Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 784
Filtrar
1.
Cell ; 176(5): 1143-1157.e13, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794775

RESUMO

We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Receptores CCR5/metabolismo , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores CCR5/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos
2.
EMBO J ; 41(20): e112383, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36097740

RESUMO

Distinct plasticity mechanisms enable neurons to effectively process information also when facing global perturbations in network activity. In this issue of The EMBO Journal, Dubes et al (2022) provide a molecular mechanism whereby individual synapses during periods of chronic inactivity are "tagged" for future strengthening. These results lend further support to the idea that local, nonmultiplicative mechanisms play an important role in homeostatic synaptic plasticity as has been demonstrated for Hebbian-like synaptic plasticity.


Assuntos
Plasticidade Neuronal , Sinapses , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
3.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38050081

RESUMO

The outgrowth and stabilization of nascent dendritic spines are crucial processes underlying learning and memory. Most new spines retract shortly after growth; only a small subset is stabilized and integrated into the new circuit connections that support learning. New spine stabilization has been shown to rely upon activity-dependent molecular mechanisms that also contribute to long-term potentiation (LTP) of synaptic strength. Indeed, disruption of the activity-dependent targeting of the kinase CaMKIIα to the GluN2B subunit of the NMDA-type glutamate receptor disrupts both LTP and activity-dependent stabilization of new spines. Yet it is not known which of CaMKIIα's many enzymatic and structural functions are important for new spine stabilization. Here, we used two-photon imaging and photolysis of caged glutamate to monitor the activity-dependent stabilization of new dendritic spines on hippocampal CA1 neurons from mice of both sexes in conditions where CaMKIIα functional and structural interactions were altered. Surprisingly, we found that inhibiting CaMKIIα kinase activity either genetically or pharmacologically did not impair activity-dependent new spine stabilization. In contrast, shRNA knockdown of CaMKIIα abolished activity-dependent new spine stabilization, which was rescued by co-expressing shRNA-resistant full-length CaMKIIα, but not by a truncated monomeric CaMKIIα. Notably, overexpression of phospho-mimetic CaMKIIα-T286D, which exhibits activity-independent targeting to GluN2B, enhanced basal new spine survivorship in the absence of additional glutamatergic stimulation, even when kinase activity was disrupted. Together, our results support a model in which nascent dendritic spine stabilization requires structural and scaffolding interactions mediated by dodecameric CaMKIIα that are independent of its enzymatic activities.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Espinhas Dendríticas , Feminino , Masculino , Camundongos , Animais , Espinhas Dendríticas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciação de Longa Duração/fisiologia , Hipocampo/fisiologia , RNA Interferente Pequeno
4.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38050126

RESUMO

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Assuntos
Microtúbulos , Neurônios , Animais , Camundongos , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Neurônios/fisiologia , Neurogênese , Plasticidade Neuronal
5.
J Neurosci ; 44(5)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38123991

RESUMO

Maintaining precise synaptic contacts between neuronal partners is critical to ensure the proper functioning of the mammalian central nervous system (CNS). Diverse cell recognition molecules, such as classic cadherins (Cdhs), are part of the molecular machinery mediating synaptic choices during development and synaptic maintenance. Yet, the principles governing neuron-neuron wiring across diverse CNS neuron types remain largely unknown. The retinotectal synapses, connections from the retinal ganglion cells (RGCs) to the superior collicular (SC) neurons, offer an ideal experimental system to reveal molecular logic underlying synaptic choices and formation. This is due to the retina's unidirectional and laminar-restricted projections to the SC and the large databases of presynaptic RGC subtypes and postsynaptic SC neuronal types. Here, we focused on determining the role of Type II Cdhs in wiring the retinotectal synapses. We surveyed Cdhs expression patterns at neuronal resolution and revealed that Cdh13 is enriched in the wide-field neurons in the superficial SC (sSC). In either the Cdh13 null mutant or selective adult deletion within the wide-field neurons, there is a significant reduction of spine densities in the distal dendrites of these neurons in both sexes. Additionally, Cdh13 removal from presynaptic RGCs reduced dendritic spines in the postsynaptic wide-field neurons. Cdh13-expressing RGCs use differential mechanisms than αRGCs and On-Off Direction-Selective Ganglion Cells (ooDSGCs) to form specific retinotectal synapses. The results revealed a selective transneuronal interaction mediated by Cdh13 to maintain proper retinotectal synapses in vivo.


Assuntos
Células Ganglionares da Retina , Sinapses , Animais , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Colículos Superiores/fisiologia , Dendritos/fisiologia , Caderinas/genética , Caderinas/metabolismo , Mamíferos
6.
Mol Cell ; 65(3): 490-503.e7, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132840

RESUMO

Environmental cues provoke rapid transitions in gene expression to support growth and cellular plasticity through incompletely understood mechanisms. Lin28 RNA-binding proteins have evolutionarily conserved roles in post-transcriptional coordination of pro-growth gene expression, but signaling pathways allowing trophic stimuli to induce Lin28 have remained uncharacterized. We find that Lin28a protein exhibits rapid basal turnover in neurons and that mitogen-activated protein kinase (MAPK)-dependent phosphorylation of the RNA-silencing factor HIV TAR-RNA-binding protein (TRBP) promotes binding and stabilization of Lin28a, but not Lin28b, with an accompanying reduction in Lin28-regulated miRNAs, downstream of brain-derived neurotrophic factor (BDNF). Binding of Lin28a to TRBP in vitro is also enhanced by phospho-mimic TRBP. Further, phospho-TRBP recapitulates BDNF-induced neuronal dendritic spine growth in a Lin28a-dependent manner. Finally, we demonstrate MAPK-dependent TRBP and Lin28a induction, with physiological function in growth and survival, downstream of diverse growth factors in multiple primary cell types, supporting a broad role for this pathway in trophic responses.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células HEK293 , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Camundongos , Neurônios/metabolismo , Fosforilação
7.
Proc Natl Acad Sci U S A ; 119(14): e2116054119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349334

RESUMO

SignificanceBiochemical reactions often occur in small volumes within a cell, restricting the number of molecules to the hundreds or even tens. At this scale, reactions are discrete and stochastic, making reliable signaling difficult. This paper shows that the transition between discrete, stochastic reactions and macroscopic reactions can be exploited to make a self-regulating switch. This constitutes a previously unidentified kind of reaction network that may be present in small structures, such as synapses.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Sinapses , Espinhas Dendríticas/fisiologia , Homeostase , Plasticidade Neuronal/fisiologia , Processos Estocásticos , Sinapses/fisiologia
8.
Proc Natl Acad Sci U S A ; 119(42): e2203750119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215465

RESUMO

The spine apparatus is a specialized compartment of the neuronal smooth endoplasmic reticulum (ER) located in a subset of dendritic spines. It consists of stacks of ER cisterns that are interconnected by an unknown dense matrix and are continuous with each other and with the ER of the dendritic shaft. While this organelle was first observed over 60 y ago, its molecular organization remains a mystery. Here, we performed in vivo proximity proteomics to gain some insight into its molecular components. To do so, we used the only known spine apparatus-specific protein, synaptopodin, to target a biotinylating enzyme to this organelle. We validated the specific localization in dendritic spines of a small subset of proteins identified by this approach, and we further showed their colocalization with synaptopodin when expressed in nonneuronal cells. One such protein is Pdlim7, an actin binding protein not previously identified in spines. Pdlim7, which we found to interact with synaptopodin through multiple domains, also colocalizes with synaptopodin on the cisternal organelle, a peculiar stack of ER cisterns resembling the spine apparatus and found at axon initial segments of a subset of neurons. Moreover, Pdlim7 has an expression pattern similar to that of synaptopodin in the brain, highlighting a functional partnership between the two proteins. The components of the spine apparatus identified in this work will help elucidate mechanisms in the biogenesis and maintenance of this enigmatic structure with implications for the function of dendritic spines in physiology and disease.


Assuntos
Espinhas Dendríticas , Proteômica , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Proteínas dos Microfilamentos/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(42): e2209427119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36227915

RESUMO

Traumatic brain injury (TBI) is a leading cause of long-term neurological disability in the world and the strongest environmental risk factor for the development of dementia. Even mild TBI (resulting from concussive injuries) is associated with a greater than twofold increase in the risk of dementia onset. Little is known about the cellular mechanisms responsible for the progression of long-lasting cognitive deficits. The integrated stress response (ISR), a phylogenetically conserved pathway involved in the cellular response to stress, is activated after TBI, and inhibition of the ISR-even weeks after injury-can reverse behavioral and cognitive deficits. However, the cellular mechanisms by which ISR inhibition restores cognition are unknown. Here, we used longitudinal two-photon imaging in vivo after concussive injury in mice to study dendritic spine dynamics in the parietal cortex, a brain region involved in working memory. Concussive injury profoundly altered spine dynamics measured up to a month after injury. Strikingly, brief pharmacological treatment with the drug-like small-molecule ISR inhibitor ISRIB entirely reversed structural changes measured in the parietal cortex and the associated working memory deficits. Thus, both neural and cognitive consequences of concussive injury are mediated in part by activation of the ISR and can be corrected by its inhibition. These findings suggest that targeting ISR activation could serve as a promising approach to the clinical treatment of chronic cognitive deficits after TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Demência , Animais , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Transtornos da Memória , Camundongos
10.
Semin Cell Dev Biol ; 125: 84-90, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020876

RESUMO

Synapses are specialized sites where neurons connect and communicate with each other. Activity-dependent modification of synaptic structure and function provides a mechanism for learning and memory. The advent of high-resolution time-lapse imaging in conjunction with fluorescent biosensors and actuators enables researchers to monitor and manipulate the structure and function of synapses both in vitro and in vivo. This review focuses on recent imaging studies on the synaptic modification underlying learning and memory.


Assuntos
Espinhas Dendríticas , Sinapses , Espinhas Dendríticas/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
11.
J Biol Chem ; 299(8): 105029, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442236

RESUMO

Communication between neurons relies on neurotransmission that takes place at synapses. Excitatory synapses are located primarily on dendritic spines that possess diverse morphologies, ranging from elongated filopodia to mushroom-shaped spines. Failure in the proper development of dendritic spines has detrimental consequences on neuronal connectivity, but the molecular mechanism that controls the balance of filopodia and mushroom spines is not well understood. G3BP1 is the key RNA-binding protein that assembles the stress granules in non-neuronal cells to adjust protein synthesis upon exogenous stress. Emerging evidence suggests that the biological significance of G3BP1 extends beyond its role in stress response, especially in the nervous system. However, the mechanism underlying the regulation and function of G3BP1 in neurons remains elusive. Here we found that G3BP1 suppresses protein synthesis and binds to the translation initiation factor eIF4E via its NTF2-like domain. Notably, the over-production of filopodia caused by G3BP1 depletion can be alleviated by blocking the formation of the translation initiation complex. We further found that the interaction of G3BP1 with eIF4E is regulated by arginine methylation. Knockdown of the protein arginine methyltransferase PRMT8 leads to elevated protein synthesis and filopodia production, which is reversed by the expression of methylation-mimetic G3BP1. Our study, therefore, reveals arginine methylation as a key regulatory mechanism of G3BP1 during dendritic spine morphogenesis and identifies eIF4E as a novel downstream target of G3BP1 in neuronal development independent of stress response.


Assuntos
DNA Helicases , Espinhas Dendríticas , Fator de Iniciação 4E em Eucariotos , Neurônios , Arginina/metabolismo , Proteínas de Transporte/metabolismo , Espinhas Dendríticas/metabolismo , DNA Helicases/metabolismo , Hipocampo/metabolismo , Metilação , Neurônios/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Ratos , Fator de Iniciação 4E em Eucariotos/metabolismo
12.
Glycobiology ; 34(2)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38015989

RESUMO

Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.


Assuntos
Encefalopatias , Deficiência Intelectual , Sulfotransferases , Animais , Humanos , Camundongos , Espinhas Dendríticas/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Transtornos da Memória , Camundongos Knockout , Neurônios/metabolismo , Compostos de Pralidoxima , Sulfotransferases/genética , Sulfotransferases/metabolismo
13.
Neuroimage ; 291: 120584, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522806

RESUMO

Memory is closely associated with neuronal activity and dendritic spine formation. Low-intensity transcranial ultrasound stimulation (TUS) improves the memory of individuals with vascular dementia (VD). However, it is unclear whether neuronal activity and dendritic spine formation under ultrasound stimulation are involved in memory improvement in VD. In this study, we found that seven days of TUS improved memory in VD model while simultaneously increasing pyramidal neuron activity, promoting dendritic spine formation, and reducing dendritic spine elimination. These effects lasted for 7 days but disappeared on 14 d after TUS. Neuronal activity and dendritic spine formation strongly corresponded to improvements in memory behavior over time. In addition, we also found that the memory, neuronal activity and dendritic spine of VD mice cannot be restored again by TUS of 7 days after 28 d. Collectively, these findings suggest that TUS increases neuronal activity and promotes dendritic spine formation and is thus important for improving memory in patients with VD.


Assuntos
Demência Vascular , Camundongos , Humanos , Animais , Demência Vascular/terapia , Neurônios , Células Piramidais , Ultrassonografia
14.
J Neurochem ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898681

RESUMO

Kelch-like family member 17 (KLHL17), an actin-associated adaptor protein, is linked to neurological disorders, including infantile spasms and autism spectrum disorders. The key morphological feature of Klhl17-deficient neurons is impaired dendritic spine enlargement, resulting in the amplitude of calcium events being increased. Our previous studies have indicated an involvement of F-actin and the spine apparatus in KLHL17-mediated dendritic spine enlargement. Here, we show that KLHL17 further employs different mechanisms to control the expression of two types of glutamate receptors, that is, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate receptors (KARs), to regulate dendritic spine enlargement and calcium influx. We deployed proteomics to reveal that KLHL17 interacts with N-ethylmaleimide-sensitive fusion protein (NSF) in neurons, with this interaction of KLHL17 and NSF enhancing NSF protein levels. Consistent with the function of NSF in regulating the surface expression of AMPAR, Klhl17 deficiency limits the surface expression of AMPAR, but not its total protein levels. The NSF pathway also contributes to synaptic F-actin distribution and the dendritic spine enlargement mediated by KLHL17. KLHL17 is known to act as an adaptor mediating degradation of the KAR subunit GluK2 by the CUL3 ubiquitin ligase complex, and Klhl17 deficiency impairs activity-dependent degradation of GluK2. Herein, we further demonstrate that GluK2 is critical to the increased amplitude of calcium influx in Klhl17-deficient neurons. Moreover, GluK2 is also involved in KLHL17-regulated dendritic spine enlargement. Thus, our study reveals that KLHL17 controls AMPAR and KAR expression via at least two mechanisms, consequently regulating dendritic spine enlargement. The regulatory effects of KLHL17 on these two glutamate receptors likely contribute to neuronal features in patients suffering from certain neurological disorders.

15.
Eur J Neurosci ; 59(8): 2102-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279611

RESUMO

The zinc finger protein 804A (ZNF804A) and the 5'-nucleotidase cytosolic II (NT5C2) genes are amongst the first schizophrenia susceptibility genes to have been identified in large-scale genome-wide association studies. ZNF804A has been implicated in the regulation of neuronal morphology and is required for activity-dependent changes to dendritic spines. Conversely, NT5C2 has been shown to regulate 5' adenosine monophosphate-activated protein kinase activity and has been implicated in protein synthesis in human neural progenitor cells. Schizophrenia risk genotype is associated with reduced levels of both NT5C2 and ZNF804A in the developing brain, and a yeast two-hybrid screening suggests that their encoded proteins physically interact. However, it remains unknown whether this interaction also occurs in cortical neurons and whether they could jointly regulate neuronal function. Here, we show that ZNF804A and NT5C2 colocalise and interact in HEK293T cells and that their rodent homologues, ZFP804A and NT5C2, colocalise and form a protein complex in cortical neurons. Knockdown of the Zfp804a or Nt5c2 genes resulted in a redistribution of both proteins, suggesting that both proteins influence the subcellular targeting of each other. The identified interaction between ZNF804A/ZFP804A and NT5C2 suggests a shared biological pathway pertinent to schizophrenia susceptibility within a neuronal cell type thought to be central to the neurobiology of the disorder, providing a better understanding of its genetic landscape.


Assuntos
Esquizofrenia , Humanos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo
16.
J Neuroinflammation ; 21(1): 99, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632655

RESUMO

BACKGROUND: The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS: We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS: The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION: Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neuralgia , Ratos , Animais , MicroRNAs/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Vesículas Extracelulares/metabolismo
17.
Cell Mol Neurobiol ; 44(1): 42, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668880

RESUMO

Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. However, the impact of local pathology in the cortex is unknown. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1 to 2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow-up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.


Assuntos
Espinhas Dendríticas , Camundongos Transgênicos , Córtex Pré-Frontal , alfa-Sinucleína , Animais , Humanos , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Sobrevivência Celular/fisiologia , Espinhas Dendríticas/metabolismo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Células Piramidais/metabolismo , Células Piramidais/patologia
18.
Brain ; 146(4): 1403-1419, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36152315

RESUMO

Genome-wide association studies have identified 10q24.32 as a robust schizophrenia risk locus. Here we identify a regulatory variant (rs10786700) that disrupts binding of transcription factors at 10q24.32. We independently confirmed the association between rs10786700 and schizophrenia in a large Chinese cohort (n = 11 547) and uncovered the biological mechanism underlying this association. We found that rs10786700 resides in a super-enhancer element that exhibits dynamic activity change during the development process and that the risk allele (C) of rs10786700 conferred significant lower enhancer activity through enhancing binding affinity to repressor element-1 silencing transcription factor (REST). CRISPR-Cas9-mediated genome editing identified SUFU as a potential target gene by which rs10786700 might exert its risk effect on schizophrenia, as deletion of rs10786700 downregulated SUFU expression. We further investigated the role of Sufu in neurodevelopment and found that Sufu knockdown inhibited proliferation of neural stem cells and neurogenesis, affected molecular pathways (including neurodevelopment-related pathways, PI3K-Akt and ECM-receptor interaction signalling pathways) associated with schizophrenia and altered the density of dendritic spines. These results reveal that the functional risk single nucleotide polymorphism rs10786700 at 10q24.32 interacts with REST synergistically to regulate expression of SUFU, a novel schizophrenia risk gene which is involved in schizophrenia pathogenesis by affecting neurodevelopment and spine morphogenesis.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Fosfatidilinositol 3-Quinases/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética
19.
Cell Mol Life Sci ; 80(4): 82, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871239

RESUMO

Neurotrypsin (NT) is a neuronal trypsin-like serine protease whose mutations cause severe mental retardation in humans. NT is activated in vitro by Hebbian-like conjunction of pre- and postsynaptic activities, which promotes the formation of dendritic filopodia via proteolytic cleavage of the proteoglycan agrin. Here, we investigated the functional importance of this mechanism for synaptic plasticity, learning, and extinction of memory. We report that juvenile neurotrypsin-deficient (NT-/-) mice exhibit impaired long-term potentiation induced by a spaced stimulation protocol designed to probe the generation of new filopodia and their conversion into functional synapses. Behaviorally, juvenile NT-/- mice show impaired contextual fear memory and have a sociability deficit. The latter persists in aged NT-/- mice, which, unlike juvenile mice, show normal recall but impaired extinction of contextual fear memories. Structurally, juvenile mutants exhibit reduced spine density in the CA1 region, fewer thin spines, and no modulation in the density of dendritic spines following fear conditioning and extinction in contrast to wild-type littermates. The head width of thin spines is reduced in both juvenile and aged NT-/- mice. In vivo delivery of adeno-associated virus expressing an NT-generated fragment of agrin, agrin-22, but not a shorter agrin-15, elevates the spine density in NT-/- mice. Moreover, agrin-22 co-aggregates with pre- and postsynaptic markers and increases the density and size of presynaptic boutons and presynaptic puncta, corroborating the view that agrin-22 supports the synaptic growth.


Assuntos
Potenciação de Longa Duração , Peptídeo Hidrolases , Humanos , Animais , Camundongos , Idoso , Agrina , Espinhas Dendríticas , Transtornos da Memória
20.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597297

RESUMO

Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system driven by peripheral immune cell infiltration and glial activation. The pathological hallmark of MS is demyelination, and mounting evidence suggests neuronal damage in gray matter is a major contributor to disease irreversibility. While T cells are found in both gray and white matter of MS tissue, they are typically confined to the white matter of the most commonly used mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Here, we used a modified EAE mouse model (Type-B EAE) that displays severe neuronal damage to investigate the interplay between peripheral immune cells and glial cells in the event of neuronal damage. We show that CD4+ T cells migrate to the spinal cord gray matter, preferentially to ventral horns. Compared to CD4+ T cells in white matter, gray matter-infiltrated CD4+ T cells were mostly immobilized and interacted with neurons, which are behaviors associated with detrimental effects to normal neuronal function. T cell-specific deletion of CXCR2 significantly decreased CD4+ T cell infiltration into gray matter in Type-B EAE mice. Further, astrocyte-targeted deletion of TAK1 inhibited production of CXCR2 ligands such as CXCL1 in gray matter, successfully prevented T cell migration into spinal cord gray matter, and averted neuronal damage and motor dysfunction in Type-B EAE mice. This study identifies astrocyte chemokine production as a requisite for the invasion of CD4+T cell into the gray matter to induce neuronal damage.


Assuntos
Astrócitos/patologia , Linfócitos T CD4-Positivos/metabolismo , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Receptores de Interleucina-8B/metabolismo , Animais , Astrócitos/metabolismo , Linfócitos T CD4-Positivos/patologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Corno Ventral da Medula Espinal/patologia , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa