Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(22): 4849-4860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39008068

RESUMO

This paper reports a flexible glucose biosensor which is modified by a reduced-swelling and conductive zwitterionic hydrogel enzyme membrane that contains two forms of chemical cross-links. One chemical cross-linking is induced by thermal initiators and forms the basal network of the hydrogel. Another cross-linking is achieved by the coordination interactions between the multivalent metal ion Al3+ and anionic group -COO- of zwitterionic poly-carboxy betaine (pCBMA), which significantly increase the cross-linking density of the zwitterionic hydrogel, improving the reduced-swelling property and reducing the pore size. The better reduced-swelling property and reduced diameters of pores within the zwitterionic hydrogel make less glucose oxidase (GOx) leakage, thus significantly improving the enzyme membrane's service life. By introducing the Al3+ and Cl-, the conductivity of the zwitterionic hydrogel is enhanced approximately 10.4-fold. According to the enhanced conductivity, the reduced-swelling property, and the high GOx loading capacity of the zwitterionic hydrogel, the sensitivity of the biosensor with GOx/pCBMA-Al3+ is significantly improved by 5 times and has a long service life. Finally, the proposed GOx/pCBMA-Al3+ biosensor was applied in non-invasive blood glucose detection on the human body, verifying the capability in practice.


Assuntos
Técnicas Biossensoriais , Condutividade Elétrica , Enzimas Imobilizadas , Glucose Oxidase , Glucose , Técnicas Biossensoriais/métodos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Enzimas Imobilizadas/química , Glucose/análise , Glucose/química , Hidrogéis/química , Humanos , Membranas Artificiais , Glicemia/análise
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047056

RESUMO

Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2'-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2'-deoxyribonucleoside and 6-chloro-2-fluoro-2'-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2'-deoxyadenosine, 2,6-dichloropurine-2'-deoxyribonucleoside, and 6-chloro-2-fluoro-2'-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.


Assuntos
Nucleosídeos , Pentosiltransferases , Nucleosídeos/química , Pentosiltransferases/metabolismo , Enzimas Imobilizadas/química , Biocatálise , Desoxirribonucleosídeos , Purina-Núcleosídeo Fosforilase/metabolismo
3.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959669

RESUMO

The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.


Assuntos
Oxirredução , Biocatálise , Biotransformação
4.
Bioprocess Biosyst Eng ; 41(11): 1717-1729, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30074061

RESUMO

Sugar beet pulp pectin is an attractive source for the production of pectic oligosaccharides, an emerging class of potential prebiotics. The main aim of the present work was to investigate a new process allowing to produce pectic oligosaccharides in a continuous way by means of a cross flow enzyme membrane reactor while using a low-cost crude enzyme mixture (viscozyme). Preliminary experiments in batch and semi-continuous setups allowed to identify suitable enzyme concentrations and assessing filtration suitability. Then, in continuous experiments in the enzyme membrane reactor, residence time and substrate loading were further optimized. The composition of the obtained oligosaccharide mixtures was assessed at the molecular level for the most promising conditions and was shown to be dominated by condition-specific arabinans, rhamnogalacturonans, and galacturonans. A continuous and stable production was performed for 28.5 h at the optimized conditions, obtaining an average pectic oligosaccharide yield of 82.9 ± 9.9% (w/w), a volumetric productivity of 17.5 ± 2.1 g/L/h, and a specific productivity of 8.0 ± 1.0 g/g E/h. This work demonstrated for the first time the continuous and stable production of oligosaccharide mixtures from sugar beet pulp using enzyme membrane reactor technology in a setup suitable for upscaling.


Assuntos
Beta vulgaris , Reatores Biológicos , Pectinas/biossíntese , Beta vulgaris/química , Hidrólise , Cinética , Complexos Multienzimáticos/metabolismo , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Pectinas/química
5.
Biotechnol Bioeng ; 113(2): 349-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25615556

RESUMO

Rare sugars are monosaccharides that do not occur in nature in large amounts. However, many of them demonstrate high potential as low-calorie sweetener, chiral building blocks or active pharmaceutical ingredients. Their production by enzymatic means from broadly abundant epimers is an attractive alternative to synthesis by traditional organic chemical means, but often suffers from low space-time yields and high enzyme costs due to rapid enzyme degradation. Here we describe the detailed characterization of two variants of d-tagatose epimerase under operational conditions that were engineered for high stability and high catalytic activity towards the epimerization of d-fructose to d-psicose and l-sorbose to l-tagatose, respectively. A variant optimized for the production of d-psicose showed a very high total turnover number (TTN) of up to 10(8) catalytic events over a catalyst's lifetime, determined under operational conditions at high temperatures in an enzyme-membrane reactor (EMR). Maximum space-time yields as high as 10.6 kg L(-1) d(-1) were obtained with a small laboratory-scale EMR, indicating excellent performance. A variant optimized for the production of l-tagatose performed less stable in the same setting, but still showed a very good TTN of 5.8 × 10(5) and space-time yields of up to 478 g L(-1) d(-1) . Together, these results confirm that large-scale enzymatic access to rare sugars is feasible.


Assuntos
Frutose/metabolismo , Hexoses/metabolismo , Engenharia de Proteínas , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Evolução Molecular Direcionada , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Int J Biol Macromol ; 280(Pt 4): 136083, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353523

RESUMO

Carbonic anhydrase (CA) enzyme-based absorption technology for CO2 capture has been intensively investigated. However, low solubility of CO2 and poor stability of CA severely limits its industrial utilization. Here, hydrolyzed polyacrylonitrile (PAN) membrane (HPAN) was first modified by polyethyleneimine (PEI) with a large number of amino groups, which has a strong affinity for CO2. Then, ZIF-8 was grown in situ on the surface of HPAN/PEI membrane by using the metal chelation of PEI and Zn2+. In this process, CA was embedded inside ZIF-8 by co-precipitation (CA@HPAN/PEI/ZIF-8). The resultant CA@HPAN/PEI/ZIF-8 exhibited high catalytic activity for CO2 capture compared with free CA, which was due to the synergistic enhancement of CO2 capture by PEI and ZIF-8 with high affinity to CO2 and enzymatic catalysis. The yield of CaCO3 by CA@HPAN/PEI/ZIF-8 in the process of one-time conversion of CO2 was 13.6-fold higher than free CA. Furthermore, the CA@HPAN/PEI/ZIF-8 showed better thermal stability, storage and reusability than free CA. Free CA retained only 18.3 % of its original activity after 18 days of storage, whereas CA@HPAN/PEI/ZIF-8 remained 48.7 % of its original activity. The total CaCO3 yield by CA@HPAN/PEI/ZIF-8 was 74.9-fold that of free CA after 8 consecutive rounds of CO2 conversion.

7.
Membranes (Basel) ; 13(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37505039

RESUMO

The demand for bioactive molecules with nutritional benefits and pharmaceutically important properties is increasing, leading researchers to develop modified production strategies with low-cost purification processes. Recent developments in bioreactor technology can aid in the production of valuable products. Enzyme membrane bioreactors (EMRs) are emerging as sustainable synthesis processes in various agro-food industries, biofuel applications, and waste management processes. EMRs are modified reactors used for chemical reactions and product separation, particularly large-molecule hydrolysis and the conversion of macromolecules. EMRs generally produce low-molecular-weight carbohydrates, such as oligosaccharides, fructooligosaccharides, and gentiooligosaccharides. In this review, we provide a comprehensive overview of the use of EMRs for the production of valuable products, such as oligosaccharides and oligodextrans, and we discuss their application in the bioconversion of inulin, lignin, and sugars. Furthermore, we critically summarize the application and limitations of EMRs. This review provides important insights that can aid in the production of valuable products by food and pharmaceutical industries, and it is intended to assist scientists in developing improved quality and environmentally friendly prebiotics using EMRs.

8.
Front Microbiol ; 14: 1193875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485538

RESUMO

There is an urgent need to look for bio-based technologies to address the pollution related to textile dyes in waterbodies. The aim of this study was to evaluate an engineered laccase variant, LCC1-62 of Cyathus bulleri, expressed in recombinant Pichia pastoris, for the decolorization and detoxification of real textile effluent. The partially purified laccase effectively (~60-100%) decolorized combined effluent from different dyeing units at a laccase concentration of 500 U/L at a 50-mL level. Decolorization and detoxification of the combined effluents, from a local textile mill, were evaluated at 0.3 L volumetric level in a ray-flow membrane reactor in batch and continuous modes of operation. In batch studies, maximum decolorization of 97% and detoxification of 96% occurred at a hydraulic retention time (HRT) of 6 h without any additional laccase requirement. In continuous studies, the reactor was operated at an HRT of 6 h with a lower enzyme dosage (~120 U/L of the effluent). Decolorization was accompanied by a loss in laccase activity which was restored to ~120 U/L by the addition of laccase in two regimes. The addition of laccase, when the residual laccase activity decreased to 40% (~50 U/L), resulted in high decolorization (~5 ppm residual dye concentration) and low variance (σ2) of 2.77, while laccase addition, when the residual dye concentration decreased to ~8% (~10 U/L), resulted in an average dye concentration of 13 ppm with a high variance of 62.08. The first regime was implemented, and the continuous reactor was operated for over 80 h at an HRT of 3 and 6 h, with the latter resulting in ~95% decolorization and 96% reduction in the mutagenicity of the effluent. Less than 10% membrane fouling was observed over long operations of the reactor. The findings strongly suggest the feasibility of using LCC1-62 in an enzyme membrane reactor for large-scale treatment of textile effluents.

9.
Membranes (Basel) ; 12(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35736306

RESUMO

Biocatalytic membrane reactors combine the highly efficient biotransformation capability of enzymes with the selective filtration performance of membrane filters. Common strategies to immobilize enzymes on polymeric membranes are based on chemical coupling reactions. Still, they are associated with drawbacks such as long reaction times, high costs, and the use of potentially toxic or hazardous reagents. In this study, a reagent-free immobilization method based on electron beam irradiation was investigated, which allows much faster, cleaner, and cheaper fabrication of enzyme membrane reactors. Two industrial lipase enzymes were coupled onto a polyvinylidene fluoride (PVDF) flat sheet membrane to create self-cleaning surfaces. The response surface methodology (RSM) in the design-of-experiments approach was applied to investigate the effects of three numerical factors on enzyme activity, yielding a maximum activity of 823 ± 118 U m-2 (enzyme concentration: 8.4 g L-1, impregnation time: 5 min, irradiation dose: 80 kGy). The lipolytic membranes were used in fouling tests with olive oil (1 g L-1 in 2 mM sodium dodecyl sulfate), resulting in 100% regeneration of filtration performance after 3 h of self-cleaning in an aqueous buffer (pH 8, 37 °C). Reusability with three consecutive cycles demonstrates regeneration of 95%. Comprehensive membrane characterization was performed by determining enzyme kinetic parameters, permeance monitoring, X-ray photoelectron spectroscopy, FTIR spectroscopy, scanning electron microscopy, and zeta potential, as well as water contact angle measurements.

10.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916212

RESUMO

The O-glycosylation of resveratrol increases both its solubility in water and its bioavailability while preventing its oxidation, allowing a more efficient use of this molecule as a bioactive ingredient in pharmaceutical and cosmetic applications. Resveratrol O-glycosides can be obtained by enzymatic reactions. Recent developments have made it possible to selectively obtain resveratrol α-glycosides from the ß-cyclodextrin-resveratrol complex in water with a yield of 35%. However, this yield is limited by the partial hydrolysis of the resveratrol glycosides produced during the reaction. In this study, we propose to intensify this enzymatic reaction by coupling the enzymatic reactor to a membrane process. Firstly, membrane screening was carried out at the laboratory scale and led to the choice of a GE polymeric membrane with a cut-off of 1 kDa. This membrane allowed the retention of 65% of the ß-cyclodextrin-resveratrol complex in the reaction medium and the transfer of 70% of the resveratrol α-O-glycosides in the permeate. In a second step, this membrane was used in an enzymatic membrane reactor and improved the yield of the enzymatic glycosylation up to 50%.

11.
Membranes (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054554

RESUMO

Multi-enzyme cascade catalysis involved three types of dehydrogenase enzymes, namely, formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), alcohol dehydrogenase (ADH), and an equimolar electron donor, nicotinamide adenine dinucleotide (NADH), assisting the reaction is an interesting pathway to reduce thermodynamically stable molecules of CO2 from the atmosphere. The biocatalytic sequence is interesting because it operates under mild reaction conditions (low temperature and pressure) and all the enzymes are highly selective, which allows the reaction to produce three basic chemicals (formic acid, formaldehyde, and methanol) in just one pot. There are various challenges, however, in applying the enzymatic conversion of CO2, namely, to obtain high productivity, increase reusability of the enzymes and cofactors, and to design a simple, facile, and efficient reactor setup that will sustain the multi-enzymatic cascade catalysis. This review reports on enzyme-aided reactor systems that support the reduction of CO2 to methanol. Such systems include enzyme membrane reactors, electrochemical cells, and photocatalytic reactor systems. Existing reactor setups are described, product yields and biocatalytic productivities are evaluated, and effective enzyme immobilization methods are discussed.

12.
Membranes (Basel) ; 10(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867283

RESUMO

Galacto-oligosaccharides (GOS) are prebiotic compounds widely used for their health-promoting effects. Conventionally, GOS is produced by the enzymatic conversion of lactose in stirred tank reactors (STR). The high operational costs associated with enzyme inactivation and removal might be reduced by the application of enzyme membrane reactors (EMR). In this study, we aimed to assess the potential of continuous GOS production by EMR using soluble Biolacta N5, a Bacillus circulans-derived commercial enzyme preparation. The steady-state performance of the EMR equipped with an ultrafiltration module was investigated as function of residence time (1.1-2.8 h) and enzyme load (17-190 U·g-1) under fixed operational settings of temperature (50 °C), pH (6.0), lactose feed concentration (300 g·kg-1), and recirculation flow-rate (0.18 m3·h-1). Results indicate that the yield of oligosaccharides with higher degree of polymerization (DP3-6) in STR (approx. 38% on total carbohydrate basis) exceeds that measured in EMR (ranging from 24% to 33%). However, a stable catalytic performance without a significant deterioration in product quality was observed when operating the EMR for an extended period of time (> 120 h). Approx. 1.4 kg of DP3-6 was produced per one gram of crude enzyme preparation over the long-term campaigns, indicating that EMR efficiently recovers enzyme activity.

13.
Carbohydr Polym ; 224: 115171, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472834

RESUMO

Gynecological cancers are the most commonly diagnosed forms of cancer among the female population. Chitooligosaccharides (COS)-hydrolysis products from chitosan-display high bioavailability, high water solubility, and low molecular weight properties. Here, we investigated the influence of COS on 11 gynecological tumor cell types, and subsequently elucidated molecular mechanisms through which the observed inhibition occurred. Initially, we used a controllable enzyme-membrane coupling reactor system to obtain COS with a high degree of polymerization; the yield of high-degree-polymerized COS (DP 5-12) obtained with this reactor system accounted for ∼75% yields (w/w). Using these COS materials, cell line assays showed that COS elicited the most significant anti-tumor activity against C33A cells, with anti-tumor mechanisms related to oxidative stress, as well as activation of intrinsic mitochondrial apoptosis and autophagic signaling. Thus, we provide experimental evidence to demonstrate how the enzyme-membrane coupling reactor system can generate COS that exert bioactivity against gynecological cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Quitina/análogos & derivados , Neoplasias do Colo do Útero/patologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quitina/química , Quitina/farmacologia , Quitosana/química , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oligossacarídeos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
ACS Appl Mater Interfaces ; 11(37): 33581-33588, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31419104

RESUMO

Enzymatic reduction of CO2 is of great significant, which involves an efficient multienzyme cascade system (MECS). In this work, formate dehydrogenase (FDH), glutamate dehydrogenase (GDH), and reduced pyridine nucleotide (NADH) (FDH&GDH&NADH), formaldehyde dehydrogenase (FalDH), GDH, and NADH (FalDH&GDH&NADH), and alcohol dehydrogenase (ADH), GDH, and NADH (ADH&GDH&NADH) were embedded in ZIF-8 (one kind of metal organic framework) to prepare three kinds of enzymes and coenzymes/ZIF-8 nanocomposites. Then by dead-end filtration these nanocomposites were sequentially located in a microporous membrane, which was combined with a pervaporation membrane to timely achieve the separation of product methanol. Incorporation of the pervaporation membrane was helpful to control reaction direction, and the methanol amount increased from 5.8 ± 0.5 to 6.7 ± 0.8 µmol. The reaction efficiency of an immobilized enzymes-ordered distribution in a membrane was higher than that disordered distribution in the membrane, and the methanol amount increased from 6.7 ± 0.8 to 12.6 ± 0.6 µmol. Moreover, it appeared that introduction of NADH into ZIF-8 enhanced the transformation of CO2 to methanol from 12.6 ± 0.6 to 13.4 ± 0.9 µmol. Over 50% of their original productivity was retained after 12 h of use. This method has wide applicability and can be used in other kinds of multienzyme systems.


Assuntos
Dióxido de Carbono/química , Membranas Artificiais , Estruturas Metalorgânicas/metabolismo , Metanol/síntese química , Oxirredutases/química , Metanol/química , Oxirredução , Porosidade
15.
Membranes (Basel) ; 9(11)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717644

RESUMO

Fructo-oligosaccharides (FOS) are linear fructans comprising 2-5 fructose units linked to a terminal glucose residue. They are widely used as food and feed additives due to their sweetness, low calorific value, and prebiotic properties. Here we describe the synthesis of FOS catalyzed by a cell-free crude enzyme solution containing recombinant fructosyltransferase (1-FFT) produced in the yeast Kluyveromyces lactis. During the enzyme catalysis, glucose accumulates as a by-product and eventually inhibits FOS production. We therefore used an enzyme membrane reactor (EMR) to achieve the continuous removal of glucose and the simultaneous replenishment of sucrose. We observed a loss of flux during the reaction with the characteristics of complete pore blocking, probably caused by a combination of proteins (enzyme molecules) and polysaccharides (FOS). Such complex fouling mechanisms must be overcome to achieve the efficient production of FOS using EMR systems.

16.
Food Chem ; 267: 101-110, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29934143

RESUMO

The aim of this research was to valorize onion skins, an under-utilized agricultural by-product, into pectic oligosaccharides (POS), compounds with potential health benefits. To achieve high hydrolysis performance with the multi-activity enzyme Viscozyme L, an innovative approach was investigated based on a cross-flow continuous membrane enzyme bioreactor (EMR). The influence of the various process conditions (residence time, enzyme concentration, substrate concentration) was investigated on productivity and yield. The composition of the POS mixtures in terms of mono- and oligosaccharides was assessed at the molecular level. At optimized conditions, a stable POS production with 22.0g/L/h volumetric productivity and 4.5g/g POS/monosaccharides was achieved. Compared to previous results obtained in batch for the enzyme Viscozyme L, EMR provided a 3-5× higher volumetric productivity for the smallest POS. Moreover, it gave competitive results even when compared to batch production with a pure endo-galacturonase enzyme, demonstrating its feasibility for efficient POS production.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Complexos Multienzimáticos/metabolismo , Oligossacarídeos/metabolismo , Cebolas/química , Pectinas , Hidrólise , Oligossacarídeos/química
17.
Biosens Bioelectron ; 67: 315-20, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25223550

RESUMO

A second-generation novel chemo-mechanical autonomous drug release system, incorporating various improvements over our first-generation system, was fabricated and evaluated. Enhanced oxygen uptake by the enzyme membrane of the organic engine was facilitated by optimizing the quantity of enzyme immobilizer, PVA-SbQ, and by hydrophobizing the membrane surface. Various quantities of PVA-SbQ were evaluated in the organic engine by measuring the decompression rate, with 1.5 mg/cm(2) yielding optimum results. When fluororesin was used as a hydrophobizing coating, the time to reach the peak decompression rate was shortened 2.3-fold. The optimized elements of the system were evaluated as a unit, first in an open loop and then in a closed loop setting, using a mixture of glucose solution (25 mmol/L), ATP and MgCI2 with glucose hexokinase enzyme (HK) as a glucose reducer. In conclusion, feedback-control of physiologically relevant glucose concentration was demonstrated by the second-generation drug release system without any requirement for external energy.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus Tipo 1/sangue , Sistemas de Liberação de Medicamentos , Glucose/metabolismo , Glicemia , Liberação Controlada de Fármacos , Enzimas Imobilizadas/química , Glucose/química , Hexoquinase/química , Humanos , Pâncreas Artificial
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa