Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(17): 3385-3398, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37140675

RESUMO

Nanozyme, with enzyme-mimicking activity and excellent stability, has attracted extensive attention. However, some inherent disadvantages, including poor dispersion, low selectivity, and insufficient peroxidase-like activity, still limit its further development. Therefore, an innovative bioconjugation of a nanozyme and natural enzyme was conducted. In the presence of graphene oxide (GO), histidine magnetic nanoparticles (H-Fe3O4) were first synthesized by a solvothermal method. The GO-supported H-Fe3O4 (GO@H-Fe3O4) exhibited superior dispersity and biocompatibility because GO was the carrier and possessed outstanding peroxidase-like activity because of the introduction of histidine. Furthermore, the mechanism of the peroxidase-like activity of GO@H-Fe3O4 was the generation of •OH. Uric acid oxidase (UAO) was selected as the model natural enzyme and covalently linked to GO@H-Fe3O4 with hydrophilic poly(ethylene glycol) as a linker. UAO could specifically catalyze the oxidation of uric acid (UA) to generate H2O2, and subsequently, the newly produced H2O2 oxidized the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB under the catalysis of GO@H-Fe3O4. Based on the above cascade reaction, the GO@H-Fe3O4-linked UAO (GHFU) and GO@H-Fe3O4-linked ChOx (GHFC) were used for the detection of UA in serum samples and cholesterol (CS) in milk, respectively. The method based on GHFU exhibited a wide detection range (5-800 µM) and a low detection limit (1.5 µM) for UA, and the method based on GHFC exhibited a wide detection range (4-400 µM) and a low detection limit (1.13 µM) for CS. These results demonstrated that the proposed strategy had great potential in the field of clinical detection and food safety.


Assuntos
Peróxido de Hidrogênio , Ácido Úrico , Histidina , Peroxidase/metabolismo , Colorimetria
2.
Talanta ; 167: 359-366, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28340732

RESUMO

A facile and rapid post-synthetic strategy was proposed to prepare a glycine functionalized MIL-53(Fe), namely glycine-MIL-53(Fe), by a simple mixing of water dispersible MIL-53(Fe) and glycine. The FT-IR, SEM, XRD and zeta potential were used to characterize the glycine-MIL-53(Fe). The result showed that glycine post-synthetic modification of MIL-53(Fe) did not change in the morphology and crystal structure of MIL-53(Fe). Interestingly, compared with MIL-53(Fe), the glycine-MIL-53(Fe) exhibits an enhanced peroxidase-like activity, which could catalyze the oxidation of TMB by H2O2 to produce an intensive color reaction. Kinetic analysis indicated that the Km of glycine-MIL-53(Fe) for TMB was one-tenth of that of MIL-53(Fe). The glycine-MIL-53(Fe) as peroxidase mimetic displays better stability under alkaline or acidic conditions than MIL-53(Fe). The good performance of glycine-MIL-53(Fe) over MIL-53(Fe) may be attributed to the increase of affinity between TMB and the glycine-MIL-53(Fe). With these characteristics, a simple and sensitive method was developed for the detection of H2O2 and glucose. The linear detection range for H2O2 is 0.10-10µM with a detection limit of 49nM, and glucose could be linearly detected in the range from 0.25 to 10µM with a detection limit of 0.13µM. The proposed method was successfully used for glucose detection in human serum samples.


Assuntos
Materiais Biomiméticos/química , Técnicas Biossensoriais/métodos , Glucose/análise , Glicina/química , Ferro/química , Estruturas Metalorgânicas/química , Peroxidase/metabolismo , Glicemia/análise , Limite de Detecção , Estruturas Metalorgânicas/síntese química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa