Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32649862

RESUMO

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
2.
Cell Commun Signal ; 22(1): 131, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365687

RESUMO

BACKGROUND: Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied. RESULTS: In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation. This dysfunction was caused by G2/M checkpoint impairment mediated by downregulated WEE1 kinase and NEK7 (a member of the mammalian NIMA-related kinase family) expression and upregulated centromere/kinetochore protein Zeste White 10 (ZW10) expression. Moreover, both in vivo and in vitro experiments confirmed the significant inhibitory effects of SHCBP1 knockdown on tumour growth. Based on these findings, SHCBP1 knockdown in combination with low-dose DNA-damaging agents had synergistic tumouricidal effects on tumour cells. In response to this treatment, tumour cells were forced into the mitotic phase with considerable unrepaired DNA lesions, inducing mitotic catastrophe. These synergistic effects were attributed not only to the abrogation of the G2/M checkpoint and disrupted spindle function but also to the impairment of the DNA damage repair system, as demonstrated by mass spectrometry-based proteomic and western blotting analyses. Consistently, patients with low SHCBP1 expression in tumour tissue were more sensitive to radiotherapy. However, SHCBP1 knockdown combined with tubulin-toxic drugs weakened the killing effect of the drugs on tumour cells, which may guide the choice of chemotherapeutic agents in clinical practice. CONCLUSION: In summary, we elucidated the role of the nucleoprotein SHCBP1 in tumour cell cycle progression and described a novel mechanism by which SHCBP1 regulates tumour progression and through which targeting SHCBP1 increases sensitivity to DNA-damaging agent therapy, indicating its potential as a cancer treatment.


Assuntos
Neoplasias , Proteômica , Animais , Humanos , Proliferação de Células/genética , Ciclo Celular/genética , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Mamíferos/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo
3.
Chembiochem ; 24(1): e202200451, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36156837

RESUMO

A colorimetric assay of DNA cleavage by bleomycin (BLM) derivatives was developed utilizing high colloidal stability on double-stranded (ds) DNA-modified gold nanoparticles (dsDNA-AuNPs) possessing a cleavage site. The assay was performed using dsDNA-AuNPs treated with inactive BLM or activated BLM (Fe(II)⋅BLM). A 10-min exposure in dsDNA-AuNPs with inactive BLM treatment resulted in a rapid color change from red to purple because of salt-induced non-crosslinking aggregation of dsDNA-AuNPs. In contrast, the addition of active Fe(II)⋅BLM retained the red color, probably because of the formation of protruding structures at the outermost phase of dsDNA-AuNPs caused by BLM-mediated DNA cleavage. Furthermore, the results of our model experiments indicate that oxidative base release and DNA-cleavage pathways could be visually distinguished with color change. The present methodology was also applicable to model screening assays using several drugs with different mechanisms related to antitumor activity. These results strongly suggest that this assay with a rapid color change could lead to simple and efficient screening of potent antitumor agents.


Assuntos
Bleomicina , Nanopartículas Metálicas , Bleomicina/farmacologia , Bleomicina/química , Ouro/química , Colorimetria/métodos , Clivagem do DNA , Nanopartículas Metálicas/química , DNA/química
4.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261142

RESUMO

Basal-like breast cancer is an incurable disease with limited therapeutic options, mainly due to the frequent development of anti-cancer drug resistance. Therefore, identification of druggable targets to improve current therapies and overcome these resistances is a major goal. Targeting DNA repair mechanisms has reached the clinical setting and several strategies, like the inhibition of the CHK1 kinase, are currently in clinical development. Here, using a panel of basal-like cancer cell lines, we explored the synergistic interactions of CHK1 inhibitors (rabusertib and SAR020106) with approved therapies in breast cancer and evaluated their potential to overcome resistance. We identified a synergistic action of these inhibitors with agents that produce DNA damage, like platinum compounds, gemcitabine, and the PARP inhibitor olaparib. Our results demonstrated that the combination of rabusertib with these chemotherapies also has a synergistic impact on tumor initiation, invasion capabilities, and apoptosis in vitro. We also revealed a biochemical effect on DNA damage and caspase-dependent apoptosis pathways through the phosphorylation of H2AX, the degradation of full-length PARP, and the increase of caspases 3 and 8 activity. This agent also demonstrated synergistic activity in a platinum-resistant cell line, inducing an increase in cell death in response to cisplatin only when combined with rabusertib, while no toxic effect was found on non-tumorigenic breast tissue-derived cell lines. Lastly, the combination of CHK1 inhibitor with cisplatin and gemcitabine resulted in more activity than single or double combinations, leading to a higher apoptotic effect. In conclusion, in our study we identify therapeutic options for the clinical development of CHK1 inhibitors, and confirm that the inhibition of this kinase can overcome acquired resistance to cisplatin.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Platina/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Invasividade Neoplásica , Platina/farmacologia , Gencitabina
5.
EJC Suppl ; 15: 67-72, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33240444

RESUMO

Epithelial ovarian cancer (EOC) is very sensitive to upfront chemotherapy. This condition is attributable to defects in the DNA damage repair system. Agents that damage DNA are the main drugs used for its treatment. Many EOC cells have DNA repair deficiencies that confer susceptibility to these agents. Platinum is the most important agent for first-line and also for relapses, together with other drugs that can be given as monotherapy or along with platinum or other drugs. Lately, the emerging role of PARP inhibitors has changed the landscape of opportunities for patients with EOC. All these strategies will be reviewed in this article.

6.
BMC Cancer ; 19(1): 300, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943920

RESUMO

BACKGROUND: Solid tumours are less oxygenated than normal tissues. This is called tumour hypoxia and leads to resistance to radiotherapy and chemotherapy. The molecular mechanisms underlying such resistance have been investigated in a range of tumour types, including the adult brain tumours glioblastoma, yet little is known for paediatric brain tumours. Medulloblastoma (MB) is the most common malignant brain tumour in children. We aimed to elucidate the impact of hypoxia on the sensitivity of MB cells to chemo- and radiotherapy. METHODS: We used two MB cell line (D283-MED and MEB-Med8A) and a widely used glioblastoma cell line (U87MG) for comparison. We applied a range of molecular and cellular techniques to measure cell survival, cell cycle progression, protein expression and DNA damage combined with a transcriptomic micro-array approach in D283-MED cells, for global gene expression analysis in acute and chronic hypoxic conditions. RESULTS: In D283-MED and U87MG, chronic hypoxia (5 days), but not acute hypoxia (24 h) induced resistance to chemotherapy and X-ray irradiation. This acquired resistance upon chronic hypoxia was present but less pronounced in MEB-Med8A cells. Using transcriptomic analysis in D283-MED cells, we found a large transcriptional remodelling upon long term hypoxia, in particular the expression of a number of genes involved in detection and repair of double strand breaks (DSB) was altered. The levels of Nibrin (NBN) and MRE11, members of the MRN complex (MRE11/Rad50/NBN) responsible for DSB recognition, were significantly down-regulated. This was associated with a reduction of Ataxia Telangiectasia Mutated (ATM) activation by etoposide, indicating a profound dampening of the DNA damage signalling in hypoxic conditions. As a consequence, p53 activation by etoposide was reduced, and cell survival enhanced. Whilst U87MG shared the same dampened p53 activity, upon chemotherapeutic drug treatment in chronic hypoxic conditions, these cells used a different mechanism, independent of the DNA damage pathway. CONCLUSION: Together our results demonstrate a new mechanism explaining hypoxia-induced resistance involving the alteration of the response to DSB in D283-MED cells, but also highlight the cell type to cell type diversity and the necessity to take into account the differing tumour genetic make-up when considering re-sensitisation therapeutic protocols.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Cerebelares/genética , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica/métodos , Meduloblastoma/genética , Proteínas Nucleares/genética , Ciclo Celular , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Cerebelares/tratamento farmacológico , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Meduloblastoma/tratamento farmacológico , Análise de Sequência com Séries de Oligonucleotídeos , Tolerância a Radiação
7.
Proc Natl Acad Sci U S A ; 112(5): 1571-6, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605897

RESUMO

The paradigm that microtubule-targeting agents (MTAs) cause cell death via mitotic arrest applies to rapidly dividing cells but cannot explain MTA activity in slowly growing human cancers. Many preferred cancer regimens combine a MTA with a DNA-damaging agent (DDA). We hypothesized that MTAs synergize with DDAs by interfering with trafficking of DNA repair proteins on interphase microtubules. We investigated nine proteins involved in DNA repair: ATM, ATR, DNA-PK, Rad50, Mre11, p95/NBS1, p53, 53BP1, and p63. The proteins were sequestered in the cytoplasm by vincristine and paclitaxel but not by an aurora kinase inhibitor, colocalized with tubulin by confocal microscopy and coimmunoprecipitated with the microtubule motor dynein. Furthermore, adding MTAs to radiation, doxorubicin, or etoposide led to more sustained γ-H2AX levels. We conclude DNA damage-repair proteins traffic on microtubules and addition of MTAs sequesters them in the cytoplasm, explaining why MTA/DDA combinations are common anticancer regimens.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Linhagem Celular Tumoral , Imunofluorescência , Humanos
8.
Mol Cancer ; 16(1): 86, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454547

RESUMO

BACKGROUND: Enhancing the antitumor activity of the DNA-damaging drugs is an attractive strategy to improve current treatment options. Trabectedin is an isoquinoline alkylating agent with a peculiar mechanism of action. It binds to minor groove of DNA inducing single- and double-strand-breaks. These kinds of damage lead to the activation of PARP1, a first-line enzyme in DNA-damage response pathways. We hypothesized that PARP1 targeting could perpetuate trabectedin-induced DNA damage in tumor cells leading finally to cell death. METHODS: We investigated trabectedin and PARP1 inhibitor synergism in several tumor histotypes both in vitro and in vivo (subcutaneous and orthotopic tumor xenografts in mice). We searched for key determinants of drug synergism by comparative genomic hybridization (aCGH) and gene expression profiling (GEP) and validated their functional role. RESULTS: Trabectedin activated PARP1 enzyme and the combination with PARP1 inhibitors potentiated DNA damage, cell cycle arrest at G2/M checkpoint and apoptosis, if compared to single agents. Olaparib was the most active PARP1 inhibitor to combine with trabectedin and we confirmed the antitumor and antimetastatic activity of trabectedin/olaparib combination in mice models. However, we observed different degree of trabectedin/olaparib synergism among different cell lines. Namely, in DMR leiomyosarcoma models the combination was significantly more active than single agents, while in SJSA-1 osteosarcoma models no further advantage was obtained if compared to trabectedin alone. aCGH and GEP revealed that key components of DNA-repair pathways were involved in trabectedin/olaparib synergism. In particular, PARP1 expression dictated the degree of the synergism. Indeed, trabectedin/olaparib synergism was increased after PARP1 overexpression and reduced after PARP1 silencing. CONCLUSIONS: PARP1 inhibition potentiated trabectedin activity in a PARP1-dependent manner and PARP1 expression in tumor cells might be a useful predictive biomarker that deserves clinical evaluation.


Assuntos
Biomarcadores Tumorais/genética , Dioxóis/administração & dosagem , Poli(ADP-Ribose) Polimerase-1/genética , Sarcoma/tratamento farmacológico , Tetra-Hidroisoquinolinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Sarcoma/genética , Sarcoma/patologia , Trabectedina , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Molecules ; 21(7)2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27355941

RESUMO

Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide (TMZ). Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells' invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats' behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Glioma/genética , Glioma/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glioma/tratamento farmacológico , Humanos , Atividade Motora/efeitos dos fármacos , Invasividade Neoplásica , Ratos
10.
Biochim Biophys Acta ; 1846(1): 45-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24727386

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the poorest prognosis neoplasms. It is typified by high levels of genomic aberrations and copy-number variation, intra-tumoural heterogeneity and resistance to conventional chemotherapy. Improved therapeutic options, ideally targeted against cancer-specific biological mechanisms, are urgently needed. Although induction of DNA damage and/or modulation of DNA damage response pathways are associated with the activity of a number of conventional PDAC chemotherapies, the effectiveness of this approach in the treatment of PDAC has not been comprehensively reviewed. Here, we review chemotherapeutic agents that have shown anti-cancer activity in PDAC and whose mechanisms of action involve modulation of DNA repair pathways. In addition, we highlight novel potential targets within these pathways based on the emerging understanding of PDAC biology and their exploitation as targets in other cancers.


Assuntos
Carcinoma Ductal Pancreático/terapia , Reparo do DNA , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/terapia , Pesquisa Translacional Biomédica , Animais , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/genética , Variações do Número de Cópias de DNA , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Humanos , Neoplasias Pancreáticas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Cancer Sci ; 106(7): 902-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25891850

RESUMO

The Fanconi anemia (FA) pathway plays a key role in interstrand crosslink (ICL) repair and maintenance of the genomic stability, while inhibition of this pathway may sensitize cancer cells to DNA ICL agents and ionizing radiation (IR). The active FA core complex acts as an E3 ligase to monoubiquitinate FANCD2, which is a functional readout of an activated FA pathway. In the present study, we aimed to identify FANCD2-targeting agents, and found that the natural compound celastrol induced degradation of FANCD2 through the ubiquitin-proteasome pathway. We demonstrated that celastrol downregulated the basal and DNA damaging agent-induced monoubiquitination of FANCD2, followed by proteolytic degradation of the substrate. Furthermore, celastrol treatment abrogated the G2 checkpoint induced by IR, and enhanced the ICL agent-induced DNA damage and inhibitory effects on lung cancer cells through depletion of FANCD2. These results indicate that celastrol is a FANCD2 inhibitor that could interfere with the monoubiquitination and protein stability of FANCD2, providing a novel opportunity to develop FA pathway inhibitor and combinational therapy for malignant neoplasms.


Assuntos
Antineoplásicos/farmacologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Triterpenos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares , Triterpenos Pentacíclicos , Estabilidade Proteica , Proteólise
12.
Int J Toxicol ; 34(1): 31-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25691521

RESUMO

Yeast cells transformed with high-copy number plasmids comprising a green fluorescent protein (GFP)-encoding gene optimized for yeast under the control of the new DIN7 or PLM2 and the established RNR2 and RAD54 promoters were used to assess the genotoxic potential of chemical compounds. The activity of potential DNA-damaging agents was investigated by genotoxicity assays and by OxoPlate assay in the presence of various test compounds. The fluorescence signal generated by GFP in response to DNA damage was related to the different concentrations of analytes and the analyte-dependent GFP synthesis. The use of distinct DNA damage-inducible promoters presents alternative genotoxicity testing strategies by selective induction of promoters in response to DNA damage. The new DIN7 and PLM2 systems show higher sensitivity than the RNR2 and RAD54 systems in detecting 4-nitroquinoline-N-oxide and actinomycin D. Both DIN7 and PLM2 systems are able to detect camptothecin while RNR2 and RAD54 systems are not. Automated laboratory systems with assay performance on 384-well microplates provide for cost-effective high-throughput screening of DNA-damaging agents, reducing compound consumption to about 53% as compared with existing eukaryotic genotoxicity bioassays.


Assuntos
Exodesoxirribonucleases/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Mutagênicos/toxicidade , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Fluorescência Verde/metabolismo , Testes de Mutagenicidade , Plasmídeos , Regiões Promotoras Genéticas , Ribonucleotídeo Redutases/genética
13.
Mol Oncol ; 18(1): 216-232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37854019

RESUMO

Since therapy-induced senescence (TIS) can either support or inhibit cancer progression, identifying which types of chemotherapeutic agents can produce the strongest anti-tumor TIS is an important issue. Here, cyclin-dependent kinase4/6 inhibitors (CDK4/6i)-induced senescence was compared to the TIS induced by conventional DNA-damaging agents. Despite both types of agents eliciting a similar degree of senescence, we observed increased expression of the senescence-associated secretory phenotype (SASP) and ligands related to pro-tumor immunity (IL6, CXCL8, TGFß, CD274, and CEACAM1) and angiogenesis (VEGFA) mainly in TIS induced by DNA-damaging agents rather than by CDK4/6i. Additionally, although all agents increased the expression of anti-tumor immunomodulatory proteins related to antigen presentation (MHC-I, B2M) and T cell chemokines (CXCL9, 10, 11), CDK4/6i-induced senescent cells still maintained this expression at a similar or even higher intensity than cells treated with DNA-damaging agents, despite the absence of nuclear factor-kappa-B (NF-κB) and p53 activation. These data suggest that in contrast with DNA-damaging agents, which augment the pro-tumorigenic microenvironment via pro-inflammatory SASP, CDK4/6i can generate TIS only with antitumor immunomodulatory proteins.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , NF-kappa B/metabolismo , Senescência Celular/genética , Microambiente Tumoral , Quinase 4 Dependente de Ciclina
14.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370789

RESUMO

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation. αKG is required for the activity of αKG-dependent dioxygenases (αKGDDs), and prior work has shown that changes in αKGDD affect demethylases. Using a targeted CRISPR knockout library consisting of 64 αKGDDs, we discovered that Trimethyllysine Hydroxylase Epsilon (TMLHE), the first and rate-limiting enzyme in de novo carnitine synthesis, is necessary for proliferation of HR-proficient cells in the presence of DNA damaging agents. Unexpectedly, αKG-mediated TMLHE-dependent carnitine synthesis was required for histone acetylation, while histone methylation was affected but dispensable. The increase in histone acetylation via αKG-dependent carnitine synthesis promoted HR-mediated DNA repair through site- and substrate-specific histone acetylation. These data demonstrate for the first time that HR-proficiency is mediated through αKG directly influencing histone acetylation via carnitine synthesis and provide a metabolic avenue to induce HR-deficiency and sensitivity to DNA damaging agents.

15.
Oncologist ; 18(10): 1063-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24072219

RESUMO

DNA repair pathways can enable tumor cells to survive DNA damage induced by chemotherapy and thus provide prognostic and/or predictive value. We evaluated Affymetrix gene expression profiles for 145 DNA repair genes in untreated breast cancer (BC) patients (n = 684) and BC patients treated with regimens containing neoadjuvant taxane/anthracycline (n = 294) or anthracycline (n = 210). We independently assessed estrogen receptor (ER)-positive/HER2-negative, HER2-positive, and ER-negative/HER2-negative subgroups for differential expression, bimodal distribution, and the prognostic and predictive value of DNA repair gene expression. Twenty-two genes were consistently overexpressed in ER-negative tumors, and five genes were overexpressed in ER-positive tumors, but no differences in expression were associated with HER2 status. In ER-positive/HER2-negative tumors, the expression of nine genes (BUB1, FANCI, MNAT1, PARP2, PCNA, POLQ, RPA3, TOP2A, and UBE2V2) was associated with poor prognosis, and the expression of one gene (ATM) was associated with good prognosis. Furthermore, the prognostic value of specific genes did not correlate with proliferation. A few genes were associated with chemotherapy response in BC subtypes and treatment-specific manner. In ER-negative/HER2-negative tumors, the MSH2, MSH6, and FAN1 (previously MTMR15) genes were associated with pathological complete response and residual invasive cancer in taxane/anthracycline-treated patients. Conversely, PMS2 expression was associated with residual invasive cancer in treatments using anthracycline as a single agent. In HER2-positive tumors, TOP2A was associated with patient response to anthracyclines but not to taxane/anthracycline regimens. In genes expressed in a bimodal fashion, RECQL4 was significantly associated with clinical outcome. In vitro studies showed that defects in RECQL4 impair homologous recombination, sensitizing BC cells to DNA-damaging agents.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA/genética , Proteínas de Neoplasias/genética , RecQ Helicases/genética , Adulto , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga/genética , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/classificação , Prognóstico , RecQ Helicases/biossíntese , Transcriptoma
16.
Acta Pharm Sin B ; 13(10): 4025-4059, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799390

RESUMO

Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.

17.
Bio Protoc ; 13(21): e4872, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37969749

RESUMO

Cellular sensitivity is an approach to inhibit the growth of certain cells in response to any non-permissible conditions, as the presence of a cytotoxic agent or due to changes in growth parameters such as temperature, salt, or media components. Sensitivity tests are easy and informative assays to get insight into essential gene functions in various cellular processes. For example, cells having any functionally defective genes involved in DNA replication exhibit sensitivity to non-permissive temperatures and to chemical agents that block DNA replication fork movement. Here, we describe a sensitivity test for multiple strains of Saccharomyces cerevisiae and Candida albicans of diverged genetic backgrounds subjected to several genotoxic chemicals simultaneously. We demonstrate it by testing the sensitivity of DNA polymerase defective yeast mutants by using spot analysis combined with colony forming unit (CFU) efficiency estimation. The method is very simple and inexpensive, does not require any sophisticated equipment, can be completed in 2-3 days, and provides both qualitative and quantitative data. We also recommend the use of this reliable methodology for assaying the sensitivity of these and other fungal species to antifungal drugs and xenobiotic factors.

18.
Fac Rev ; 11: 35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532708

RESUMO

To maintain genome fidelity and prevent diseases such as cancer, our cells must constantly detect, and efficiently and precisely repair, DNA damage. Paradoxically, DNA-damaging agents in the form of radiation and chemotherapy are also used to treat cancer. Olivieri et al. used a CRISPR-based screen to identify genes that, when disrupted, lead to sensitivity or resistance to 27 different DNA-damaging agents used in the lab and/or in the clinic to treat cancer patients1. Their results reveal multiple new genes and connections that regulate these critical DNA damage repair pathways, with implications for basic and clinical research as well as cancer therapy.

19.
Cancers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625957

RESUMO

Platinum-based chemotherapy has been the cornerstone of systemic treatment in ovarian cancer. Since no validated molecular predictive markers have been identified yet, the response to platinum-based chemotherapy has been evaluated clinically, based on platinum-free interval. The new promising marker Schlafen 11 seems to correlate with sensitivity or resistance to DNA-damaging agents, including platinum compounds or PARP inhibitors in various types of cancer. We provide background information about the function of Schlafen 11, its evaluation in tumor tissue, and its prevalence in ovarian cancer. We discuss the current evidence of the correlation of Schlafen 11 expression in ovarian cancer with treatment outcomes and the potential use of Schlafen 11 as the key predictive and prognostic marker that could help to better stratify ovarian cancer patients treated with platinum-based chemotherapy or PARP inhibitors. We also provide perspectives on future directions in the research on this promising marker.

20.
Radiol Oncol ; 56(2): 173-184, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390246

RESUMO

BACKGROUND: Increased radioresistance due to previous irradiation or radiosensitivity due to human papilloma virus (HPV) infection can be observed in head and neck squamous cell carcinoma (HNSCC). The DNA-damage response of cells after exposure to DNA-damaging agents plays a crucial role in determining the fate of exposed cells. Tightly regulated and interconnected signaling networks are activated to detect, signal the presence of and repair the DNA damage. Novel therapies targeting the DNA-damage response are emerging; however, an improved understanding of the complex signaling networks involved in tumor radioresistance and radiosensitivity is needed. MATERIALS AND METHODS: In this study, we exposed isogenic human HNSCC cell lines with altered radiosensitivity to DNA-damaging agents: radiation, cisplatin and bleomycin. We investigated transcriptional alterations in the DNA-damage response by using a pathway-focused panel and reverse-transcription quantitative PCR. RESULTS: In general, the isogenic cell lines with altered radiosensitivity significantly differed from one another in the expression of genes involved in the DNA-damage response. The radiosensitive (HPV-positive) cells showed overall decreases in the expression levels of the studied genes. In parental cells, upregulation of DNA-damage signaling and repair genes was observed following exposure to DNA-damaging agents, especially radiation. In contrast, radioresistant cells exhibited a distinct pattern of gene downregulation after exposure to cisplatin, whereas the levels in parental cells were unchanged. Exposure of radioresistant cells to bleomycin did not significantly affect the expression of DNA-damage signaling and repair genes. CONCLUSIONS: Our analysis identified several possible targets: NBN, XRCC3, ATR, GADD45A and XPA. These putative targets should be studied and potentially exploited for sensibilization to ionizing radiation and/or cisplatin in HNSCC. The use of predesigned panels of DNA-damage signaling and repair genes proved to offer a convenient and quick approach to identify possible therapeutic targets.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Bleomicina/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Tolerância a Radiação/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa