 expression levels and polymorphisms of SDF-1 and CXCR-4 with type 2 diabetes mellitus (T2DM) and its complications. Seventy-five T2DM patients and 73 controls were enrolled. Expression levels of CD55 and CD59 were measured by FACS Calibur; qRT-PCR was used to determine SDF-1 and CXCR-4 gene polymorphisms. CD55 and CD59 expressions in patients with nephropathy, retinopathy and cardiovascular disease were significantly lower than controls. Frequency of CXCR-4 T allele carrying was high in patients and created 1.6 fold risk for the disease (p = .07). CXCR-4 a allele carriers had decreased nephropathy; although there was no statistical significance in carrying CXCR-4 T allele, presence of nephropathy was approximately 2 times higher (p = .254). The nephropathy risk increased 10-fold in CXCR-4 TT genotype carriers (p = .02). All SDF-1 CC genotype carriers had retinopathy, so, it was considered that the CC genotype was effective in retinopathy development (p = .031). For the presence of cardiovascular disease, significant difference was observed for SDF-1 genotypes. Increased cardiovascular risk of 5- and 1.9-fold in SDF-1 T (p = .007) and CXCR-4 T (p = .216) allele carriers, respectively, was observed. We suggest that CD55 and CD59 protein levels and SDF-1 and CXCR-4 have predictive importance in process, complications and tendency of T2DM.


Assuntos
Antígenos CD55/metabolismo , Antígenos CD59/metabolismo , Doenças Cardiovasculares/genética , Quimiocina CXCL12/genética , Diabetes Mellitus Tipo 2/imunologia , Genótipo , Receptores CXCR4/genética , Idoso , Antígenos CD55/genética , Antígenos CD59/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético
14.
Int J Psychiatry Clin Pract ; 25(3): 277-282, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34154502

RESUMO

OBJECTIVE: Although pathological mechanisms of schizophrenia are unknown, evidence in the literature suggests that the immune system might be involved in the pathogenesis. Complement is an important part of the immune system and it has been suggested to play role in the pathogenesis of schizophrenia. We aimed to investigate the potential involvement of the complement system in schizophrenia by the determination of peripheral concentrations of certain complement proteins and their regulators in patients. METHODS: Plasma concentrations of complement C3, C4, and C1 inhibitory protein were measured by chemiluminescence in 41 schizophrenia patients and 39 healthy controls. Expression of CD55, CD59, and CD46 proteins on peripheral blood mononuclear cells were determined by flow cytometry in the same groups. RESULTS: Frequencies of peripheral immune cells expressing CD55 were determined to be significantly higher in schizophrenia patients than in healthy people (p = 0.020). Frequencies of peripheral immune cells expressing CD59 was determined to be significantly higher in healthy people than in schizophrenia patients (p = 0.012). The expression level of CD55 per cell was measured to be significantly elevated in patients compared to healthy controls (p = 0.026). CONCLUSIONS: Our data clearly demonstrate an elevated complement activity in schizophrenia and points to a possible complement association in the pathogenesis.Key pointsIncreased the expression level, and frequency of CD55 in schizophrenia patients.Decreased frequency of CD59 in schizophrenia patients.No difference in the expression level of CD59; the expression level, and frequency of CD46; frequency of complement C3, C4, and C1 inhibitory protein.


Assuntos
Antígenos CD55 , Antígenos CD59 , Linfócitos , Esquizofrenia , Antígenos CD55/sangue , Antígenos CD59/sangue , Estudos de Casos e Controles , Humanos , Linfócitos/metabolismo , Esquizofrenia/sangue , Esquizofrenia/terapia
15.
J Cell Mol Med ; 24(22): 13431-13439, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33251723

RESUMO

Oncolytic adenovirus (OA) has attracted increasing attention due to their specific proliferation in tumour cells and resulting in lysis of tumour cells. To further improve the antitumour effect of OA, in this study, we combined CD55-TRAIL-IETD-MnSOD (CD55-TMn), a CEA-controlled OA constructed previously, and chemotherapy to investigate their synergistic effect and possible mechanisms. MTT assay was performed to detect antitumour effects. Hoechst 33 342 and flow cytometric analysis were used to examine cell apoptosis. Western blotting was performed to examine cell pyroptosis and apoptosis mechanism. Animal experiment was used to detect antitumour effect of doxorubicin hydrochloride (Dox) combined with CD55-TMn in vivo. We firstly found that Dox promotes gene expression mediated by CEA-regulated OA and virus progeny replication by activating phosphorylation of Smad3, and Dox can enhance antitumour effect of CEA-regulated CD55-TMn by promoting cell apotopsis and cell pyroptosis. Thus, our results provide an experimental and theoretical basis on tumour therapy by combination treatment of the oncolytic virotherapy and chemotherapy and it is expected to become a novel strategy for liver cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Neoplasias Hepáticas/terapia , Terapia Viral Oncolítica , Adenoviridae/genética , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Combinada , Modelos Animais de Doenças , Feminino , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Fosforilação , Proteína Smad3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 293(44): 17188-17199, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190327

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is one of several E. coli pathotypes that infect the intestinal tract and cause disease. Formation of the characteristic attaching and effacing lesion on the surface of infected cells causes significant remodeling of the host cell surface; however, limited information is available about changes at the protein level. Here we employed plasma membrane profiling, a quantitative cell-surface proteomics technique, to identify host proteins whose cell-surface levels are altered during infection. Using this method, we quantified more than 1100 proteins, 280 of which showed altered cell-surface levels after exposure to EHEC. 22 host proteins were significantly reduced on the surface of infected epithelial cells. These included both known and unknown targets of EHEC infection. The complement decay-accelerating factor cluster of differentiation 55 (CD55) exhibited the greatest reduction in cell-surface levels during infection. We showed by flow cytometry and Western blot analysis that CD55 is cleaved from the cell surface by the EHEC-specific protease StcE and found that StcE-mediated CD55 cleavage results in increased neutrophil adhesion to the apical surface of intestinal epithelial cells. This suggests that StcE alters host epithelial surfaces to depress neutrophil transepithelial migration during infection. This work is the first report of the global manipulation of the epithelial cell surface by a bacterial pathogen and illustrates the power of quantitative cell-surface proteomics in uncovering critical aspects of bacterial infection biology.


Assuntos
Antígenos CD55/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli O157/enzimologia , Proteínas de Escherichia coli/metabolismo , Metaloendopeptidases/metabolismo , Antígenos CD55/genética , Membrana Celular/genética , Membrana Celular/microbiologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/microbiologia , Metaloendopeptidases/genética , Neutrófilos/metabolismo , Neutrófilos/microbiologia
17.
J Neuroinflammation ; 16(1): 57, 2019 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30851734

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (herein called NMO) is an inflammatory demyelinating disease that can be initiated by binding of immunoglobulin G autoantibodies (AQP4-IgG) to aquaporin-4 on astrocytes, causing complement-dependent cytotoxicity (CDC) and downstream inflammation. The increased NMO pathology in rodents deficient in complement regulator protein CD59 following passive transfer of AQP4-IgG has suggested the potential therapeutic utility of increasing the expression of complement regulator proteins. METHODS: A cell-based ELISA was developed to screen for pharmacological upregulators of endogenous CD55 and CD59 in a human astrocyte cell line. A statin identified from the screen was characterized in cell culture models and rodents for its action on complement regulator protein expression and its efficacy in models of seropositive NMO. RESULTS: Screening of ~ 11,500 approved and investigational drugs and nutraceuticals identified transcriptional upregulators of CD55 but not of CD59. Several statins, including atorvastatin, simvastatin, lovastatin, and fluvastatin, increased CD55 protein expression in astrocytes, including primary cultures, by three- to four-fold at 24 h, conferring significant protection against AQP4-IgG-induced CDC. Mechanistic studies revealed that CD55 upregulation involves inhibition of the geranylgeranyl transferase pathway rather than inhibition of cholesterol biosynthesis. Oral atorvastatin at 10-20 mg/kg/day for 3 days strongly increased CD55 immunofluorescence in mouse brain and spinal cord and reduced NMO pathology following intracerebral AQP4-IgG injection. CONCLUSION: Atorvastatin or other statins may thus have therapeutic benefit in AQP4-IgG seropositive NMO by increasing CD55 expression, in addition to their previously described anti-inflammatory and immunomodulatory actions.


Assuntos
Aquaporina 4/imunologia , Astrócitos/metabolismo , Antígenos CD55/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Imunoglobulina G/administração & dosagem , Neuromielite Óptica/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Transformada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Camundongos , Neuromielite Óptica/metabolismo , Neuromielite Óptica/patologia , RNA Mensageiro/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ativação Transcricional/efeitos dos fármacos , Receptor fas/metabolismo
18.
Anal Biochem ; 570: 51-55, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771337

RESUMO

Scintillation proximity assay (SPA) is a type of radioimmunoassay (RIA). We apply ultrasound enhancement to the general SPA. All assay procedures, including the antibody coating and radiolabeled antigen binding are achieved by simply mixing then standing for 5 min in an ultrasound chamber. No additional incubation time is required. To further demonstrate the capability of the UE-SPA, a quantitative measurement of CD55 in various grades of colon tumors was assessed on human tissue slides. The results showed a significant correlation between CD55 expression and tumorigenesis. In conclusion, we confirmed that UE-SPA is a reliable, rapid and alternative to RIA.


Assuntos
Antígenos CD55/análise , Radioimunoensaio/métodos , Anticorpos Monoclonais/imunologia , Antígenos CD55/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Sonicação
19.
Med Microbiol Immunol ; 208(5): 631-640, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30306260

RESUMO

Influenza remains an important threat for human health, despite the extensive study of influenza viruses and the production of effective vaccines. In contrast to virus genetics determinants, host genetic factors with clinical impact remained unexplored until recently. The association between three single nucleotide polymorphisms (SNPs) and influenza outcome in a European population was investigated in the present study. All samples were collected during the influenza A(H1N1)pdm09 post-pandemic period 2010-11 and a sufficient number of severe and fatal cases was included. Host genomic DNA was isolated from pharyngeal samples of 110 patients from northern Greece with severe (n = 59) or mild (n = 51) influenza A(H1N1)pdm09 disease, at baseline, and the genotype of CD55 rs2564978, C1QBP rs3786054 and FCGR2A rs1801274 SNPs was investigated. Our findings suggest a relationship between the two complement-related SNPs, namely, the rare TT genotype of CD55 and the rare AA genotype of C1QBP with increased death risk. No significant differences were observed for FCGR2A genotypes neither with fatality nor disease severity. Additional large-scale genetic association studies are necessary for the identification of reliable host genetic risk factors associated with influenza A(H1N1)pdm09 outcome. Prophylactic intervention of additional high-risk populations, according to their genetic profile, will be a key achievement for the fight against influenza viruses.


Assuntos
Proteínas do Sistema Complemento/genética , Predisposição Genética para Doença , Fatores Imunológicos/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/genética , Influenza Humana/virologia , Adolescente , Adulto , Feminino , Genótipo , Grécia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
20.
Nephrol Dial Transplant ; 34(4): 587-596, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635535

RESUMO

BACKGROUND: Complement is thought to play a role in immunoglobulin A nephropathy (IgAN), though the activating mechanisms are unknown. This study focused on the gene expression of CD46 and CD55, two key molecules for regulating C3 convertase activity of lectin and alternative complement pathways at a cellular level. METHODS: The transcriptional expression in peripheral white blood cells (WBCs) of CD46 and CD55 was investigated in 157 patients enrolled by the Validation of the Oxford Classification of IgAN group, looking for correlations with clinical and pathology features and estimated glomerular filtration rate (eGFR) modifications from renal biopsy to sampling. Patients had a previous median follow-up of 6.4 (interquartile range 2.8-10.7) years and were divided into progressors and non-progressors according to the median value of their velocity of loss of renal function per year (-0.41 mL/min/1.73 m2/year). RESULTS: CD46 and CD55 messenger RNA (mRNA) expression in WBCs was not correlated with eGFR values or proteinuria at sampling. CD46 mRNA was significantly correlated with eGFR decline rate as a continuous outcome variable (P = 0.014). A significant difference was found in CD46 gene expression between progressors and non-progressors (P = 0.013). CD46 and CD55 mRNA levels were significantly correlated (P < 0.01), although no difference between progressors and non-progressors was found for CD55 mRNA values. The prediction of progression was increased when CD46 and CD55 mRNA expressions were added to clinical data at renal biopsy (eGFR, proteinuria and mean arterial blood pressure) and Oxford MEST-C (mesangial hypercellularity, endocapillary hypercellularity, segmental glomerulosclerosis, tubular atrophy/interstitial fibrosis, presence of any crescents) score. CONCLUSIONS: Patients with progressive IgAN showed lower expression of mRNA encoding for the complement inhibitory protein CD46, which may implicate a defective regulation of C3 convertase with uncontrolled complement activation.


Assuntos
Biomarcadores/sangue , Inativadores do Complemento/sangue , Glomerulonefrite por IGA/diagnóstico , Proteína Cofatora de Membrana/sangue , Adulto , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/genética , Humanos , Masculino , Proteína Cofatora de Membrana/genética , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/sangue , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa