Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biol Pharm Bull ; 47(2): 350-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296549

RESUMO

Traumatic brain injury (TBI) is severe damage to the head caused by traffic accidents, falls, and sports. Because TBI-induced disruption of the blood-brain barrier (BBB) causes brain edema and neuroinflammation, which are major causes of death or serious disabilities, protection and recovery of BBB function may be beneficial therapeutic strategies for TBI. Astrocytes are key components of BBB integrity, and astrocyte-derived bioactive factors promote and suppress BBB disruption in TBI. Therefore, the regulation of astrocyte function is essential for BBB protection. In the injured cerebrum of TBI model mice, we found that the endothelin ETB receptor, histamine H2 receptor, and transient receptor potential vanilloid 4 (TRPV4) were predominantly expressed in reactive astrocytes. We also showed that repeated administration of an ETB receptor antagonist, H2 receptor agonist, and TRPV4 antagonist alleviated BBB disruption and brain edema in a TBI mouse model. Furthermore, these drugs decreased the expression levels of astrocyte-derived factors promoting BBB disruption and increased the expression levels of astrocyte-derived protective factors in the injured cerebrum after TBI. These results suggest that the ETB receptor, H2 receptor, and TRPV4 are molecules that regulate astrocyte function, and might be attractive candidates for the development of therapeutic drugs for TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Camundongos , Animais , Astrócitos/metabolismo , Edema Encefálico/etiologia , Canais de Cátion TRPV/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Barreira Hematoencefálica/metabolismo
2.
Neurocrit Care ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443708

RESUMO

BACKGROUND: Spinal cord injury (SCI) presents a major global health challenge, with rising incidence rates and substantial disability. Although progress has been made in understanding SCI's pathophysiology and early management, there is still a lack of effective treatments to mitigate long-term consequences. This study investigates the potential of sovateltide, a selective endothelin B receptor agonist, in improving clinical outcomes in an acute SCI rat model. METHODS: Thirty male Sprague-Dawley rats underwent sham surgery (group A) or SCI and treated with vehicle (group B) or sovateltide (group C). Clinical tests, including Basso, Beattie, and Bresnahan scoring, inclined plane, and allodynia testing with von Frey hair, were performed at various time points. Statistical analyses assessed treatment effects. RESULTS: Sovateltide administration significantly improved motor function, reducing neurological deficits and enhancing locomotor recovery compared with vehicle-treated rats, starting from day 7 post injury. Additionally, the allodynic threshold improved, suggesting antinociceptive properties. Notably, the sovateltide group demonstrated sustained recovery, and even reached preinjury performance levels, whereas the vehicle group plateaued. CONCLUSIONS: This study suggests that sovateltide may offer neuroprotective effects, enhancing neurogenesis and angiogenesis. Furthermore, it may possess anti-inflammatory and antinociceptive properties. Future clinical trials are needed to validate these findings, but sovateltide shows promise as a potential therapeutic strategy to improve functional outcomes in SCI. Sovateltide, an endothelin B receptor agonist, exhibits neuroprotective properties, enhancing motor recovery and ameliorating hyperalgesia in a rat SCI model. These findings could pave the way for innovative pharmacological interventions for SCI in clinical settings.

3.
Scand Cardiovasc J ; 55(1): 50-55, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32400208

RESUMO

OBJECTIVES: Cigarette smoke, a strong risk factor for cardiovascular diseases, upregulates contractile endothelin (ET) receptors in coronary arteries. The present study examined the effects of second hand cigarette smoke exposure on the contractile endothelin receptors and the role of the MEK1/2 pathway in rat coronary arteries. Design: Rats were exposed to secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of a MEK1/2 inhibitor, U0126 daily for another 4 weeks. Contractile responses of isolated coronary arteries were recorded by a sensitive wire myograph. The receptor protein expression levels were examined by Western blotting. Results: The results showed that SHS in vivo caused increased expression of ET receptors ETA and ETB, and that the MEK1/2 blocker U0126 significantly reversed SHS exposure-increased ETA-mediated contractile responses and protein levels. Similar alterations were observed in ETB receptors. U0126 showed dose-dependent effects on SHS-induced response on contractile property and protein levels of the ETB receptor. However, only the higher dose U0126 (15 mg/kg) had inhibitory effects on the ETA receptor. Conclusions: Taken together, our data show that SHS increases contractile ET receptors and MEK1/2 pathway inhibitor offsets SHS exposure-induced ETA and ETB receptor upregulation in rat coronary arteries.


Assuntos
Vasos Coronários , Receptores de Endotelina , Poluição por Fumaça de Tabaco , Animais , Vasos Coronários/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Ratos , Receptores de Endotelina/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Regulação para Cima
4.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919338

RESUMO

In brain disorders, reactive astrocytes, which are characterized by hypertrophy of the cell body and proliferative properties, are commonly observed. As reactive astrocytes are involved in the pathogenesis of several brain disorders, the control of astrocytic function has been proposed as a therapeutic strategy, and target molecules to effectively control astrocytic functions have been investigated. The production of brain endothelin-1 (ET-1), which increases in brain disorders, is involved in the pathophysiological response of the nervous system. Endothelin B (ETB) receptors are highly expressed in reactive astrocytes and are upregulated by brain injury. Activation of astrocyte ETB receptors promotes the induction of reactive astrocytes. In addition, the production of various astrocyte-derived factors, including neurotrophic factors and vascular permeability regulators, is regulated by ETB receptors. In animal models of Alzheimer's disease, brain ischemia, neuropathic pain, and traumatic brain injury, ETB-receptor-mediated regulation of astrocytic activation has been reported to improve brain disorders. Therefore, the astrocytic ETB receptor is expected to be a promising drug target to improve several brain disorders. This article reviews the roles of ETB receptors in astrocytic activation and discusses its possible applications in the treatment of brain disorders.


Assuntos
Astrócitos/metabolismo , Encefalopatias/metabolismo , Receptor de Endotelina B/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Astrócitos/fisiologia , Encefalopatias/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Endotelina-1/metabolismo , Humanos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Receptor de Endotelina B/fisiologia
5.
Can J Physiol Pharmacol ; 95(10): 1298-1305, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28732172

RESUMO

Our previous work showed the presence of endothelin-1 (ET-1) receptors, ETA and ETB, in human vascular endothelial cells (hVECs). In this study, we wanted to verify whether ET-1 plays a role in the survival of hVECs via the activation of its receptors ETA and (or) ETB (ETAR and ETBR, respectively). Our results showed that treatment of hVECs with ET-1 prevented apoptosis induced by genistein, an effect that was mimicked by treatment with ETBR-specific agonist IRL1620. Furthermore, blockade of ETBR with the selective ETBR antagonist A-192621 prevented the anti-apoptotic effect of ET-1 in hVECs. However, activation of ETA receptor alone did not seem to contribute to the anti-apoptotic effect of ET-1. In addition, the anti-apoptotic effect of ETBR was found to be associated with caspase 3 inhibition and does not depend on the density of this type of receptor. In conclusion, our results showed that ET-1 possesses an anti-apoptotic effect in hVECs and that this effect is mediated, to a great extent, via the activation of ETBR. This study revealed a new role for ETBR in the survival of hVECs.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotelina-1/farmacologia , Receptor de Endotelina A/agonistas , Receptor de Endotelina B/agonistas , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Genisteína/toxicidade , Humanos , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R263-71, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280426

RESUMO

The collecting duct endothelin-1 (ET-1), endothelin B (ETB) receptor, and nitric oxide synthase-1 (NOS1) pathways are critical for regulation of fluid-electrolyte balance and blood pressure control during high-salt feeding. ET-1, ETB receptor, and NOS1 are highly expressed in the inner medullary collecting duct (IMCD) and vasa recta, suggesting that there may be cross talk or paracrine signaling between the vasa recta and IMCD. The purpose of this study was to test the hypothesis that endothelial cell-derived ET-1 (paracrine) and collecting duct-derived ET-1 (autocrine) promote IMCD nitric oxide (NO) production through activation of the ETB receptor during high-salt feeding. We determined that after 7 days of a high-salt diet (HS7), there was a shift to 100% ETB expression in IMCDs, as well as a twofold increase in nitrite production (a metabolite of NO), and this increase could be prevented by acute inhibition of the ETB receptor. ETB receptor blockade or NOS1 inhibition also prevented the ET-1-dependent decrease in ion transport from primary IMCDs, as determined by transepithelial resistance. IMCD were also isolated from vascular endothelial ET-1 knockout mice (VEETKO), collecting duct ET-1 KO (CDET-1KO), and flox controls. Nitrite production by IMCD from VEETKO and flox mice was similarly increased twofold with HS7. However, IMCD NO production from CDET-1KO mice was significantly blunted with HS7 compared with flox control. Taken together, these data indicate that during high-salt feeding, the autocrine actions of ET-1 via upregulation of the ETB receptor are critical for IMCD NO production, facilitating inhibition of ion reabsorption.


Assuntos
Comunicação Autócrina/fisiologia , Endotelina-1/metabolismo , Túbulos Renais Coletores/metabolismo , Óxido Nítrico/biossíntese , Receptor de Endotelina B/metabolismo , Cloreto de Sódio na Dieta/farmacocinética , Animais , Endotelina-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/fisiologia
7.
Int J Mol Sci ; 17(3): 389, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26999111

RESUMO

Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 µM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.


Assuntos
Ácidos Aristolóquicos/farmacologia , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Plantas Medicinais/química , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina B/efeitos dos fármacos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos
8.
Am J Physiol Lung Cell Mol Physiol ; 306(5): L442-52, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24414253

RESUMO

Both phosphodiesterase 5 (PDE5) inhibition and endothelin (ET) receptor blockade have been shown to induce pulmonary vasodilation. However, little is known about the effect of combined blockade of these two vasoconstrictor pathways. Since nitric oxide (NO) exerts its pulmonary vasodilator influence via production of cyclic guanosine monophosphate (cGMP) as well as through inhibition of ET, we hypothesized that interaction between the respective signaling pathways precludes an additive vasodilator effect. We tested this hypothesis in chronically instrumented swine exercising on a treadmill by comparing the vasodilator effect of the PDE5 inhibitor EMD360527, the ETA/ETB antagonist tezosentan, and combined EMD360527 and tezosentan. In the systemic circulation, vasodilation by tezosentan and EMD360527 was additive, both at rest and during exercise, resulting in a 17 ± 2% drop in blood pressure. In the pulmonary circulation, both EMD360527 and tezosentan produced vasodilation. However, tezosentan produced no additional pulmonary vasodilation in the presence of EMD360527, either at rest or during exercise. Moreover, in isolated preconstricted porcine pulmonary small arteries (∼300 µm) EMD360527 (1 nM-10 µM) induced dose-dependent vasodilation, whereas tezosentan (1 nM-10 µM) failed to elicit vasodilation irrespective of the presence of EMD360527. However, both PDE5 inhibition and 8Br-cGMP, but not 8Br-cAMP, blunted pulmonary small artery contraction to ET and its precursor Big ET in vitro. In conclusion, in healthy swine, either at rest or during exercise, PDE5 inhibition and the associated increase in cGMP produce pulmonary vasodilation that is mediated in part through inhibition of the ET pathway, thereby precluding an additional vasodilator effect of ETA/ETB receptor blockade in the presence of PDE5 inhibition.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Circulação Pulmonar/fisiologia , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Vasoconstrição/fisiologia , Animais , GMP Cíclico/metabolismo , Sinergismo Farmacológico , Antagonistas do Receptor de Endotelina A , Antagonistas do Receptor de Endotelina B , Endotelinas/antagonistas & inibidores , Endotelinas/metabolismo , Feminino , Humanos , Masculino , Inibidores da Fosfodiesterase 5/farmacologia , Condicionamento Físico Animal/fisiologia , Circulação Pulmonar/efeitos dos fármacos , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sus scrofa , Tetrazóis/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
9.
Biosci Rep ; 44(7)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38860875

RESUMO

High blood pressure in the portal vein, portal hypertension (PH), is the final common pathway in liver cirrhosis regardless of aetiology. Complications from PH are the major cause of morbidity and mortality in these patients. Current drug therapy to reduce portal pressure is mainly limited to ß-adrenergic receptor blockade but approximately 40% of patients do not respond. Our aim was to use microarray to measure the expression of ∼20,800 genes in portal vein from patients with PH undergoing transplantation for liver cirrhosis (PH, n=12) versus healthy vessels (control, n=9) to identify potential drug targets to improve therapy. Expression of 9,964 genes above background was detected in portal vein samples. Comparing PH veins versus control (adjusted P-value < 0.05, fold change > 1.5) identified 548 up-regulated genes and 1,996 down-regulated genes. The 2,544 differentially expressed genes were subjected to pathway analysis. We identified 49 significantly enriched pathways. The endothelin pathway was ranked the tenth most significant, the only vasoconstrictive pathway to be identified. ET-1 gene (EDN1) was significantly up-regulated, consistent with elevated levels of ET-1 peptide previously measured in PH and cirrhosis. ETA receptor gene (EDNRA) was significantly down-regulated, consistent with an adaptive response to increased peptide levels in the portal vein but there was no change in the ETB gene (EDNRB). The results provide further support for evaluating the efficacy of ETA receptor antagonists as a potential therapy in addition to ß-blockers in patients with PH and cirrhosis.


Assuntos
Endotelina-1 , Hipertensão Portal , Cirrose Hepática , Veia Porta , Receptor de Endotelina A , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Baixo , Endotelina-1/genética , Endotelina-1/metabolismo , Hipertensão Portal/genética , Hipertensão Portal/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Transplante de Fígado , Veia Porta/metabolismo , Veia Porta/patologia , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Regulação para Cima
10.
Front Pharmacol ; 15: 1332394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645552

RESUMO

Endothelin-1 (ET-1) is a potent vasoconstrictor with strong anti-natriuretic and anti-diuretic effects. While many experimental studies have elucidated the mechanisms of ET-1 through its two receptors, ETA and ETB, the complexity of responses and sometimes conflicting data make it challenging to understand the effects of ET-1, as well as potential therapeutic antagonism of ET-1 receptors, on human physiology. In this study, we aimed to develop an integrated and quantitative description of ET-1 effects on cardiovascular and renal function in healthy humans by coupling existing experimental data with a mathematical model of ET-1 kinetics and an existing mathematical model of cardiorenal function. Using a novel agnostic and iterative approach to incorporating and testing potential mechanisms, we identified a minimal set of physiological actions of endothelin-1 through ETA and ETB receptors by fitting the physiological responses (changes in blood pressure, renal blood flow, glomerular filtration rate (GFR), and sodium/water excretion) to ET-1 infusion, with and without ETA/ETB antagonism. The identified mechanisms align with previous experimental studies on ET-1 and offer novel insights into the relative magnitude and significance of endothelin's effects. This model serves as a foundation for further investigating the mechanisms of ET-1 and its antagonists.

11.
J Sex Med ; 10(9): 2141-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23875673

RESUMO

INTRODUCTION: Erectile dysfunction is considered as an early sign of subclinical vascular disease and endothelial dysfunction and a highly prevalent condition in diabetic patients. AIM: The current study assessed whether impaired vascular effects of endothelin (ET)-1 may contribute to the vascular dysfunction of penile arteries from a rat model of insulin resistance. METHODS: The effect of ETA and ETB receptor antagonists was assessed on the intracellular Ca(2+) [Ca(2+) ]i and contractile responses to ET-1 in penile arteries from obese Zucker rats (OZR) and lean Zucker rats (LZR), and ET receptor expression in the arterial wall was assessed by immunohistochemistry. MAIN OUTCOME MEASURE: Changes in ET-1 [Ca(2+) ]i and vasoconstriction and ET receptor expression were evaluated in penile arteries from insulin-resistant rats. RESULTS: ET-1-induced vasoconstriction was associated with a higher increase in smooth muscle [Ca(2+) ]i in penile arteries from OZR compared with LZR. Removal of the endothelium inhibited and enhanced contractions to the lowest and highest doses of ET-1, respectively, mainly in OZR. The selective ETA receptor antagonist BQ-123 inhibited ET-1 vasoconstriction and [Ca(2+) ]i response in both LZR and OZR. The ETB receptor antagonist BQ-788 had little effect in healthy arteries but markedly inhibited ET-1-induced increases in [Ca(2+) ]i and vasoconstriction in arteries from OZR. ETA receptors were located on the smooth muscle and endothelium of penile arteries, whereas ETB receptors were found on the arterial endothelium in LZR and OZR, and also on the smooth muscle in OZR, immunostaining for both receptors being higher in OZR. CONCLUSION: Penile arteries from OZR exhibit an impaired ET-1 Ca(2+) signaling along with changes in the ET receptor profile. Thus, whereas ET-1 contraction and the associated [Ca(2+) ]i increase are mediated by smooth muscle ETA receptors in healthy arteries, ETB receptors contribute to contraction and are coupled to the augmented ET-1 [Ca(2+) ]i response under conditions of insulin resistance.


Assuntos
Sinalização do Cálcio , Endotelina-1/fisiologia , Endotélio Vascular/metabolismo , Impotência Vasculogênica/etiologia , Resistência à Insulina , Músculo Liso Vascular/metabolismo , Pênis/irrigação sanguínea , Receptor de Endotelina B/metabolismo , Vasoconstrição , Animais , Artérias/metabolismo , Artérias/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Humanos , Impotência Vasculogênica/metabolismo , Impotência Vasculogênica/fisiopatologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Ratos , Ratos Zucker , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
12.
Br J Pharmacol ; 180(19): 2550-2576, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37198101

RESUMO

BACKGROUND AND PURPOSE: ET-1 signalling modulates intestinal motility and inflammation, but the role of ET-1/ETB receptor signalling is poorly understood. Enteric glia modulate normal motility and inflammation. We investigated whether glial ETB signalling regulates neural-motor pathways of intestinal motility and inflammation. EXPERIMENTAL APPROACH: We studied ETB signalling using: ETB drugs (ET-1, SaTX, BQ788), activity-dependent stimulation of neurons (high K+ -depolarization, EFS), gliotoxins, Tg (Ednrb-EGFP)EP59Gsat/Mmucd mice, cell-specific mRNA in Sox10CreERT2 ;Rpl22-HAflx or ChATCre ;Rpl22-HAflx mice, Sox10CreERT2 ::GCaMP5g-tdT, Wnt1Cre2 ::GCaMP5g-tdT mice, muscle tension recordings, fluid-induced peristalsis, ET-1 expression, qPCR, western blots, 3-D LSM-immunofluorescence co-labelling studies in LMMP-CM and a postoperative ileus (POI) model of intestinal inflammation. KEY RESULTS: In the muscularis externa ETB receptor is expressed exclusively in glia. ET-1 is expressed in RiboTag (ChAT)-neurons, isolated ganglia and intra-ganglionic varicose-nerve fibres co-labelled with peripherin or SP. ET-1 release provides activity-dependent glial ETB receptor modulation of Ca2+ waves in neural evoked glial responses. BQ788 reveals amplification of glial and neuronal Ca2+ responses and excitatory cholinergic contractions, sensitive to L-NAME. Gliotoxins disrupt SaTX-induced glial-Ca2+ waves and prevent BQ788 amplification of contractions. The ETB receptor is linked to inhibition of contractions and peristalsis. Inflammation causes glial ETB up-regulation, SaTX-hypersensitivity and glial amplification of ETB signalling. In vivo BQ788 (i.p., 1 mg·kg-1 ) attenuates intestinal inflammation in POI. CONCLUSION AND IMPLICATIONS: Enteric glial ET-1/ETB signalling provides dual modulation of neural-motor circuits to inhibit motility. It inhibits excitatory cholinergic and stimulates inhibitory nitrergic motor pathways. Amplification of glial ETB receptors is linked to muscularis externa inflammation and possibly pathogenic mechanisms of POI.


Assuntos
Gliotoxina , Íleus , Camundongos , Animais , Gliotoxina/metabolismo , Neuroglia , Neurônios/metabolismo , Íleus/tratamento farmacológico , Íleus/etiologia , Íleus/metabolismo , Motilidade Gastrointestinal , Inflamação/metabolismo , Colinérgicos/metabolismo
13.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899860

RESUMO

Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/complicações , Endotelinas/metabolismo , Humanos
14.
J Pharm Pharmacol ; 71(6): 988-995, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30809816

RESUMO

OBJECTIVES: TGF-ß through hyperelongation of glycosaminoglycan (GAG) chains leads to binding of low-density lipoproteins to the proteoglycans. The vasoactive peptide, endothelin-1 (ET-1), plays a key role in the development of atherosclerosis. This study addressed the question whether ET-1 by activating the Rho kinase and cytoskeletal rearrangement can transactivate the TGF-ß receptor leading to phosphorylation of the transcription factor Smad2 and increased expression of the GAG chain synthesizing enzyme such as chondroitin synthase-1 (CHSY-1) in bovine aortic endothelial cells (BAECs). METHODS: In this study, intermediates in ET-1-induced Smad2C phosphorylation and the protein level of CHSY-1 were identified and quantified by Western blotting. KEY FINDINGS: Endothelin-1 caused time-dependent phosphorylation of Smad2C which was inhibited in the presence of the endothelin B receptor antagonist, BQ788. The response to ET-1 was inhibited by the Rho/ROCK kinase antagonist, Y27632 and by cytochalasin D, an inhibitor of actin polymerization but the ET-1-mediated pSmad2C was not inhibited by the matrix metalloproteinase (MMP) inhibitor, GM6001. ET-1 increased CHSY-1 protein level, which was inhibited in the presence of BQ788, cytochalasin D and Y27632. CONCLUSIONS: Endothelin-1 signalling via the ETB receptor utilizes cytoskeletal rearrangement and Rho kinase but not MMPs leading to TßRI transactivation signalling and phosphorylation of Smad2C and through this pathway increased the level of CHSY-1.


Assuntos
Células Endoteliais/metabolismo , Endotelina-1/metabolismo , N-Acetilgalactosaminiltransferases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Amidas/farmacologia , Animais , Aorta/citologia , Western Blotting , Bovinos , Células Cultivadas , Citocalasina D/farmacologia , Oligopeptídeos/farmacologia , Fosforilação/fisiologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptor de Endotelina B/efeitos dos fármacos , Receptor de Endotelina B/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fatores de Tempo , Ativação Transcricional/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Quinases Associadas a rho/metabolismo
15.
J Pharm Pharmacol ; 71(6): 937-944, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30663067

RESUMO

OBJECTIVES: The current study aimed to explore whether minimally modified low-density lipoprotein (mmLDL) via tail vein injection upregulates the ETB and α1 receptors in mouse mesenteric arteries by activating the PI3K/Akt pathway. METHODS: The contraction curves of the mesenteric arteries caused by sarafotoxin 6c (S6c, ETB receptor agonist) and phenylephrine (PE, α1 receptor agonist) were measured by a myograph system. Serum oxLDL was detected using enzyme-linked immunosorbent assays. The levels of the ETB receptor, the α1 receptor, PI3K, p-PI3K and p-Akt were detected using real-time polymerase chain reaction and Western blot analyses. KEY FINDINGS: Minimally modified low-density lipoprotein noticeably enhanced the contraction effect curves of S6c and PE, with significantly increased Emax values (P < 0.01), compared to those of the control group. This treatment significantly increased the mRNA expression and protein levels of the ETB and α1 receptors and the protein levels of p-PI3K and p-Akt in the vessel wall (P < 0.01). LY294002 inhibited the effect of mmLDL. CONCLUSIONS: An increase in mmLDL activated the PI3K/Akt pathway, which upregulated the expression of the ETB and α1 receptors and enhanced the ETB and α1- receptor-mediated contractile function.


Assuntos
Lipoproteínas LDL/sangue , Artérias Mesentéricas/metabolismo , Receptor de Endotelina B/genética , Receptores Adrenérgicos alfa 1/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Fenilefrina/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Endotelina B/agonistas , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Regulação para Cima , Vasoconstritores/farmacologia , Venenos de Víboras/farmacologia
16.
J Pharm Pharmacol ; 70(7): 893-900, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29570803

RESUMO

OBJECTIVE: This study assessed the ability of endothelin-1 (ET-1) to evoke heat hyperalgesia when injected directly into the trigeminal ganglia (TG) of mice and determined the receptors implicated in this effect. The effects of TG ETA and ETB receptor blockade on alleviation of heat hyperalgesia in a model of trigeminal neuropathic pain induced by infraorbital nerve constriction (CION) were also examined. METHODS: Naive mice received an intraganglionar (i.g.) injection of ET-1 (0.3-3 pmol) or the selective ETB R agonist sarafotoxin S6c (3-30 pmol), and response latencies to ipsilateral heat stimulation were assessed before the treatment and at 1-h intervals up to 5 h after the treatment. Heat hyperalgesia induced by i.g. ET-1 or CION was assessed after i.g. injections of ETA R and ETB R antagonists (BQ-123 and BQ-788, respectively, each at 0.5 nmol). KEY FINDINGS: Intraganglionar ET-1 or sarafotoxin S6c injection induced heat hyperalgesia lasting 4 and 2 h, respectively. Heat hyperalgesia induced by ET-1 was attenuated by i.g. BQ-123 or BQ-788. On day 5 after CION, i.g. BQ-788 injection produced a more robust antihyperalgesic effect compared with BQ-123. CONCLUSIONS: ET-1 injection into the TG promotes ETA R/ETB R-mediated facial heat hyperalgesia, and both receptors are clearly implicated in CION-induced hyperalgesia in the murine TG system.


Assuntos
Endotelina-1/farmacologia , Hiperalgesia/induzido quimicamente , Gânglio Trigeminal/fisiologia , Animais , Constrição , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Endotelina A/farmacologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Oligopeptídeos/farmacologia , Medição da Dor/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Piperidinas/farmacologia , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/fisiologia , Gânglio Trigeminal/efeitos dos fármacos , Venenos de Víboras/farmacologia
17.
Yakugaku Zasshi ; 137(10): 1241-1246, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28966265

RESUMO

Brain edema is a severe morbid complication of brain injury, characterized by excessive fluid accumulation and an elevation of intracranial pressure. However, effective anti-brain edema drugs are lacking. One of the causes of brain edema is disruption of blood-brain barrier (BBB) function, which results in extravasation of intravascular fluid. After brain damage, astrocytes are activated, and astrocyte-derived vascular endothelial growth factor-A (VEGF-A) is known to induce BBB dysfunction. Therefore maintaining BBB integrity by regulating astrocyte function is a potentially effective strategy for treating brain edema. In this review, we focus on the endothelin ETB receptor and its role in regulation of astrocyte functions. In mice, brain damage was induced by fluid percussion injury (FPI), and the resulting BBB disruption and brain edema were observed in the mouse cerebrum. BQ788, a selective ETB receptor antagonist, attenuated the FPI-induced BBB disruption and brain edema. Levels of brain VEGF-A increased after FPI, mainly in reactive astrocytes. BQ788 suppressed the FPI-induced increase in VEGF-A expression in reactive astrocytes. Moreover, intraventricular administration of VEGF neutralizing antibody also attenuated FPI-induced BBB disruption and brain edema. Claudin-5 is an endothelial tight junction protein essential for normal BBB structure and function. Levels of claudin-5 protein were reduced by FPI. Furthermore, VEGF neutralizing antibody blocked FPI-induced decrease in claudin-5. These results suggest that the ETB receptor antagonist BQ788 protects against brain edema by inhibiting VEGF-A-mediated decrease in claudin-5.


Assuntos
Astrócitos/fisiologia , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Antagonistas do Receptor de Endotelina B , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Receptor de Endotelina B/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Barreira Hematoencefálica/fisiologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Claudina-5/metabolismo , Claudina-5/fisiologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-29226623

RESUMO

Dual endothelin ETA and ETB receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ETB receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ETB agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ETA receptor antagonism. In rat small pulmonary arteries, bosentan 10 µmol L-1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ETB receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ETA receptor antagonism. In rat trachea (ETB ), bosentan was a competitive ETB antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ETA to ETB antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ETB antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ETB -mediated endothelin-1 clearance located on smooth muscle and antagonism of ETA - and ETB -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH.


Assuntos
Antagonistas do Receptor de Endotelina A/farmacologia , Endotelina-1/metabolismo , Venenos de Víboras/toxicidade , Animais , Bosentana , Feminino , Humanos , Masculino , Camundongos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Oligopeptídeos/farmacologia , Piperidinas/farmacologia , Ratos , Sulfonamidas/farmacologia , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
19.
J Clin Med ; 4(6): 1171-92, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26239552

RESUMO

Diabetic kidney disease (DKD) remains the most common cause of chronic kidney disease and multiple therapeutic agents, primarily targeted at the renin-angiotensin system, have been assessed. Their only partial effectiveness in slowing down progression to end-stage renal disease, points out an evident need for additional effective therapies. In the context of diabetes, endothelin-1 (ET-1) has been implicated in vasoconstriction, renal injury, mesangial proliferation, glomerulosclerosis, fibrosis and inflammation, largely through activation of its endothelin A (ETA) receptor. Therefore, endothelin receptor antagonists have been proposed as potential drug targets. In experimental models of DKD, endothelin receptor antagonists have been described to improve renal injury and fibrosis, whereas clinical trials in DKD patients have shown an antiproteinuric effect. Currently, its renoprotective effect in a long-time clinical trial is being tested. This review focuses on the localization of endothelin receptors (ETA and ETB) within the kidney, as well as the ET-1 functions through them. In addition, we summarize the therapeutic benefit of endothelin receptor antagonists in experimental and human studies and the adverse effects that have been described.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa