Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Stem Cells ; 42(7): 623-635, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393380

RESUMO

Adipose-derived stem cells (ASCs) from diabetic osteoporosis (DOP) mice showed impaired osteogenic differentiation capacity. Recent studies have shown that in addition to antidiabetic drugs, sodium-glucose co-transporter inhibitor-2 (SGLT-2), empagliflozin, can play multipotent roles through various mechanisms of action. In this study, we aimed to investigate the effects and underlying mechanisms of empagliflozin on osteogenic differentiation of ASCs in DOP mice. Our results showed that osteogenic differentiation potential and autophagy activity weakened in DOP-ASCs when compared to controls. However, empagliflozin enhanced autophagy flux by promoting the formation of autophagosomes and acidification of autophagic lysosomes, resulting in an increase in LC3-II expression and a decrease in SQSTM1 expression. Furthermore, empagliflozin contributed to the reversal of osteogenesis inhibition in DOP-ASCs induced by a diabetic microenvironment. When 3-methyladenine was used to block autophagy activity, empagliflozin could not exert its protective effect on DOP-ASCs. Nonetheless, this study demonstrated that the advent of cellular autophagy attributed to the administration of empagliflozin could ameliorate the impaired osteogenic differentiation potential of ASCs in DOP mice. This finding might be conducive to the application of ASCs transplantation for promoting bone fracture healing and bone regeneration in patients with DOP.


Assuntos
Autofagia , Compostos Benzidrílicos , Diferenciação Celular , Glucosídeos , Osteogênese , Osteoporose , Animais , Glucosídeos/farmacologia , Autofagia/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Camundongos , Osteoporose/patologia , Osteoporose/tratamento farmacológico , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/citologia , Camundongos Endogâmicos C57BL , Masculino
2.
Cell Mol Life Sci ; 81(1): 423, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367914

RESUMO

Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic ß-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4+ T cells into Treg subsets, facilitating Ca2+ influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca2+ entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 2 , Osteoporose , Linfócitos T Reguladores , Vitamina D , Animais , Masculino , Camundongos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Glicolipídeos/farmacologia , Glicolipídeos/uso terapêutico , Camundongos Endogâmicos C57BL , Proteína ORAI1/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Molécula 1 de Interação Estromal/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/imunologia , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/uso terapêutico
3.
J Transl Med ; 22(1): 409, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693581

RESUMO

With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic ß-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Osteoporose , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Osteoporose/complicações , Osteoporose/metabolismo , Animais , Ferro/metabolismo
4.
Arch Biochem Biophys ; 752: 109870, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141905

RESUMO

Our previous studies have shown that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) is expressed in liver sinusoidal endothelial cells, and oxidized low-density lipoprotein induces liver sinusoidal dysfunction and defenestration through the LOX-1/ROS/NF-kB pathway, revealing that LOX-1 can mediate liver sinusoidal barrier function, involved in the regulation of non-alcoholic fatty liver disease. Here, we investigated whether, in the context of bone metabolic diseases, LOX-1 could affect bone quality and type H blood vessels in diabetic mice. We used db/db mice as model and found that LOX-1 knockdown can ameliorate bone quality and type H blood vessel generation in db/db mice. This further verifies our hypothesis that LOX-1 is involved in the regulation of bone quality and type H blood vessel homeostasis, thus inhibiting osteoporosis progression in db/db mice.


Assuntos
Diabetes Mellitus Experimental , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas LDL/metabolismo , NF-kappa B/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
5.
FASEB J ; 37(7): e22985, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249350

RESUMO

Osteoporosis is one of the chronic complications of type 1 diabetes with high risk of fracture. The prevention of diabetic osteoporosis is of particular importance. Static magnetic fields (SMFs) exhibit advantages on improvement of diabetic complications. The biological effects and mechanism of SMFs on bone health of type 1 diabetic mice and functions of bone cells under high glucose have not been clearly clarified. In animal experiment, six-week-old male C57BL/6J mice were induced to type 1 diabetes and exposed to SMF of 0.4-0.7 T for 4 h/day lasting for 6 weeks. Bone mass, biomechanical strength, microarchitecture and metabolism were determined by DXA, three-point bending assay, micro-CT, histochemical and biochemical methods. Exposure to SMF increased BMD and BMC of femur, improved biomechanical strength with higher ultimate stress, stiffness and elastic modulus, and ameliorated the impaired bone microarchitecture in type 1 diabetic mice by decreasing Tb.Pf, Ct.Po and increasing Ct.Th. SMF enhanced bone turnover by increasing the level of markers for bone formation (OCN and Collagen I) as well as bone resorption (CTSK and NFAT2). In cellular experiment, MC3T3-E1 cells or primary osteoblasts and RAW264.7 cells were cultured in 25 mM high glucose-stimulated diabetic marrow microenvironment under differentiation induction and exposed to SMF. SMF promoted osteogenesis with higher ALP level and mineralization deposition in osteoblasts, and it also enhanced osteoclastogenesis with higher TRAP activity and bone resorption in osteoclasts under high glucose condition. Further, SMF increased iron content with higher FTH1 expression and regulated the redox level through activating HO-1/Nrf2 in tibial tissues, and lowered hepatic iron accumulation by BMP6-mediated regulation of hepcidin and lipid peroxidation in mice with type 1 diabetes. Thus, SMF may act as a potential therapy for improving bone health in type 1 diabetes with regulation on iron homeostasis metabolism and redox status.


Assuntos
Reabsorção Óssea , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Osteoporose , Camundongos , Masculino , Animais , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Experimental/terapia , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese , Ferro/metabolismo , Oxirredução , Campos Magnéticos , Glucose
6.
Cell Biol Toxicol ; 40(1): 52, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967699

RESUMO

Diabetic osteoporosis (DO) presents significant clinical challenges. This study aimed to investigate the potential of magnetic nanoparticle-enhanced extracellular vesicles (GMNPE-EVs) derived from bone marrow mesenchymal stem cells (BMSCs) to deliver miR-15b-5p, thereby targeting and downregulating glial fibrillary acidic protein (GFAP) expression in rat DO models. Data was sourced from DO-related RNA-seq datasets combined with GEO and GeneCards databases. Rat primary BMSCs, bone marrow-derived macrophages (BMMs), and osteoclasts were isolated and cultured. EVs were separated, and GMNPE targeting EVs were synthesized. Bioinformatic analysis revealed a high GFAP expression in DO-related RNA-seq and GSE26168 datasets for disease models. Experimental results confirmed elevated GFAP in rat DO bone tissues, promoting osteoclast differentiation. miR-15b-5p was identified as a GFAP inhibitor, but was significantly downregulated in DO and enriched in BMSC-derived EVs. In vitro experiments showed that GMNPE-EVs could transfer miR-15b-5p to osteoclasts, downregulating GFAP and inhibiting osteoclast differentiation. In vivo tests confirmed the therapeutic potential of this approach in alleviating rat DO. Collectively, GMNPE-EVs can effectively deliver miR-15b-5p to osteoclasts, downregulating GFAP expression, and hence, offering a therapeutic strategy for rat DO.


Assuntos
Vesículas Extracelulares , Proteína Glial Fibrilar Ácida , Células-Tronco Mesenquimais , MicroRNAs , Osteoclastos , Osteoporose , Ratos Sprague-Dawley , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Osteoporose/metabolismo , Osteoporose/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Ratos , Osteoclastos/metabolismo , Masculino , Diferenciação Celular , Nanopartículas de Magnetita , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/genética
7.
BMC Musculoskelet Disord ; 25(1): 793, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375646

RESUMO

OBJECTIVE: Diabetic osteoporosis (DOP) is a metabolic disease that occurs in patients with diabetes due to insufficient insulin secretion. This condition can lead to sensory neuropathy, nephropathy, retinopathy, and hypoglycemic events, which can increase the risk of fractures. This study aimed to assess the effectiveness of Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, in treating diabetic osteoporosis (DOP) and preventing fractures. METHODS: This quasi-experimental study enrolled 100 patients with diabetic osteoporosis from February 2023 to February 2024. Participants were randomly assigned to an intervention group (n = 50) and a control group (n = 50). The intervention group received Empagliflozin in combination with symptomatic treatment, while the control group received only symptomatic treatment. The treatment duration was six months. Fasting blood glucose (FBG), 2-hour postprandial blood glucose (2 h PG), glycosylated hemoglobin A1c (Hb A1c), bone mineral density (BMD), serum phosphorus and calcium concentration were measured after the intervention and the incidence of fracture was followed up for 12 months. The data were analyzed using SPSS 23. Descriptive statistics (mean, standard deviation, and percentage) and analytical methods (t test, Chi square) were also used to analyze the data. RESULTS: After six months of treatment, the intervention group exhibited significantly lower levels of FBG (P < 0.001), 2 h-PG (P = 0.001), and HbA1c (P < 0.001) than the control group. Additionally, bone mineral density, serum phosphorus, and calcium levels were significantly higher in the intervention group (P < 0.001). After a 12-months follow-up, the incidence of fractures in the intervention group was 2%, while it was 16.33% in the control group (P < 0.05). CONCLUSION: Empagliflozin, when combined with symptomatic treatment, demonstrates a positive clinical effect in patients with diabetic osteoporosis. The treatment effectively improves blood glucose metabolism, bone mineral density, and phosphorus and calcium metabolism, ultimately leading to a significant reduction in the incidence of fracture.


Assuntos
Compostos Benzidrílicos , Glicemia , Densidade Óssea , Diabetes Mellitus Tipo 2 , Glucosídeos , Hemoglobinas Glicadas , Osteoporose , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Glucosídeos/uso terapêutico , Feminino , Masculino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Pessoa de Meia-Idade , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Idoso , Osteoporose/tratamento farmacológico , Osteoporose/sangue , Osteoporose/epidemiologia , Densidade Óssea/efeitos dos fármacos , Hemoglobinas Glicadas/metabolismo , Resultado do Tratamento , Cálcio/sangue , Fraturas por Osteoporose/prevenção & controle , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Fósforo/sangue
8.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474436

RESUMO

Diabetic osteoporosis (DOP) is an abnormal metabolic disease caused by long-term hyperglycemia. In this study, a model rat of streptozotocin (STZ)-induced diabetes was established, and chromium picolinate (5 mg·kg-1) was given; the changes in blood glucose and body weight were detected before and after administration; and bone mineral density (BMD), bone morphology, bone turnover markers, inflammatory cytokines, and oxidative stress indicators were observed in each group. We found that after chromium picolinate (CP) intervention for 8 weeks, the blood glucose level was decreased; the BMD, the bone histomorphology parameters, and the pathological structure were improved; the expression of bone resorption-related proteins was downregulated; and the expression of bone formation-related proteins was upregulated. Meanwhile, serum antioxidant activity was increased, and inflammatory cytokine levels were decreased. In conclusion, CP could alleviate DOP by anti-oxidation, inhibition of bone turnover, anti-inflammation, and regulation of the OPG/RANKL/RANK signaling pathway. Therefore, CP has important application values for further development as a functional food or active medicine in DOP treatment.


Assuntos
Doenças Ósseas Metabólicas , Diabetes Mellitus Experimental , Osteoporose , Ácidos Picolínicos , Ratos , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Densidade Óssea , Osteoporose/metabolismo , Ligante RANK
9.
Mol Med ; 29(1): 125, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710183

RESUMO

BACKGROUND: Ferroptosis has been implicated in the pathological process of type 2 diabetic osteoporosis (T2DOP), although the specific underlying mechanisms remain largely unknown. This study aimed to clarify the role and possible mechanism of acid sphingomyelinase (ASM)-mediated osteoblast ferroptosis in T2DOP. METHODS: We treated hFob1.19 cells with normal glucose (NG) and different concentrations of high glucose (HG, 26.25 mM, 35 mM, or 43.75 mM) for 48 h. We then measured cell viability and osteogenic function, quantified ferroptosis and autophagy levels, and measured the levels of ASM and ceramide in the cells. To further investigate the specific mechanism, we examined these indicators by knocking down ASM expression, hydroxychloroquine (HCQ) treatment, or N-acetylcysteine (NAC) treatment. Moreover, a T2DOP rat model was induced and microcomputed tomography was used to observe the bone microstructure. We also evaluated the serum levels of iron metabolism-associated factors, ceramide and lipid peroxidation (LPO) and measured the expression of ASM, LC3 and GPX4 in bone tissues. RESULTS: HG inhibited the viability and osteogenic function of osteoblasts by inducing ferroptosis in a concentration-dependent manner. Furthermore, the expression of ASM and ceramide and autophagy levels were increased by HG treatment, and these factors were required for the HG-induced reactive oxygen species (ROS) generation and LPO. Similarly, inhibiting intracellular ROS also reduced HG-induced ASM activation and autophagy. ASM-mediated activation of autophagy was crucial for HG-induced degradation of GPX4, and inhibiting ASM improved osteogenic function by decreasing HG-induced autophagy, GPX4 degradation, LPO and subsequent ferroptosis. We also found that inhibiting ASM could alleviated ferroptosis and autophagy and improved osteogenic function in a T2DOP rat model. CONCLUSION: ASM-mediated autophagy activation induces osteoblast ferroptosis under HG conditions through the degradation of GPX4, providing a novel mechanistic insight into the treatment and prevention of T2DOP.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Osteoporose , Animais , Ratos , Autofagia , Ceramidas , Glucose , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Espécies Reativas de Oxigênio , Esfingomielina Fosfodiesterase/genética , Microtomografia por Raio-X
10.
Calcif Tissue Int ; 113(3): 329-343, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392365

RESUMO

Together with diabetic osteoporosis (DOP), diabetes patients experience poor peri-implant osteogenesis following implantation for dentition defects. Zoledronate (ZOL) is widely used to treat osteoporosis clinically. To evaluate the mechanism of ZOL for the treatment of DOP, experiments with DOP rats and high glucose-grown MC3T3-E1 cells were used. The DOP rats treated with ZOL and/or ZOL implants underwent a 4-week implant-healing interval, and then microcomputed tomography, biomechanical testing, and immunohistochemical staining were performed to elucidate the mechanism. In addition, MC3T3-E1 cells were maintained in an osteogenic medium with or without ZOL to confirm the mechanism. The cell migration, cellular actin content, and osteogenic differentiation were evaluated by a cell activity assay, a cell migration assay, as well as alkaline phosphatase, alizarin red S, and immunofluorescence staining. The mRNA and protein expression of adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphogenetic protein 2 (BMP2), and collagen type I (Col-I) were detected using real-time quantitative PCRs and western blot assays, respectively. In the DOP rats, ZOL markedly improved osteogenesis, enhanced bone strength and increased the expression of AMPK, p-AMPK, and Col-I in peri-implant bones. The in vitro findings showed that ZOL reversed the high glucose-induced inhibition of osteogenesis via the AMPK signaling pathway. In conclusion, the ability of ZOL to promote osteogenesis in DOP by targeting AMPK signaling suggests that therapy with ZOL, particularly simultaneous local and systemic administration, may be a unique approach for future implant repair in diabetes patients.


Assuntos
Diabetes Mellitus , Osteoporose , Ratos , Animais , Ácido Zoledrônico/farmacologia , Osteogênese , Proteínas Quinases Ativadas por AMP/metabolismo , Microtomografia por Raio-X , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Diferenciação Celular , Glucose/metabolismo , Osteoblastos/metabolismo , Diabetes Mellitus/metabolismo
11.
Cell Biol Int ; 47(1): 216-227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36193698

RESUMO

Zoledronate (ZOL) were found to inhibit bone resorption in an animal model of diabetes, high glucose concentrations have been shown to decreased the osteogenesis-related gene expression. But the molecular mechanism by which high glucose levels affect osteoblasts and the effects of ZOL on osteoblast differentiation in a high-glucose environment remain unclear. Therefore, we aimed to investigate the effect of ZOL on osteoblast differentiation in a high-glucose environment and determine the responsible mechanism. Cell proliferation was detected by MTT assay, and cell differentiation was evaluated by immunofluorescence staining for alkaline phosphatase expression, alizarin red staining, cytoskeletal arrangement, and actin fiber formation. Real-time PCR and western blot analyses were performed to detect the mRNA and protein expression of p38MAPK, phosphorylated (p)-p38MAPK, CREB, p-CREB, collagen (COL) I, osteoprotegerin (OPG), and RANKL. The results showed that cell proliferation activity did not differ among the groups. But high glucose inhibited osteoblast differentiation; actin fiber formation; and p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression, while promoting RANKL expression. However, we found that treatment with ZOL reversed these effects of high glucose. And further addition of a p38MAPK inhibitor led to inhibition of osteoblast differentiation and actin fiber formation, and lower p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression than in the high glucose +ZOL group with higher RANKL expression than in the high glucose +ZOL group. Collectively, this study demonstrates that high glucose inhibits the differentiation of osteoblasts, and ZOL could partly overcome these effects by regulating p38MAPK pathway activity.


Assuntos
Osteogênese , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Ácido Zoledrônico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Glucose/metabolismo , Ligante RANK/metabolismo
12.
Cell Biol Toxicol ; 39(4): 1257-1274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36112264

RESUMO

Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) are emerged as carriers of therapeutic targets against bone disorders, yet its isolation and purification are limited with recent techniques. Magnetic nanoparticles (MNPs) can load EVs with a unique targeted drug delivery system. We constructed gold-coated magnetic nanoparticles (GMNPs) by decorating the surface of the Fe3O4@SiO2 core and a silica shell with poly(ethylene glycol) (PEG)-aldehyde (CHO) and examined the role of BMSC-EVs loaded on GMNPs in diabetic osteoporosis (DO). The osteoporosis-related differentially expressed miR-150-5p was singled out by microarray analysis. DO models were then established in Sprague-Dawley rats by streptozotocin injection, where poor expression of miR-150-5p was validated in the bone tissues. Next, GMNPE was prepared by combining GMNPs with anti-CD63, after which osteoblasts were co-cultured with the GMNPE-BMSC-EVs. The re-expression of miR-150-5p facilitated osteogenesis in osteoblasts. GMNPE could promote the enrichment of EVs in the bone tissues of DO rats. BMSC-EVs delivered miR-150-5p to osteoblasts, where miR-150-5p targeted MMP14 and consequently activated Wnt/ß-catenin pathway. This effect contributed to the enhancement of osteoblast proliferation and maturation. Furthermore, GMNPE enhanced the EV-based delivery of miR-150-5p to regulate the MMP14/Wnt/ß-catenin axis, resulting in promotion of osteogenesis. Overall, our findings suggest the potential of GMNP-BMSC-EVs to strengthen osteoblast proliferation and maturation in DO, showing promise as an appealing drug delivery strategy against DO. 1. GMNPs-BMSCs-EVs-miR-150-5p promotes the osteogenesis of DO rats. 2. miR-150-5p induces osteoblast proliferation and maturation by targeting MMP14. 3. Inhibition of MMP14 activates Wnt/ß-catenin and increases osteogenesis. 4. miR-150-5p activates the Wnt/ß-catenin pathway by downregulating MMP14.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Nanopartículas de Magnetita , Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Ratos , Animais , MicroRNAs/metabolismo , beta Catenina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Diferenciação Celular/fisiologia , Dióxido de Silício , Ratos Sprague-Dawley , Osteoporose/terapia , Osteoporose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/metabolismo
13.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175278

RESUMO

Diabetic osteoporosis (DO) has been increasingly recognized as an important complication of diabetes. D-pinitol, a natural compound found in various legumes, is known for its anti-diabetic function, but its effect on DO has not been investigated. Two doses of pinitol (50 and 100 mg/kg Bw/d) were administered orally to experimentally induce the DO mouse model for 5 weeks. The results indicated that pinitol suppressed fasting blood glucose levels and tended to enhance impaired pancreatic function. Pinitol also suppressed serum bone turnover biomarkers, and improved dry femur weight, cancellous bone rate, and bone mineral content in the DO mice. Based on the inositol quantification using GC-MS in serum, liver, kidney, and bone marrow, the pinitol treatment significantly recovered the depleted D-chiro-inositol (DCI) content or the decreased the ratio of DCI to myo-inositol caused by DO. In short, our results suggested that pinitol improved glucose metabolism and inhibited bone loss in DO mice via elevating the DCI levels in tissues.


Assuntos
Diabetes Mellitus , Osteoporose , Camundongos , Animais , Diabetes Mellitus/tratamento farmacológico , Inositol/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Biomarcadores , Glucose
14.
Medicina (Kaunas) ; 59(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37629706

RESUMO

Background and Objectives: The incidence of diabetic osteoporosis, an important complication of diabetes mellitus, is increasing gradually. This study investigated the combined effect of the Zuogui pill (ZGP) and eldecalcitol (ED-71), a novel vitamin D analog, on type 2 diabetic osteoporosis (T2DOP) and explored their action mechanism. Materials and Methods: Blood glucose levels were routinely monitored in db/db mice while inducing T2DOP. We used hematoxylin and eosin staining, Masson staining, micro-computed tomography, and serum biochemical analysis to evaluate changes in the bone mass and blood calcium and phosphate levels of mice. Immunohistochemical staining was performed to assess the osteoblast and osteoclast statuses. The MC3T3-E1 cell line was cultured in vitro under a high glucose concentration and induced to undergo osteogenic differentiation. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence, ALP, and alizarin red staining were carried out to detect osteogenic differentiation and PI3K-AKT signaling pathway activity. Results: ZGP and ED-71 led to a dramatic decrease in blood glucose levels and an increase in bone mass in the db/db mice. The effect was strongest when both were used together. ZGP combined with ED-71 promoted osteoblast activity and inhibited osteoclast activity in the trabecular bone region. The in vitro results revealed that ZGP and ED-71 synergistically promoted osteogenic differentiation and activated the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 or AKT inhibitor ARQ092 altered the synergistic action of both on osteogenic differentiation. Conclusions: The combined use of ZGP and ED-71 reduced blood glucose levels in diabetic mice and promoted osteogenic differentiation through the PI3K-AKT signaling pathway, resulting in improved bone mass. Our study suggests that the abovementioned combination constitutes an effective treatment for T2DOP.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Osteoporose , Animais , Camundongos , Osteogênese , Glicemia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Microtomografia por Raio-X , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Vitamina D , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico
15.
J Cell Mol Med ; 26(14): 4032-4047, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726597

RESUMO

Diabetic osteoporosis is secondary osteoporosis and a serious complication of diabetes with a high incidence rate and poor prognosis. The specific mechanism of diabetic osteoporosis is unclear, and prevention and treatment options are limited. Recently, melatonin has been found to prevent and treat diabetic osteoporosis. Herein, we investigated the mechanism whereby melatonin inhibits osteoclastogenesis and identified a new target for osteoporosis treatment. We established an in vitro osteoblast-osteoclast co-culture system as a diabetic osteoporosis model. Osteoclastogenesis was determined using tartrate-resistant acid phosphatase staining and cathepsin K expression. Real-time PCR was used to ascertain expression of microRNA mir-882, targeting Rev-Erbα. Western blotting was performed to detect the expression of Rev-Erbα, receptor activator of NF-kB ligand (RANKL), and osteoprotegerin (OPG), and ELISA was utilized to analyse the secreted form of RANKL. High glucose promoted osteoclastogenesis and elevated the RANKL/OPG ratio in osteoblasts, while melatonin reversed these effects. High glucose inhibited Rev-Erbα expression, while melatonin promoted its expression. Conversely, high glucose promoted mir-882 expression, while melatonin inhibited it. We infer that melatonin inhibits RANKL expression in osteoblasts via the mir-882/Rev-Erbα axis, thus inhibiting osteoclastogenesis. Our findings provide insights into diabetic osteoporosis and identify a new therapeutic target for osteoporosis.


Assuntos
Melatonina , Osteoporose , Diferenciação Celular , Glucose/metabolismo , Humanos , Ligantes , Melatonina/metabolismo , Melatonina/farmacologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
16.
J Bone Miner Metab ; 40(2): 208-219, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34750680

RESUMO

INTRODUCTION: Diabetic osteoporosis (DOP) is a chronic diabetic complication, which is attributed to high glucose (HG)-induced dysfunction of bone marrow mesenchymal stem cells (BMSCs). Studies have revealed that microRNAs (miRNAs) play critical roles in osteogenic differentiation of BMSCs in DOP. Here, the role of miR-9-5p in DOP progression was explored. MATERIALS AND METHODS: The rat model of DOP was established by intraperitoneal injection of streptozotocin (STZ). BMSCs were treated with high glucose (HG) to establish in vitro models. Gene expression in BMSCs and bone tissues of rats was tested by RT-qPCR. The degree of osteogenic differentiation of BMSCs was examined by Alizarin Red staining and ALP activity analysis. The protein levels of collagen-I (COL1), osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor-2 (RUNX2), and DEAD-Box Helicase 17 (DDX17) in BMSCs were evaluated by western blotting. The interaction between miR-9-5p and DDX17 was identified by luciferase reporter assay. H&E staining was used to test morphological structure of femurs of rats with STZ treatment. RESULTS: MiR-9-5p was overexpressed in HG-treated BMSCs, while DDX17 was downregulated. Functionally, miR-9-5p knockdown promoted BMSCs osteogenic differentiation under HG condition. Mechanically, miR-9-5p targeted DDX17. DDX17 knockdown reversed the effect of miR-9-5p silencing on osteogenic differentiation of HG-treated BMSCs. In in vivo studies, miR-9-5p downregulation ameliorated the DOP condition of rats and miR-9-5p expression was negatively correlated with DDX17 expression in bone tissues of rats with STZ treatment. CONCLUSION: MiR-9-5p knockdown promotes HG-induced osteogenic differentiation BMSCs in vitro and mitigates the DOP condition of rats in vivo by targeting DDX17.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Glucose/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Ratos
17.
Biochem Biophys Res Commun ; 534: 727-733, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190828

RESUMO

Osteoporosis is a common skeletal complication of diabetes mellitus (DM). The mechanisms underlying the pathophysiology of diabetic osteoporosis are complex. Glycogen synthase kinase-3ß (GSK-3ß) is a widely expressed serine/threonine kinase and associated with both DM and bone metabolism, which arouse our concern. In this study, we established the diabetic mouse model by high-fat diet combined with streptozotocin injection. Decreased bone mass and reduced osteogenesis were observed in femurs of the mice. Besides, we identified that there is an activated expression of GSK3ß in the bone marrow mesenchymal stem cells (BMSCs) of diabetic mice. To explore the link between GSK3ß and diabetic osteoporosis, we exposed BMSCs to a high glucose microenvironment in vitro and discovered that the glucose-induced GSK3ß activation has negative osteogenic effects on BMSCs by suppressing ß-catenin/Tcf7/Ccn4 signaling axis. Inhibition of GSK3ß by specific concentrations of LiCl could reverse the impaired osteogenesis of BMSCs and increase expression of ß-catenin, Tcf7 and Ccn4. Our research indicated that abnormal activation of GSK3ß plays a role in diabetic osteoporosis and might be a potential target to treat diabetic osteoporosis.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Animais , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática , Fêmur/patologia , Fêmur/ultraestrutura , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Estreptozocina , beta Catenina/genética , beta Catenina/metabolismo
18.
Climacteric ; 24(2): 179-186, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33000666

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of the insulin-like growth factor-1 receptor (IGF-1R)/ß-catenin signaling axis in bone impairment induced by hyperglycemia in ovariectomized rats. METHODS: Rats were divided into four groups. The sham group received sham operation and a single intraperitoneal administration of vehicle. The ovariectomy (OVX) group was subjected to bilateral OVX and vehicle injection. The streptozotocin (STZ) group received sham operation and a single STZ injection to induce hyperglycemia. The OVX + STZ group received bilateral OVX and a single STZ injection. Dual-energy X-ray absorptiometry measurement, bone biomechanics test, micro-computed tomography scan, and hematoxylin-eosin staining were performed to evaluate bone alteration in this model. The expression of relevant signals including IGF-1R, glycogen synthase kinase-3ß (GSK-3ß), and ß-catenin were examined by quantitative real-time polymerase chain reaction and western blot. RESULTS: The OVX, STZ, and OVX + STZ groups induced bone loss, attenuated bone strength, and impaired microarchitecture compared with the sham group, respectively. Compared with OVX, more serious bone damage was found in the OVX + STZ group, which showed enhanced phosphorylation of IGF-1R, GSK-3ß, and ß-catenin. CONCLUSION: OVX plus STZ induced more serious bone impairment than OVX alone, which involves the IGF-1R/ß-catenin signaling axis in the pathogenesis. This may provide a potential target for treatment of postmenopausal diabetic osteoporosis.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Hiperglicemia/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Absorciometria de Fóton , Animais , Densidade Óssea , Doenças Ósseas Metabólicas/etiologia , Modelos Animais de Doenças , Feminino , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Ovariectomia , Ratos , Estreptozocina
19.
BMC Musculoskelet Disord ; 22(1): 261, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691659

RESUMO

BACKGROUND: Altered circulating levels and genetic variation of B-type natriuretic peptide (BNP), has been associated with lower bone mineral density (BMD) values and incidence of osteoporosis in peritoneal dialysis patients, renal transplant recipients, and postmenopausal women. The potential relationship of circulating BNP with osteoporosis in patients with type 2 diabetes mellitus (T2DM), however, has not yet been studied. METHODS: Circulating BNP levels were measured in 314 patients with T2DM, and participants were divided into normal BMD group (n = 73), osteopenia group (n = 120), and osteoporosis group (n = 121). The association of circulating BNP with diabetic osteoporosis and other parameters was analyzed. RESULTS: Circulating BNP was significantly higher in diabetic osteoporosis subjects than normal and osteopenia groups (P < 0.01 or P < 0.05). Circulating BNP levels correlated significantly and positively with neutrophil to lymphocyte ratio, systolic blood pressure, urinary albumin-to-creatinine ratio, and prevalence of hypertension, peripheral arterial disease, diabetic retinopathy, peripheral neuropathy, and nephropathy, and negatively with triglyceride, fasting blood glucose, lymphocyte count, hemoglobin, estimated glomerular filtration rate, bilirubin, osteoporosis self-assessment tool for Asians, BMD at different skeletal sites and corresponding T scores (P < 0.01 or P < 0.05). After multivariate adjustment, circulating BNP remained independently significantly associated with the presence of osteoporosis (odds ratio, 2.710; 95% confidence interval, 1.690-4.344; P < 0.01). BMD at the femoral neck and total hip and corresponding T scores were progressively decreased, whereas the prevalence of osteoporosis was progressively increased with increasing BNP quartiles (P for trend< 0.01). Moreover, receiver-operating characteristic analysis revealed that the optimal cutoff point of circulating BNP to indicate diabetic osteoporosis was 16.35 pg/ml. CONCLUSIONS: Circulating BNP level may be associated with the development of osteoporosis, and may be a potential biomarker for diabetic osteoporosis.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo Natriurético Encefálico/sangue , Osteoporose , Povo Asiático , Densidade Óssea , China/epidemiologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Osteoporose/diagnóstico , Osteoporose/epidemiologia
20.
Pflugers Arch ; 472(4): 473-480, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248286

RESUMO

Diabetic osteoporosis is a severe and chronic complication of diabetes in the bone and joint system, and its pathogenesis is needed to be explored. In the present study, we examined the effect and underlying mechanism of miR-155 on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs) under high glucose and free fatty acids (HG-FFA) conditions. It was shown that miR-155 levels in hBMSCs increased corresponding to the time of exposure to HG-FFA treatment. MiR-155 expression was altered by transfecting miR-155 mimic or miR-155 inhibitor. HG-FFA exposure resulted in an obviously decrease in cell viability and alkaline phosphatase (ALP) activity, and downregulated the expressionof runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) in hBMSCs. Transfection of miR-155 mimic further exacerbated HG-FFA-induced inhibitory effect on osteogenic differentiation, and miR-155 inhibitor neutralized this inhibitory effect. Luciferase assays confirmed that SIRT1 was a direct target of miR-155 and can be negatively modulated by miR-155. Furthermore, SIRT1 siRNA partially counteracted miR-155 inhibitor-induced upregulation of SIRT1in HG-FFA-treated hBMSCs. SIRT1 siRNA also reversed the promotional effect of the miR-155 inhibitor on ALP activity and expression of the Runx2 and OCN proteins under HG-FFA conditions. In conclusion, the results suggest that miR-155 suppression promoted osteogenic differentiation of hBMSCs under HG-FFA conditions by targeting SIRT1. Inhibition of MiR-155 may provide a new therapeutic method for the prevention and treatment of diabetic osteoporosis.


Assuntos
Células da Medula Óssea/citologia , Ácidos Graxos não Esterificados/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Sirtuína 1/genética , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação para Baixo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa