Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Mol Ther ; 32(8): 2549-2562, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38879753

RESUMO

Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Mesenquimais , Osteoartrite , Fatores de Transcrição SOX9 , Fator de Transcrição RelA , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Osteoartrite/terapia , Osteoartrite/genética , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Camundongos , Humanos , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Condrogênese/genética , Edição de Genes , Terapia Baseada em Transplante de Células e Tecidos/métodos , Condrócitos/metabolismo
2.
Funct Integr Genomics ; 24(5): 164, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292321

RESUMO

Cancer, a complex and multifaceted group of diseases, continues to challenge the boundaries of medical science and healthcare. Its relentless impact on global health, both in terms of prevalence and mortality, underscores the urgent need for a comprehensive understanding of its underlying mechanisms and innovative therapeutic approaches. In recent years, significant progress has been achieved in identifying the genetic and epigenetic mechanisms that cause cancer development and treatment resistance. Researchers are currently investigating the possibility of epigenetic editing such as CRISPR-dCas9 (Clustered Regularly Interspaced Short Palindromic Repeats/deactivated CRISPR-associated protein 9) technologies, for targeting and modifying cancer related epigenetic alterations. A revolutionary form of precision cancer treatment called CRISPR-dCas9 is derived from the bacterial CRISPR-Cas (CRISPR-associated nuclease) system. CRISPR-dCas9 can be combined with epigenetic effectors (EE) to alter malignant epigenetic characteristics associated with cancer. The purpose of this review article is to provide a thorough analysis of recent advancements in utilizing CRISPR-dCas9 technology to target and modify epigenetic changes associated with cancer. This review aims to summarize the latest research developments, evaluate the effectiveness and limitations of CRISPR-dCas9 applications in cancer therapy, identify key challenges such as delivery methods and explore future directions for improving and expanding these technologies. Here, we address the various obstacles that may arise in clinical applications while showcasing the latest advancements and potential future uses of CRISPR-Cas9 in cancer therapy.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Edição de Genes , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Edição de Genes/métodos , Animais
3.
Mol Carcinog ; 63(7): 1349-1361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38712797

RESUMO

Although aberrant methylation of PAX1 is closely associated with cervical cancer (CC), PAX1 methylation (PAX1m) and its role in CC remain to be elucidated. Here, we clarified the biological function of PAX1 in CC. First, PAX1m in ThinPrep cytologic test samples was measured via quantitative methylation-specific PCR. The results showed that PAX1 promoter methylation levels were significantly increased in CC patients (p < 0.001). We also found that PAX1 promoter methylation levels were positively correlated with tumor purity but negatively correlated with immune-infiltration via public databases. Then, CRISPR-based methylation perturbation tools (dCas9-Tet1) were constructed to further demonstrate that DNA methylation participates in the regulation of PAX1 expression directly. Gain- and loss-of-function experiments were used to show that PAX1 overexpression restrained proliferation, migration and improved cisplatin sensitivity by interfering with the WNT/TIMELESS axis in CC cells. Additionally, Co-immunoprecipitation assays further confirmed the interaction between PAX1 and TCF7L2. Taken together, our results suggested that a tumor suppressor role of PAX1 in CC and that CRISPR-based PAX1 demethylation editing might be a promising therapeutic strategy for CC.


Assuntos
Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Regiões Promotoras Genéticas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Via de Sinalização Wnt/genética
4.
J Neurooncol ; 169(1): 129-135, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762829

RESUMO

PURPOSE: Glioblastoma (GBM) stands out as the most prevalent and aggressive intracranial tumor, notorious for its poor prognosis. The current standard-of-care for GBM patients involves surgical resection followed by radiotherapy, combined with concurrent and adjuvant chemotherapy using Temozolomide (TMZ). The effectiveness of TMZ primarily relies on the activity of O6-methylguanine DNA methyltransferase (MGMT), which removes alkyl adducts from the O6 position of guanine at the DNA level, thereby counteracting the toxic effects of TMZ. METHOD: In this study, we employed fusions of catalytically-inactive Cas9 (dCas9) to DNA methyltransferases (dCas9-DNMT3A) to selectively downregulation MGMT transcription by inducing methylation at MGMT promoter and K-M enhancer. RESULT: Our findings demonstrate a significant reduction in MGMT expression, leading to intensified TMZ sensitivity in the HEK293T cell line. CONCLUSION: This study serves as a proof of concept for the utilization of CRISPR-based gene suppression to overcome TMZ resistance and enhance the lethal effect of TMZ in glioblastoma tumor cells.


Assuntos
Antineoplásicos Alquilantes , Sistemas CRISPR-Cas , Regulação para Baixo , Glioblastoma , Temozolomida , Humanos , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Células HEK293 , Resistencia a Medicamentos Antineoplásicos/genética , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Regiões Promotoras Genéticas
5.
Exp Cell Res ; 425(2): 113551, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36914062

RESUMO

Recently, Leydig cell (LCs) transplantation has a promising potential to treat male hypogonadism. However, the scarcity of seed cells is the actual barrier impeding the application of LCs transplantation. Utilizing the cutting-edge CRISPR/dCas9VP64 technology, human foreskin fibroblasts (HFFs) were transdifferentiated into Leydig-like cells(iLCs) in previous study, but the efficiency of transdifferentiation is not very satisfactory. Therefore, this study was conducted to further optimize the CRISPR/dCas9 system for obtaining sufficient iLCs. First, the stable CYP11A1-Promoter-GFP-HFFs cell line was established by infecting HFFs with CYP11A1-Promoter-GFP lentiviral vectors, and then co-infected with dCas9p300 and the combination of sgRNAs targeted to NR5A1, GATA4 and DMRT1. Next, this study adopted quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence to determine the efficiency of transdifferentiation, the generation of testosterone, the expression levels of steroidogenic biomarkers. Moreover, we utilized chromatin immuno-precipitation (ChIP) followed by quantitative polymerase chain reaction (ChIP-qPCR) to measure the levels of acetylation of targeted H3K27. The results revealed that advanced dCas9p300 facilitated generation of iLCs. Moreover, the dCas9p300-mediated iLCs significantly expressed the steroidogenic biomarkers and produced more testosterone with or without LH treatment than the dCas9VP64-mediated. Additionally, preferred enrichment in H3K27ac at the promoters was detected only with dCas9p300 treatment. The data provided here imply that the improved version of dCas9 can aid in the harvesting of iLCs, and will provide sufficient seed cells for cell transplantation treatment of androgen deficiency in the future.


Assuntos
Transdiferenciação Celular , Epigenoma , Humanos , Masculino , Transdiferenciação Celular/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol , Testosterona , Fibroblastos
6.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062879

RESUMO

DNA methylation is a key epigenetic mechanism orchestrating gene expression networks in many biological processes. Nonetheless, studying the role of specific gene methylation events in fish faces challenges. In this study, we validate the regulation of DNA methylation on empty spiracles homeobox 2 (emx2) expression with decitabine treatment in Chinese tongue sole testis cells. We used the emx2 gene as the target gene and developed a new DNA methylation editing system by fusing dnmt3a with catalytic dead Cas9 (dCas9) and demonstrated its ability for sequence-specific DNA methylation editing. Results revealed that utilizing dCas9-dnmt3a to target emx2 promoter region led to increased DNA methylation levels and decreased emx2 expression in Chinese tongue sole testis cells. More importantly, the DNA methylation editing significantly suppressed the expression of MYC proto-oncogene, bHLH transcription factor (myc), one target gene of emx2. Furthermore, we assessed the off-target effects of dCas9-dnmt3a and confirmed no significant impact on the predicted off-target gene expression. Taken together, we developed the first DNA methylation editing system in marine species and demonstrated its effective editing ability in Chinese tongue sole cells. This provides a new strategy for both epigenetic research and molecular breeding of marine species.


Assuntos
Metilação de DNA , Edição de Genes , Proteínas de Homeodomínio , Testículo , Animais , Masculino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Testículo/metabolismo , Edição de Genes/métodos , Sistemas CRISPR-Cas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linguados/genética , Regiões Promotoras Genéticas/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , DNA Metiltransferase 3A
7.
Semin Cancer Biol ; 83: 570-583, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33421620

RESUMO

The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Sistemas CRISPR-Cas/genética , Metilação de DNA , Epigênese Genética , Epigenoma/genética , Epigenômica , Edição de Genes , Humanos , Neoplasias/genética , Neoplasias/terapia
8.
Genes Cells ; 27(3): 214-228, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114033

RESUMO

In preimplantation embryos, an abnormal chromosome number causes developmental failure and a reduction in the pregnancy rate. Conventional chromosome testing methods requiring biopsy reduce the risk of associated genetic diseases; nevertheless, the reduction in cell number also reduces the pregnancy rate. Therefore, we attempted to count the chromosomes in mouse embryos using super-resolution live-cell imaging as a new method of chromosome counting that does not reduce the cell number or viability. We counted the 40 chromosomes at the first mitosis by injecting embryos with histone H2B-mCherry mRNA under conditions by which pups could be obtained; however, the results were often an underestimation of chromosome number and varied by embryo and time point. Therefore, we developed a method to count the chromosomes via CRISPR/dCas-mediated live-cell fluorescence in situ hybridization targeting the sequence of the centromere region, enabling us to count the chromosomes more accurately in mouse embryos. The methodology presented here may provide useful information for assisted reproductive technologies, such as those used in livestock animals/humans, as a technique for assessing the chromosomal integrity of embryos prior to transfer.


Assuntos
Aneuploidia , Zigoto , Animais , Blastocisto/patologia , Centrômero/genética , Feminino , Hibridização in Situ Fluorescente , Camundongos , Gravidez
9.
Planta ; 259(1): 23, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108903

RESUMO

MAIN CONCLUSION: The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.


Assuntos
Glycine max , Nematoides , Animais , Glycine max/genética , RNA Guia de Sistemas CRISPR-Cas , Bioensaio , Cotilédone , Nematoides/genética
10.
Pharmacol Res ; 192: 106783, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164281

RESUMO

The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.


Assuntos
Transtornos Mentais , Receptores Nicotínicos , Humanos , Variações do Número de Cópias de DNA , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Cognição , Mutação , Receptores Nicotínicos/genética
11.
Cell Mol Life Sci ; 79(6): 315, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610381

RESUMO

Overexpression of exogenous lineage-specific transcription factors could directly induce terminally differentiated somatic cells into target cell types. However, the low conversion efficiency and the concern about introducing exogenous genes limit the clinical application. With the rapid progress in genome editing, the application of CRISPR/dCas9 has been expanding rapidly, including converting somatic cells into other types of cells in vivo and in vitro. Using the CRISPR/dCas9 system, direct neuronal reprogramming could be achieved by activating endogenous genes. Here, we will discuss the latest progress, new insights, and future challenges of the application of the dCas9 system in direct neuronal reprogramming.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Cell Mol Biol Lett ; 28(1): 96, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017385

RESUMO

PSA is a type of proto-oncogene that is specifically and highly expressed in embryonic and prostate cancer cells, but not expressed in normal prostate tissue cells. The specific expression of prostate-specific antigen (PSA) is found to be related with the conditional transcriptional regulation of its promoter. Clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-KRAB is a newly developed transcriptional regulatory system that inhibits gene expression by interupting the DNA transcription process. Induction of CRISPR-dCas9-KRAB expression through the PSA promoter may help feedback inhibition of cellular PSA gene expression via single guide RNA (sgRNA), thereby monitoring and suppressing the malignant state of tumor cells. In this study, we examined the transcriptional activity of the PSA promoter in different prostate cancer cells and normal prostate epithelial cells and determined that it is indeed a prostate cancer cell-specific promoter.Then we constructed the CRISPR-dCas9-KRAB system driven by the PSA promoter, which can inhibit PSA gene expression in the prostate cancer cells at the transcriptional level, and therefore supress the malignant growth and migration of prostate cancer cells and promote their apoptosis in vitro. This study provides a potentially effective anti-cancer strategy for gene therapy of prostate cancer.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias da Próstata , Humanos , Masculino , Antígeno Prostático Específico/genética , Próstata , RNA Guia de Sistemas CRISPR-Cas , Retroalimentação , Neoplasias da Próstata/genética , Sistemas CRISPR-Cas/genética
13.
Cell Mol Biol Lett ; 28(1): 52, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415116

RESUMO

Improvements in treatment and chemotherapy have increased the survival rate of osteosarcoma, but overall efficacy remains low, highlighting the need for new gene therapy methods. Clustered regularly interspaced short palindromic repeats-deactivated Cas9 (CRISPR-dCas9) technology offers a promising strategy, but targeting osteosarcoma cells precisely is a challenge. We designed a system to achieve specific expression of CRISPR-dCas9-KRAB in osteosarcoma cells by using the creatine kinase muscle (CKM) promoter to drive dCas9-KRAB and the telomerase reverse transcriptase (TERT) promoter to drive single guide (sg)RNA expression. We inhibited the MDM2 proto-oncogene using this system in vitro, which efficiently inhibited the malignant behavior of osteosarcoma cells and induced apoptosis without affecting normal cells. In vivo experiments demonstrated that this system effectively inhibited the growth of subcutaneously transplanted tumors in nude mice. These findings provide a new method for precise identification and intervention of osteosarcoma with significant implications for the development of gene therapy methods for other cancers. Future research should focus on optimizing this system for clinical translation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Camundongos , Animais , Camundongos Nus , Osteossarcoma/genética , Osteossarcoma/terapia , Osteossarcoma/metabolismo , Regiões Promotoras Genéticas/genética , Músculos/metabolismo , Músculos/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Sistemas CRISPR-Cas/genética
14.
Arch Toxicol ; 97(2): 441-456, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336710

RESUMO

Cisplatin is recommended as a first-line chemotherapeutic agent against advanced non-small cell lung cancer (NSCLC), but acquired resistance substantially limits its clinical efficacy. Recently, DNA methylation has been identified as an essential contributor to chemoresistance. However, the precise DNA methylation regulatory mechanism of cisplatin resistance remains unclear. Here, we found that nicotinamide nucleotide transhydrogenase (NNT) was silenced by DNA hypermethylation in cisplatin resistance A549 (A549/DDP) cells. Also, the DNA hypermethylation of NNT was positively correlated to poor prognosis in NSCLC patients. Overexpression of NNT in A549/DDP cells could reduce their cisplatin resistance, and also suppressed their tumor malignancy such as cell proliferation and clone formation. However, NNT enhanced sensitivity of A549/DDP cells to cisplatin had little to do with its function in mediating NADPH and ROS level, but was mainly because NNT could inhibit protective autophagy in A549/DDP cells. Further investigation revealed that NNT could decrease NAD+ level, thereby inactivate SIRT1 and block the autophagy pathway, while re-activation of SIRT1 through NAD+ precursor supplementation could antagonize this effect. In addition, targeted demethylation of NNT CpG island via CRISPR/dCas9-Tet1 system significantly reduced its DNA methylation level and inhibited the autophagy and cisplatin resistance in A549/DDP cells. Thus, our study found a novel chemoresistance target gene NNT, which played important roles in cisplatin resistance of lung cancer cells. Our findings also suggested that CRISPR-based DNA methylation editing of NNT could be a potential therapeutics method in cisplatin resistance of lung cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , NADP Trans-Hidrogenases , Humanos , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Cisplatino/farmacologia , DNA , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , NAD/metabolismo , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Sirtuína 1/metabolismo
15.
Plant Biotechnol J ; 20(12): 2418-2429, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36072993

RESUMO

Efficient pathogen diagnostics and genotyping methods enable effective disease management and breeding, improve crop productivity and ensure food security. However, current germplasm selection and pathogen detection techniques are laborious, time-consuming, expensive and not easy to mass-scale application in the field. Here, we optimized a field-deployable lateral flow assay, Bio-SCAN, as a highly sensitive tool to precisely identify elite germplasm and detect mutations, transgenes and phytopathogens in <1 h, starting from sample isolation to result output using lateral flow strips. As a proof of concept, we genotyped various wheat germplasms for the Lr34 and Lr67 alleles conferring broad-spectrum resistance to stripe rust, confirmed the presence of synthetically produced herbicide-resistant alleles in the rice genome and screened for the presence of transgenic elements in the genome of transgenic tobacco and rice plants with 100% specificity. We also successfully applied this new assay to the detection of phytopathogens, including viruses and bacterial pathogens in Nicotiana benthamiana, and two destructive fungal pathogens (Puccinia striiformis f. sp. tritici and Magnaporthe oryzae Triticum) in wheat. Our results illustrate the power of Bio-SCAN in crop breeding, genetic engineering and pathogen diagnostics to enhance food security. The high sensitivity, simplicity, versatility and in-field deployability make the Bio-SCAN as an attractive molecular diagnostic tool for diverse applications in agriculture.


Assuntos
Basidiomycota , Oryza , Genótipo , Melhoramento Vegetal , Nicotiana , Triticum/genética , Agricultura , Oryza/genética , Doenças das Plantas/genética , Resistência à Doença/genética
16.
BMC Cancer ; 22(1): 636, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681118

RESUMO

BACKGROUND: Aberrant methylation of EphA7 has been reported in the process of carcinogenesis but not in cervical cancer. Therefore, an integration study was performed to explore the association between EphA7 hypermethylation and cervical cancer and validate the potential value of EphA7 hypermethylation in the diagnosis of cervical cancer. METHODS: We performed an integration study to identify and validate the association between EphA7 methylation and cervical cancer. First, data on EphA7 methylation and expression in cervical cancer were extracted and analyzed via bioinformatics tools. Subsequently, CRISPR-based methylation perturbation tools (dCas9-Tet1/DNMT3a) were constructed to further demonstrate the association between DNA methylation and EphA7 expression. Ultimately, the clinical value of EphA7 methylation in cervical cancer was validated in cervical tissues and Thinprep cytologic test (TCT) samples by methylation-specific PCR (MSP) and quantitative methylation-specific PCR (QMSP), respectively. RESULTS: Pooled analysis showed that EphA7 promoter methylation levels were significantly increased in cervical cancer compared to normal tissues (P < 0.001) and negatively correlated with EphA7 expression. These prediction results were subsequently confirmed in cell lines; moreover, CRISPR-based methylation perturbation tools (dCas9-Tet1/DNMT3a) demonstrated that DNA methylation participates in the regulation of EphA7 expression directly. Consistent with these findings, the methylation level and the positive rate of EphA7 gradually increased with severity from normal to cancer stages in TCT samples (P < 0.01). CONCLUSIONS: EphA7 hypermethylation is present in cervical cancer and is a potential biomarker for the diagnosis of cervical cancer.


Assuntos
Metilação de DNA , Receptor EphA7 , Neoplasias do Colo do Útero , Biomarcadores Tumorais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptor EphA7/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética
17.
Microb Cell Fact ; 21(1): 131, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780132

RESUMO

BACKGROUND: Bacillus subtilis is a Gram-positive bacterium used as a cell factory for protein production. Over the last decades, the continued optimization of production strains has increased yields of enzymes, such as amylases, and made commercial applications feasible. However, current yields are still significantly lower than the theoretically possible yield based on the available carbon sources. In its natural environment, B. subtilis can respond to unfavorable growth conditions by differentiating into motile cells that use flagella to swim towards available nutrients. RESULTS: In this study, we analyze existing transcriptome data from a B. subtilis α-amylase production strain at different time points during a 5-day fermentation. We observe that genes of the fla/che operon, essential for flagella assembly and motility, are differentially expressed over time. To investigate whether expression of the flagella operon affects yield, we performed CRISPR-dCas9 based knockdown of the fla/che operon with sgRNA target against the genes flgE, fliR, and flhG, respectively. The knockdown resulted in inhibition of mobility and a striking 2-threefold increase in α-amylase production yield. Moreover, replacing flgE (required for flagella hook assembly) with an erythromycin resistance gene followed by a transcription terminator increased α-amylase yield by about 30%. Transcript levels of the α-amylase were unaltered in the CRISPR-dCas9 knockdowns as well as the flgE deletion strain, but all manipulations disrupted the ability of cells to swim on agar. CONCLUSIONS: We demonstrate that the disruption of flagella in a B. subtilis α-amylase production strain, either by CRISPR-dCas9-based knockdown of the operon or by replacing flgE with an erythromycin resistance gene followed by a transcription terminator, increases the production of α-amylase in small-scale fermentation.


Assuntos
Amilases , Bacillus subtilis , Flagelos , alfa-Amilases , Amilases/genética , Bacillus subtilis/genética , Eritromicina , Flagelos/genética , alfa-Amilases/genética , alfa-Amilases/metabolismo
18.
Mol Biol Rep ; 49(12): 11403-11408, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35960410

RESUMO

Hepatic fibrosis is a pathological reaction of tissue damage and repair caused by various pathogenic factors acting on liver. At present, there is no effective anti-fibrotic specific therapy. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (dCas9) system is a new generation of gene editing technology. The CRISPR/dCas9 system provides a platform for studying site-specific transcriptional regulation, which has high efficiency in gene transcriptional activation for achieving robust. This system holds promise for hepatic fibrosis therapy via acting on liver fibrosis effector cells. However, there are some challenges associated with this novel technology, such as large structural variants at on-target, off-target sites, and targeted delivery efficiency. In this review, we present the potential implications and describe the challenges of CRISPR/dCas9 system that might be encountered in hepatic fibrosis therapy.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes , Ativação Transcricional , Cirrose Hepática/genética , Cirrose Hepática/terapia
19.
Methods ; 187: 77-91, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32315755

RESUMO

Cancer therapeutics is an ever-evolving field due to incessant demands for effective and precise treatment options. Over the last few decades, cancer treatment strategies have shifted somewhat from surgery to targeted precision medicine. CRISPR-dCas9 is an emerging version of precision cancer therapy that has been adapted from the prokaryotic CRISPR-Cas system. Once ligated to epigenetic effectors (EE), CRISPR-dCas9 can function as an epigenetic editing tool and CRISPR-dCas9-EE complexes could be exploited to alter cancerous epigenetic features associated with different cancer hallmarks. In this article, we discuss the rationale of epigenetic editing as a therapeutic strategy against cancer. We also outline how sgRNA-dCas9 was derived from the CRISPR-Cas system. In addition, the current status of sgRNA-dCas9 use (in vivo and in vitro) in cancer is updated with a molecular illustration of CRISPR-dCas9-mediated epigenetic and transcriptional modulation. As sgRNA-dCas9 is still at the developmental phase, challenges are inherent to its use. We evaluate major challenges in targeting cancer with sgRNA-dCas9 such as off-target effects, lack of sgRNA designing rubrics, target site selection dilemmas and deficient sgRNA-dCas9 delivery systems. Finally, we appraise the sgRNA-dCas9 as a prospective cancer therapeutic by summarizing ongoing improvements of sgRNA-dCas9 methodology.


Assuntos
Sistemas CRISPR-Cas/genética , Epigênese Genética , Edição de Genes/métodos , Terapia Genética/métodos , Neoplasias/terapia , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Adv Exp Med Biol ; 1389: 515-533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350521

RESUMO

DNA methylation is an essential epigenetic mark, strongly associated with gene expression regulation. Aberrant DNA methylation patterns underlie various diseases and efforts to intervene with DNA methylation signatures are of great clinical interest. Technological developments to target writers or erasers of DNA methylation to specific genomic loci by epigenetic editing resulted in successful gene expression modulation, also in in vivo models. Application of epigenetic editing in human health could have a huge impact, but clinical translation is still challenging. Despite successes for a wide variety of genes, not all genes mitotically maintain their (de)methylation signatures after editing, and reprogramming requires further understanding of chromatin context-dependency. In addition, difficulties of current delivery systems and off-target effects are hurdles to be tackled. The present review describes findings towards effective and sustained DNA (de)methylation by epigenetic editing and discusses the need for multi-effector approaches to achieve highly efficient long-lasting reprogramming.


Assuntos
Metilação de DNA , Edição de Genes , Humanos , Metilação de DNA/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Epigênese Genética , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa