Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Neurochem Res ; 49(8): 2215-2227, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834844

RESUMO

Post-stroke emotional disorders such as post-stroke anxiety and post-stroke depression are typical symptoms in patients with stroke. They are closely associated with poor prognosis and low quality of life. The State Food and Drug Administration of China has approved DL-3-n-butylphthalide (NBP) as a treatment for ischemic stroke (IS). Clinical research has shown that NBP alleviates anxiety and depressive symptoms in patients with IS. Therefore, this study explored the role and molecular mechanisms of NBP in cases of post-stroke emotional disorders using network pharmacology and experimental validation. The results showed that NBP treatment significantly increased the percentage of time spent in the center of the middle cerebral artery occlusion (MCAO) rats in the open field test and the percentage of sucrose consumption in the sucrose preference test. Network pharmacology results suggest that NBP may regulate neuroinflammation and cell death. Further experiments revealed that NBP inhibited the toll-like receptor 4/nuclear factor kappa B signaling pathway, decreased the level of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and interleukin-6, and M1-type microglia markers (CD68, inducible nitric oxide synthase), and reduced the expression of PANoptosis-related molecules including caspase-1, caspase-3, caspase-8, gasdermin D, and mixed lineage kinase domain-like protein in the hippocampus of the MACO rats. These findings demonstrate that the mechanisms through which NBP ameliorates post-stroke emotional disorders in rats are associated with inhibiting neuroinflammation and PANoptosis, providing a new strategy and experimental basis for treating post-stroke emotional disorders.


Assuntos
Benzofuranos , Infarto da Artéria Cerebral Média , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Animais , Benzofuranos/uso terapêutico , Benzofuranos/farmacologia , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Farmacologia em Rede , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Citocinas/metabolismo , NF-kappa B/metabolismo
2.
BMC Public Health ; 24(1): 436, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347500

RESUMO

BACKGROUND: Edaravone dexborneol and dl-3-n-butylphthalide are two innovative brain cytoprotective drugs from China that have been approved and widely prescribed for acute ischemic stroke, and the cost of the two drugs are partially paid by the Chinese medical insurance system. This study aimed to investigate and compare the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke from the Chinese healthcare system's perspective. METHODS: A model combining a short-term decision tree model with 90 days and a long-term Markov model with a life-time horizon (40 years) was developed to simulate the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke over a lifetime horizon. Since the absence of a head-to-head clinical comparison of two therapies, an unanchored matching-adjusted indirect comparison (MAIC) was conducted by adjusting the patient characteristics using individual patient data from pivotal phase III trial of edaravone dexborneol and published aggregated data of dl-3-n-butylphthalide. Health outcomes were measured in quality-adjusted life years (QALYs). Utilities and costs (Chinese Yuan, CNY) were derived from publications and open-access database. One-way and probabilistic sensitivity analyses were performed to evaluate the robustness of results. RESULTS: Compared with patients in dl-3-n-butylphthalide arm, edaravone dexborneol arm was found to be cost-effective in 90 days and highly cost-effective as the study horizons extended. With a similar direct medical cost, patients in edaravone dexborneol arm slightly gained an additional 0.1615 QALYs in life-time. In the long term (40 years), patients in edaravone dexborneol arm and dl-3-n-butylphthalide arm yielded 8.0351 and 7.8736 QALYs with the overall direct medical cost of CNY 29,185.23 and CNY 29,940.28, respectively. The one-way sensitivity analysis suggested that the incremental cost-effectiveness ratio was most sensitive to the price of edaravone dexborneol and dl-3-n-butylphthalide. CONCLUSION: Edaravone dexborneol is a cost-effective alternative compared with dl-3-n-butylphthalide for acute ischemic stroke patients in current medical setting of China.


Assuntos
Benzofuranos , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Edaravone/uso terapêutico , Análise Custo-Benefício , Atenção à Saúde , Acidente Vascular Cerebral/tratamento farmacológico , Anos de Vida Ajustados por Qualidade de Vida
3.
Proteome Sci ; 21(1): 1, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597095

RESUMO

BACKGROUND: Dl-3-n-butylphthalide (NBP) is an important medial therapy for acute ischemic stroke in China. Recent studied have revealed that NBP not only rescued the loss of dopaminergic neurons in cellular and animal models of Parkinson's disease (PD), but also could improve motor symptoms in PD patients. However, the protective mechanism is not fully understood. P53 is a multifunctional protein implicated in numerous cellular processes, including apoptosis, DNA repair, mitochondrial functions, redox homeostasis, autophagy and protein aggregations. In PD, p53 integrated with various neurodegeneration-related signals inducing neuronal loss, indicating the suppression of P53 might be a promising target for PD treatment. Therefore, the purpose of the current study was to systemically screen new therapeutic targets of NBP in PD. METHOD: In our study, we constructed mpp + induced N2A cells to investigate the benefit effect of NBP in PD. MTT assay was performed to evaluate the cell viability; TMT-based LC-MS/MS was applied to determine the different expressed proteins (DEPs) of NBP pretreatment; online bioinformatics databases such as DAVID, STRING, and KEGG was used to construe the proteomic data. After further analyzed and visualized the protein-protein interactions (PPI) by Cytoscape, DEPs were verified by western blot. RESULT: A total of 5828 proteins were quantified in the comparative proteomics experiments and 417 proteins were considered as DEPs (fold change > 1.5 and p < 0.05). Among the 417 DEPs, 140 were upregulated and 277 were downregulated in mpp + -induced N2A cells with NBP pretreatment. KEGG pathway analysis indicated that lysosome, phagosome, apoptosis, endocytosis and ferroptosis are the mainly enriched pathways. By using MCL clustering in PPI analysis, 48 clusters were generated and the subsequent KEGG analysis of the top 3 clusters revealed that P53 signaling pathway was recognized as the dominant pathway for NBP treatment. CONCLUSION: NBP significantly relived mpp + -induced cell toxicity. The neuroprotective role of NBP was implicated with P53 signaling pathway in some extent. These findings will reinforce the understanding of the mechanism of NBP in PD and identify novel therapeutic targets.

4.
Neuropsychobiology ; 82(3): 150-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990058

RESUMO

INTRODUCTION: Inflammation is closely associated with the pathogenesis of vascular dementia (VD). Dl-3-n-butylphthalide (NBP) is a small molecule compound extracted from the seeds of Chinese celery, which have anti-inflammatory properties in animal models of acute ischemia and patients with stroke. In this experiment, we studied the protective effects of NBP in a rat model of VD induced by permanent bilateral occlusion of the common carotid arteries and investigated the role of the TLR-4/NF-κB inflammatory signaling pathway in the pathology of VD. METHODS: The Morris water maze test was used to evaluate cognitive deficits in the VD rats. Western blot, immunohistochemistry, and PCR analyses were used to analyze the molecular basis of the inflammatory response. RESULTS: NBP significantly improved the learning and memory ability of VD rats. With regard to the protective mechanism, the results showed that NBP significantly downregulated the relative expression of Cleaved Cas-1/Cas-1 and Cleaved GSDMD/GSDMD. Moreover, NBP decreased the levels of the TLR-4 and NF-κB (P65) protein and phosphorylation of P65 in the hippocampus of VD rats via the TLR-4/NF-κB signaling pathway. CONCLUSION: These findings demonstrate that NBP protects against memory deficits in permanent bilateral common carotid artery occlusion-induced VD rats by attenuating pyroptosis via the TLR-4/NF-κB signaling pathway.


Assuntos
Demência Vascular , Fármacos Neuroprotetores , Ratos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Receptor 4 Toll-Like/uso terapêutico , Piroptose , Demência Vascular/tratamento farmacológico , Demência Vascular/prevenção & controle , Transdução de Sinais , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia
5.
Acta Pharmacol Sin ; 44(12): 2404-2417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580491

RESUMO

Dl-3-n-butylphthalide (NBP) is a small-molecule drug used in the treatment of ischemic stroke in China, which is proven to ameliorate the symptoms of ischemic stroke and improve the prognosis of patients. Previous studies have shown that NBP accelerates recovery after stroke by promoting angiogenesis. In this study, we investigated the mechanisms underlying the angiogenesis-promoting effects of NBP in ischemic stroke models in vitro and in vivo. OGD/R model was established in human umbilical vein endothelial cells (HUVECs) and human brain microvascular endothelial cells (HBMECs), while the tMCAO model was established in mice. The cells were pretreated with NBP (10, 50, 100 µM); the mice were administered NBP (4, 8 mg/kg, i.v.) twice after tMCAO. We showed that NBP treatment significantly stimulated angiogenesis by inducing massive production of angiogenic growth factors VEGFA and CD31 in both in vitro and in vivo models of ischemic stroke. NBP also increased the tubule formation rate and migration capability of HUVECs in vitro. By conducting the weighted gene co-expression network analysis, we found that these effects were achieved by upregulating the expression of a hedgehog signaling pathway. We demonstrated that NBP treatment not only changed the levels of regulators of the hedgehog signaling pathway but also activated the transcription factor Gli1. The pro-angiogenesis effect of NBP was abolished when the hedgehog signaling pathway was inhibited by GDC-0449 in HUVECs, by Sonic Hedgehog(Shh) knockdown in HUVECs, or by intracerebroventricular injection of AAV-shRNA(shh)-CMV in tMCAO mice. Furthermore, we found that HUVECs produced a pro-angiogenic response not only to autocrine Shh, but also to paracrine Shh secreted by astrocytes. Together, we demonstrate that NBP promotes angiogenesis via upregulating the hedgehog signaling pathway. Our results provide an experimental basis for the clinical use of NBP.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Proteínas Hedgehog/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
6.
Biomed Chromatogr ; 37(9): e5668, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37125701

RESUMO

A sensitive and specific high-performance liquid chromatography-tandem mass spectrometry method has been developed to determine the pharmacokinetic interactions of the antiplatelet agents aspirin and clopidogrel combined with dl-3-n-butylphthalide. For the determination of aspirin metabolite salicylic acid, clopidogrel inactive metabolite SR26334 and NBP prototype drug in rat plasma, plasma samples were prepared by precipitation of proteins using methanol containing 0.1% formic acid, followed by centrifugation. Chromatography was performed on a C18 column, eluting with a gradient of acetonitrile (with 0.1% formic acid)-water (with 0.1% formic acid). The detection adopted electrospray ion source and positive ion multiple reaction monitoring modes. The linear detection response range of salicylic acid is 80-80,000 ng/ml, and the linear detection response range of SR26334 and dl-3-n-butylphthalide is 10-10,000 ng/ml. Our study revealed that dl-3-n-butylphthalide affected the pharmacokinetics of aspirin and clopidogrel when administered to rats.


Assuntos
Aspirina , Inibidores da Agregação Plaquetária , Ratos , Animais , Inibidores da Agregação Plaquetária/farmacocinética , Clopidogrel , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ácido Salicílico
7.
BMC Neurol ; 22(1): 3, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979964

RESUMO

BACKGROUND: A decrease in hippocampal neurogenesis is considered an important cause of cognitive impairment, while changes in mossy fiber sprouting are closely related to development of spontaneous recurrent seizures in chronic temporal lobe epilepsy (TLE). Racemic l-3-n-butylphthalide (DL-NBP) can alleviate cognitive impairment in ischemic stroke and Alzheimer's disease by promoting neurogenesis. DL-NBP treatment can also improve cognitive function and reduce seizure incidence in chronic epileptic mice. However, the mechanisms of action of DL-NBP remain unclear. The aim of the present study was to examine the effects of DL-NBP on mossy fiber sprouting, hippocampal neurogenesis, spontaneous epileptic seizures, and cognitive functioning in the chronic phase of TLE. METHODS: Nissl staining was used to evaluate hippocampal injury, while immunofluorescent staining was used to analyze hippocampal neurogenesis. The duration of spontaneous seizures was measured by electroencephalography. The Morris water maze was used to evaluate cognitive function. Timm staining was used to assess mossy fiber sprouting. RESULTS: TLE animals showed reduced proliferation of newborn neurons, cognitive dysfunction, and spontaneous seizures. Treatment with DL-NBP after TLE increased the proliferation and survival of newborn neurons in the dentate gyrus, reversed the neural loss in the hippocampus, alleviated cognitive impairments, and decreased mossy fiber sprouting and long-term spontaneous seizure activity. CONCLUSIONS: We provided pathophysiological and morphological evidence that DL-NBP might be a useful therapeutic for the treatment of TLE.


Assuntos
Epilepsia do Lobo Temporal , Animais , Benzofuranos , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo , Camundongos , Fibras Musgosas Hipocampais , Neurogênese , Ratos
8.
BMC Neurol ; 22(1): 435, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384493

RESUMO

BACKGROUND: Delayed-onset post stroke cognitive impairment (PSCI) results from secondary neurodegeneration induced by stroke. Whereas targeted prevention or treatment strategies are still missing due to lack of evidences. This trial aims to evaluate the preventive effects of DL-3-n-butylphthalide (NBP) on delayed-onset PSCI. METHODS: Effects of NBP on Delayed-onset Post Stroke Cognitive Impairment (End-PSCI) is a prospective, parallel-group, open-label, multicenter, randomized controlled trial with blinded outcome assessment. Hospital patients with acute cerebral infarction (within 2 weeks of onset) will be randomized into either standard medical therapy group or standard medical therapy combined NBP treatment group (NBP 200 mg, three times per day for 24 weeks). The primary outcome is the difference of incidence of delayed-onset PSCI between two groups. The secondary outcomes include difference of white matter degeneration, cognitive scores and prevalence of early-onset PSCI between two groups. DISCUSSION: End-PSCI trial will provide evidences for NBP preventing delayed-onset PSCI. The secondary outcomes will also provide valuable insights into the pathogenesis of delayed-onset PSCI and mechanism of NBP's actions. TRIAL REGISTRATION: Trialsearch.who.int , ChiCTR2000032555, 2020/5/2, prospectively registered.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Acidente Vascular Cerebral , Humanos , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/epidemiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Isquemia Encefálica/complicações , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
9.
Exp Cell Res ; 398(2): 112420, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296663

RESUMO

Neurite outgrowth is the basis for wiring during the development of the nervous system. Dl-3-n-butylphthalide (NBP) has been recognized as a promising treatment to improve behavioral, neurological and cognitive outcomes in ischemic stroke. However, little is known about the effect and mechanism of NBP on the neurite outgrowth. In this study, we used different methods to investigate the potential effects of NBP on the neurite extension and plasticity of immature and mature primary cortical neurons and explored the underlying mechanisms. Our results demonstrated that in immature and mature cortical neurons, NBP promoted the neurite length and intersections, increased neuritic arborization, elevated numbers of neurite branch and terminal points and improved neurite complexity and plasticity of neuronal development processes. Besides, our data revealed that NBP promoted neurite extension and branching partly by activating Shh signaling pathway via increasing Gap43 expression both in immature and mature primary cortical neurons. The present study provided new insights into the contribution of NBP in neuronal plasticity and unveiled a novel pathway to induce Gap43 expression in primary cortical neurons.


Assuntos
Benzofuranos/farmacologia , Proteína GAP-43/metabolismo , Proteínas Hedgehog/metabolismo , Neurônios/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Proteína GAP-43/genética , Camundongos , Camundongos Endogâmicos C57BL , Crescimento Neuronal/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos
10.
J Stroke Cerebrovasc Dis ; 31(2): 106221, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837757

RESUMO

OBJECTIVE: To assess the potential effect of dl-3-N-butylphthalide (dl-NBP) for the proliferation and differentiation of neural stem cells (NSCs) against hypoxia and the underlying mechanism. MATERIALS AND METHODS: Hippocampal NSCs were obtained from fetal rats. NSCs combined with dl-NBP and single NSCs were cultured. The impact of siRNA-mediated hypoxia-inducible factor-1alpha (HIF-1α) knockdown on NSCs was detected with western blotting (WB) and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). Cell-counting kit-8 assay was used for evaluating the viability of NSCs. Levels of HIF-1α protein were measured using WB, and vascular endothelial growth factor (VEGF) expression was quantified using RT-qPCR and enzyme-linked immunosorbent assay. RESULTS: Compared with 7 different concentrations of dl-NBP, 0.25 g/L was determined as the optimal concentration to significantly increase the viability of NSCs (p < 0.001). Dl-NBP can significantly increase the viability of hypoxic NSCs (p < 0.001) and improve the differentiation of hypoxic NSCs into astrocytes (p = 0.001) and oligodendrocytes (p < 0.001). Meanwhile, Dl-NBP can significantly elevate levels of HIF-1α protein (p < 0.001) and VEGF mRNA (p = 0.001) / protein (p < 0.001) in NSCs in the hypoxic environment. However, after transfection with HIF-1α siRNA in NSCs, the viability and differentiation of NSCs was not recovered using dl-NBP under the hypoxic condition, as well as levels of HIF-1α and VEGF. CONCLUSION: Dl-NBP can reverse the weaker proliferation and differentiation power of NSCs in the hypoxic environment. The HIF-1α - VEGF pathway may be implicated in this protective effect of dl-NBP.


Assuntos
Benzofuranos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Células-Tronco Neurais , Animais , Benzofuranos/farmacologia , Hipóxia/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neurais/patologia , Fármacos Neuroprotetores/farmacologia , Ratos
11.
Biochem Biophys Res Commun ; 557: 166-173, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33865225

RESUMO

BACKGROUND: Renal ischemia reperfusion injury (IRI) has become a growing concern in clinical practice with high morbidity and mortality rates. There is currently no effective prophylactic regimen available to prevent its occurrence and to improve its clinical prognosis. Dl-3-n-butylphthalide (NBP) has been used for stroke treatment in China for years. Little is known about its role in preventing kidney injury. METHODS: The kidneys of male C57BL/6J mice were subjected to 33 min of ischemia followed by 24 h of reperfusion. NBP was administered by gavage prior to surgery. The reno-protective effect of NBP was evaluated by serum creatinine, kidney injury markers and renal pathological changes. Furthermore, the inflammation, oxidative stress, and apoptosis markers in kidney tissue were examined. In vitro, HK2 cells were treated prophylactically with NBP and then exposed to hypoxia/reoxygenation (H/R). Cell viability and apoptosis related protein were quantified to verify the protective effect of NBP. Pro-inflammation genes expression as well as ROS generation were further investigated also. RESULTS: NBP pretreatment significantly improved renal dysfunction and alleviated pathological injury, renal inflammation response, oxidative stress and cell apoptosis. Consistently, NBP attenuated H/R induced increases in ROS, pro-inflammatory genes expression, apoptosis and cleaved caspase-3 levels in HK2 cells. CONCLUSION: Our promising results validated for the first time that NBP could ameliorate renal IRI via attenuating inflammation, oxidative stress, and apoptosis, which indicated that NBP might be a good candidate against AKI.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Rim/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Benzofuranos/administração & dosagem , Caspase 3/metabolismo , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Creatinina/sangue , Modelos Animais de Doenças , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
12.
Neurochem Res ; 46(9): 2297-2306, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34086144

RESUMO

As a serious trauma of the neurological system, spinal cord injury (SCI) results in permanent disability, gives rise to immediate vascular damage and a wide range of matters that induce the breakage of blood spinal cord barrier (BSCB). SCI activates the expression of MMP-2/9, which are considered to accelerate the disruption of BSCB. Recent research shows that Dl-3-n-butylphthalide (NBP) exerted protective effects on blood spinal cord barrier in animals after SCI, but the underlying molecular mechanism of NBP on the BSCB undergoing SCI is unknown. Here, our research show that NBP inhibited the expression of MMP-2/9, then improved the permeability of BSCB following SCI. After the T9 level of spinal cord performed with a moderate injury, NBP was managed by intragastric administration and further performed once a day. NBP remarkably improved the permeability of BSCB and junction proteins degration, then promoted locomotion recovery. The protective effect of NBP on BSCB destruction is related to the regulation of MMP-2/9 induced by SCI. Moreover, NBP obviously inhibited the MMP-2/9 expression and junction proteins degradation in microvascular endothelial cells. In conclusion, our results indicate that MMP-2/9 are relevant to the breakdown of BSCB, NBP impairs BSCB destruction through inhibiting MMP-2/9 and promotes functional recovery subjected to SCI. NBP is likely to become a new nominee as a therapeutic to treat SCI via a transigent BSCB.


Assuntos
Benzofuranos/uso terapêutico , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Animais , Hipóxia Celular/efeitos dos fármacos , Claudina-5/metabolismo , Feminino , Glucose/deficiência , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Ocludina/metabolismo , Oxigênio/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/enzimologia
13.
Acta Pharmacol Sin ; 42(3): 347-360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33462377

RESUMO

DL-3-n-Butylphthalide (DL-NBP), a small molecular compound extracted from the seeds of Apium graveolens Linn (Chinese celery), has been shown to exert neuroprotective effects due to its anti-inflammatory, anti-oxidative and anti-apoptotic activities. DL-NBP not only protects against ischemic cerebral injury, but also ameliorates vascular cognitive impairment in dementia patients including AD and PD. In the current study, we investigated whether and how DL-NBP exerted a neuroprotective effect against diabetes-associated cognitive decline (DACD) in db/db mice, a model of type-2 diabetes. db/db mice were orally administered DL-NBP (20, 60, 120 mg· kg-1· d-1) for 8 weeks. Then the mice were subjected to behavioral test, their brain tissue was collected for morphological and biochemical analyses. We showed that oral administration of DL-NBP significantly ameliorated the cognitive decline with improved learning and memory function in Morris water maze testing. Furthermore, DL-NBP administration attenuated diabetes-induced morphological alterations and increased neuronal survival and restored the levels of synaptic protein PSD95, synaptophysin and synapsin-1 as well as dendritic density in the hippocampus, especially at a dose of 60 mg/kg. Moreover, we revealed that DL-NBP administration suppressed oxidative stress by upregulating Nrf2/HO-1 signaling, and increased brain-derived neurotrophic factor (BDNF) expression by activating PI3K/Akt/CREB signaling in the hippocampus. These beneficial effects of DL-NBP were observed in high glucose-treated PC12 cells. Our results suggest that DL-NBP may be a potential pharmacologic agent for the treatment of DACD.


Assuntos
Benzofuranos/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Dendritos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Hipocampo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sinapses/efeitos dos fármacos
14.
J Cell Mol Med ; 24(2): 1220-1232, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840938

RESUMO

Blood-brain barrier (BBB) disruption and neuronal apoptosis are important pathophysiological processes after traumatic brain injury (TBI). In clinical stroke, Dl-3n-butylphthalide (Dl-NBP) has a neuroprotective effect with anti-inflammatory, anti-oxidative, anti-apoptotic and mitochondrion-protective functions. However, the effect and molecular mechanism of Dl-NBP for TBI need to be further investigated. Here, we had used an animal model of TBI and SH-SY5Y/human brain microvascular endothelial cells to explore it. We found that Dl-NBP administration exerts a neuroprotective effect in TBI/OGD and BBB disorder, which up-regulates the expression of tight junction proteins and promotes neuronal survival via inhibiting mitochondrial apoptosis. The expressions of autophagy-related proteins, including ATG7, Beclin1 and LC3II, were significantly increased after TBI/OGD, and which were reversed by Dl-NBP treatment both in vivo and in vitro. Moreover, rapamycin treatment had abolished the effect of Dl-NBP for TBI recovery. Collectively, our current studies indicate that Dl-NBP treatment improved locomotor functional recovery after TBI by inhibiting the activation of autophagy and consequently blocking the junction protein loss and neuronal apoptosis. Dl-NBP, as an anti-inflammatory and anti-oxidative drug, may act as an effective strategy for TBI recovery.


Assuntos
Apoptose , Autofagia , Benzofuranos/farmacologia , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica , Animais , Barreira Hematoencefálica/lesões , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
BMC Neurol ; 20(1): 212, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456617

RESUMO

BACKGROUND: DL-3-n-butylphthalide (NBP) was demonstrated to increase the cerebral blood flow (CBF) in the animal models, but there are no clinic studies to verify this. We aimed to explore the effect of NBP on improving cerebral hypoperfusion caused by cerebral large-vessel stenosis. METHODS: In this single-center, randomized, double-blind, placebo-controlled study, 120 patients with severe carotid atherosclerotic stenosis and cerebral hypoperfusion in the ipsilateral middle cerebral artery (MCA) were included and randomly assigned into NBP or placebo group as 1:1 radio. Patients in NBP or placebo group received 200 mg or 20 mg of NBP capsules three times daily for four weeks respectively. Single photon emission computed tomography (SPECT) was used to assess regional CBF (rCBF) in four regions of interest (ROIs) corresponding to MCA before and 12 weeks after the treatment. After therapy, the rCBF change for every ROI and the whole CBF change in MCA territory for every patient were classified into amelioration, stabilization and deterioration respectively. RESULTS: 48 NBP patients (6 with bilateral stenosis) and 46 placebo patients (8 with bilateral stenosis) completed the trial. Overall, both groups had 54 stenotic carotid arteries and 216 ROIs for rCBF change analysis. After therapy, the rCBF in ROIs increased in NBP group (83.5% ± 11.4% vs. 85.8% ± 12.5%, p = 0.000), whereas no change was found in placebo group (86.9% ± 11.6% vs. 87.8% ± 11.7%, p = 0.331). Besides, there was higher percentages of ROIs with rCBF amelioration and stabilization in NBP group than in placebo group (93.1% vs. 79.2%, p = 0.000). Furthermore, ordinal regression analysis showed that compared with placebo, NBP independently made more patients to have whole CBF amelioration in ipsilateral MCA (Wald-χ2 = 5.247, OR = 3.31, p = 0.022). CONCLUSIONS: NBP might improve the cerebral hypoperfusion in the patients with carotid artery atherosclerotic stenosis. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900028005, registered December 8th 2019- Retrospectively registered (http://www.chictr.org.cn/index.aspx).


Assuntos
Benzofuranos/uso terapêutico , Arteriosclerose Intracraniana/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Método Duplo-Cego , Humanos
16.
Bioorg Med Chem ; 28(8): 115400, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32146060

RESUMO

A series of phthalide alkyl tertiary amine derivatives were designed, synthesized and evaluated as potential multi-target agents against Alzheimer's disease (AD). The results indicated that almost all the compounds displayed significant AChE inhibitory and selective activities. Besides, most of the derivatives exhibited increased self-induced Aß1-42 aggregation inhibitory activity compared to the lead compound dl-NBP, and some compounds also exerted good antioxidant activity. Specifically, compound I-8 showed the highest inhibitory potency toward AChE (IC50 = 2.66 nM), which was significantly better than Donepezil (IC50 = 26.4 nM). Moreover, molecular docking studies revealed that compound I-8 could bind to both the catalytic active site and peripheral anionic site of AChE. Furthermore, compound I-8 displayed excellent BBB permeability in vitro. Importantly, the step-down passive avoidance test indicated that I-8 significantly reversed scopolamine-induced memory deficit in mice. Collectively, these results suggested that I-8 might be a potent and selective AChE inhibitor for further anti-AD drug development.


Assuntos
Aminas/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Butirilcolinesterase/metabolismo , Desenho de Fármacos , Feminino , Masculino , Membranas Artificiais , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Permeabilidade , Agregação Patológica de Proteínas , Distribuição Aleatória , Ratos
17.
J Cell Physiol ; 234(8): 12604-12614, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30306574

RESUMO

BACKGROUND: DL-3-n-butylphthalide (NBP) has been approved to be effective in improving cognitive deficits. The aim of the current study was to determine whether NBP protects against cognitive deficits in a rat model of vascular dementia (VD) induced by chronic cerebral hypoperfusion (CCH) by regulating the sonic hedgehog (Shh)/patched1 (Ptch1) pathway and endoplasmic reticulum stress (ERS)-related markers. METHODS: Adult male Sprague-Dawley rats were subjected to permanent bilateral occlusion of the common carotid arteries (2VO) to established the model of VD. These rats were randomly divided into five groups: sham, model, NBP30 (30 mg/kg), NBP 60 (60 mg/kg), and NBP 120 (120 mg/kg) groups. The Morris water maze test was used to assess for cognitive function at 4 weeks after operation. RESULTS: NBP significantly alleviated spatial learning and memory impairment, and inhibited the loss of neurons in the CA1 region of the hippocampus. Western blot analysis and real-time quantitative polymerase chain reaction analysis revealed that plasticity-related synaptic markers and the Shh/Ptch1 pathway significantly increased in the NBP treated groups, while ERS-related markers decreased. CONCLUSION: The results of the current study prove that the Shh/Ptch1 pathway plays an essential role in the model of VD. NBP had protective effects on cognitive impairment induced by CCH. This mechanism was associated with ERS and the Shh/Ptch1 pathway. Meanwhile, the Shh/Ptch1 pathway and ERS may interact with each other.


Assuntos
Benzofuranos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Biomed Chromatogr ; 33(10): e4625, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31222844

RESUMO

The herb couple has special clinical significance in reducing the toxicity and increasing the efficacy of drugs. The combination of Radix Angelicae Dahuricae (Baizhi, BZ) and Rhizoma Chuanxiong (ChuanXiong, CX) is a traditional herb couple. The combination performs better than the CX extract alone in the treatment of migraine and has been used for thousands of years. However, the specific compatibility mechanisms are still unclear. Ligustilide, dl-3-n-butylphthalide and senkyunolide A are the major active ingredients in CX and BZ-CX decoction. However, a comprehensive study of the pharmacokinetics of CX has not been carried out. A gas chromatography-mass spectroscopy (GC-MS) method with high selectivity, sensitivity and accuracy was developed. An SH-Rxi-5Sil (30 m × 0.25 mm i.d., and 0.25 µm film thickness) column was employed in the GC separation. Selectivity, linearity, precision, accuracy, recovery, matrix effect and stability were used to validate the current GC-MS method. Using the validated method, this is the first time to study on the comparative pharmacokinetics of ligustilide, dl-3-n-butylphthalide and senkyunolide A from CX alone and BZ-CX decoction in rat plasma. The pharmacokinetic parameters (Cmax , Tmax , T1/2 , AUC0-t , AUC0-∞ and CLz/F) of all of the detected ingredients showed significant differences between the two groups (P < 0.05). The results are helpful for further investigation of the compatibility mechanism of BZ-CX decoction.


Assuntos
4-Butirolactona/análogos & derivados , Benzofuranos/sangue , Medicamentos de Ervas Chinesas , Cromatografia Gasosa-Espectrometria de Massas/métodos , 4-Butirolactona/sangue , 4-Butirolactona/química , 4-Butirolactona/farmacocinética , Administração Oral , Animais , Benzofuranos/química , Benzofuranos/farmacocinética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
19.
J Integr Neurosci ; 18(3): 277-283, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31601076

RESUMO

Rats were divided into six groups: sham/control , Dl-3-n-butylphthalide, P1 (low phenytoin, 100 mg/kg), P2 (high phenytoin, 200 mg/kg), NP1 (Dl-3-n-butylphthalide 80 mg/kg, phenytoin 100 mg/kg), NP2 (Dl-3-n-butylphthalide 80 mg/kg, phenytoin 200 mg/kg). Hematoxylin/eosin and Nissl staining showed that, compared to the sham/control group, the Dl-3-n-butylphthalide group had no obvious hippocampal and cerebellar neuron loss, but there was a significant neuron loss in the P1 and P2 groups (P < 0.05), which was more obvious in the P2 group (P < 0.05). The positive expression of Bax and Bcl-2 proteins in hippocampal and cerebellar neurons was not significantly different between sham and Dl-3-n-butylphthalide groups; however, compared to sham, Bax expression was significantly increased and Bcl-2 was significantly decreased in the hippocampal and cerebellar neurons of rats in both P1 and P2 groups (P < 0.05), being more obvious in the P2 group (P < 0.05). Furthermore, the administration of Dl-3-n-butylphthalide attenuated the deleterious effects of phenytoin (P < 0.05). Our results indicate that phenytoin causes apoptosis of hippocampal and cerebellar neurons in rats in a dose-dependent manner, with the effect of a higher dose being more obvious, whereas, Dl-3-n-butylphthalide inhibits the phenytoin-induced apoptosis of neurons and has a neuroprotective role.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fenitoína/toxicidade , Animais , Anticonvulsivantes/toxicidade , Cerebelo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
20.
Biochem Biophys Res Commun ; 497(1): 80-86, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29407174

RESUMO

Multiple sclerosis (MS) is a long-lasting autoimmune disease of the central nervous system. Currently, the etiology of MS is not known. Experimental autoimmune encephalomyelitis (EAE), has been recognized as the most widely used animal models to study the molecular mechanisms underlying MS and the efficacy of potential drugs for treatment of MS. In the present study, we found that Dl-3-n-butylphthalide (NBP), a neuroprotective drug in ischemic brain injury, prevented development of disease in experimental autoimmune encephalomyelitis (EAE) and significantly reduced inflammatory factors and necroptosis-associated genes, including PGAM5 in the spinal cord tissues. Similarly, silence of PGAM5 in spinal cord also ameliorated the disease severity in the mice with EAE. Moreover, re-expression of PGAM5 counteracted the protective effect of NBP on the pathogenesis of EAE. Importantly, we found that both NBP and silence of PGAM5 inhibited cellular necroptosis and inflammation in microglia induced by TNFα plus zVAD-fmk. Meanwhile, overexpression of PGAM5 reactivated cellular necroptosis and inflammation suppressed by NBP in vitro. Taken together, our findings provide evidence that NBP can attenuate the progression of EAE by suppressing PGAM5-induced necroptosis and inflammation in microglia and represents a new therapeutic strategy for treating autoimmune diseases.


Assuntos
Benzofuranos/administração & dosagem , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Microglia/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Fosfoproteínas Fosfatases/imunologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Esclerose Múltipla/patologia , Necrose/tratamento farmacológico , Necrose/imunologia , Necrose/patologia , Fármacos Neuroprotetores/administração & dosagem , Fosfoproteínas Fosfatases/antagonistas & inibidores , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa