Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.331
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 637-666, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569522

RESUMO

The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.


Assuntos
Retículo Endoplasmático/metabolismo , Evolução Molecular , Duplicação Gênica , Saccharomyces cerevisiae/metabolismo , Seleção Genética , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antiporters/genética , Antiporters/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398340

RESUMO

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Linhagem , Mapas de Interação de Proteínas/genética , Animais , Criança , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Deleção de Genes , Guanilato Quinases/genética , Humanos , Padrões de Herança/genética , Aprendizado de Máquina , Masculino , Núcleo Familiar , Regiões Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Fatores de Risco , Proteínas Supressoras de Tumor/genética , Sequenciamento Completo do Genoma , Peixe-Zebra/genética
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38706315

RESUMO

In UniProtKB, up to date, there are more than 251 million proteins deposited. However, only 0.25% have been annotated with one of the more than 15000 possible Pfam family domains. The current annotation protocol integrates knowledge from manually curated family domains, obtained using sequence alignments and hidden Markov models. This approach has been successful for automatically growing the Pfam annotations, however at a low rate in comparison to protein discovery. Just a few years ago, deep learning models were proposed for automatic Pfam annotation. However, these models demand a considerable amount of training data, which can be a challenge with poorly populated families. To address this issue, we propose and evaluate here a novel protocol based on transfer learningThis requires the use of protein large language models (LLMs), trained with self-supervision on big unnanotated datasets in order to obtain sequence embeddings. Then, the embeddings can be used with supervised learning on a small and annotated dataset for a specialized task. In this protocol we have evaluated several cutting-edge protein LLMs together with machine learning architectures to improve the actual prediction of protein domain annotations. Results are significatively better than state-of-the-art for protein families classification, reducing the prediction error by an impressive 60% compared to standard methods. We explain how LLMs embeddings can be used for protein annotation in a concrete and easy way, and provide the pipeline in a github repo. Full source code and data are available at https://github.com/sinc-lab/llm4pfam.


Assuntos
Bases de Dados de Proteínas , Proteínas , Proteínas/química , Anotação de Sequência Molecular/métodos , Biologia Computacional/métodos , Aprendizado de Máquina
4.
Proc Natl Acad Sci U S A ; 120(31): e2215632120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506195

RESUMO

Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.


Assuntos
Transtorno do Espectro Autista , Transtornos do Desenvolvimento da Linguagem , Criança , Humanos , Transtorno do Espectro Autista/genética , Herança Multifatorial/genética , Pais , Sequenciamento Completo do Genoma , Predisposição Genética para Doença
5.
Plant J ; 117(5): 1592-1603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050352

RESUMO

The Plant Expression Omnibus (PEO) is a web application that provides biologists with access to gene expression insights across over 100 plant species, ~60 000 manually annotated RNA-seq samples, and more than 4 million genes. The tool allows users to explore the expression patterns of genes across different organs, identify organ-specific genes, and discover top co-expressed genes for any gene of interest. PEO also provides functional annotations for each gene, allowing for the identification of genetic modules and pathways. PEO is designed to facilitate comparative kingdom-wide gene expression analysis and provide a valuable resource for plant biology research. We provide two case studies to demonstrate the utility of PEO in identifying candidate genes in pollen coat biosynthesis in Arabidopsis and investigating the biosynthetic pathway components of capsaicin in Capsicum annuum. The database is freely available at https://expression.plant.tools/.


Assuntos
Arabidopsis , Perfilação da Expressão Gênica , Transcriptoma/genética , Plantas/genética , Plantas/metabolismo , Bases de Dados Factuais , RNA-Seq , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética
6.
Genomics ; 116(4): 110860, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776985

RESUMO

Walnuts exhibit a higher resistance to diseases, though they are not completely immune. This study focuses on the Pectin methylesterase (PME) gene family to investigate whether it is involved in disease resistance in walnuts. These 21 genes are distributed across 12 chromosomes, with four pairs demonstrating homology. Variations in conserved motifs and gene structures suggest diverse functions within the gene family. Phylogenetic and collinear gene pairs of the PME family indicate that the gene family has evolved in a relatively stable way. The cis-acting elements and gene ontology enrichment of these genes, underscores their potential role in bolstering walnuts' defense mechanisms. Transcriptomic analyses were conducted under conditions of Cryptosphaeria pullmanensis infestation and verified by RT-qPCR. The results showed that certain JrPME family genes were activated in response, leading to the hypothesis that some members may confer resistance to the disease.


Assuntos
Ascomicetos , Hidrolases de Éster Carboxílico , Resistência à Doença , Juglans , Família Multigênica , Doenças das Plantas , Proteínas de Plantas , Juglans/microbiologia , Juglans/genética , Ascomicetos/genética , Doenças das Plantas/microbiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
7.
BMC Bioinformatics ; 25(1): 207, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844845

RESUMO

BACKGROUND: Gene families are groups of homologous genes that often have similar biological functions. These families are formed by gene duplication events throughout evolution, resulting in multiple copies of an ancestral gene. Over time, these copies can acquire mutations and structural variations, resulting in members that may vary in size, motif ordering and sequence. Multigene families have been described in a broad range of organisms, from single-celled bacteria to complex multicellular organisms, and have been linked to an array of phenomena, such as host-pathogen interactions, immune evasion and embryonic development. Despite the importance of gene families, few approaches have been developed for estimating and graphically visualizing their diversity patterns and expression profiles in genome-wide studies. RESULTS: Here, we introduce an R package named dgfr, which estimates and enables the visualization of sequence divergence within gene families, as well as the visualization of secondary data such as gene expression. The package takes as input a multi-fasta file containing the coding sequences (CDS) or amino acid sequences from a multigene family, performs a pairwise alignment among all sequences, and estimates their distance, which is subjected to dimension reduction, optimal cluster determination, and gene assignment to each cluster. The result is a dataset that allows for the visualization of sequence divergence and expression within the gene family, an approximation of the number of clusters present in the family. CONCLUSIONS: dgfr provides a way to estimate and study the diversity of gene families, as well as visualize the dispersion and secondary profile of the sequences. The dgfr package is available at https://github.com/lailaviana/dgfr under the GPL-3 license.


Assuntos
Variação Genética , Família Multigênica , Software , Variação Genética/genética , Alinhamento de Sequência/métodos
8.
Plant J ; 115(1): 18-36, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36995899

RESUMO

Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.


Assuntos
Odorantes , Plantas , Humanos , Plantas/genética , Flores/genética , Flores/química
9.
Proteins ; 92(2): 157-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37776148

RESUMO

Acyltransferases (AT) are enzymes that catalyze the transfer of acyl group to a receptor molecule. This review focuses on ATs that act on thioester-containing substrates. Although many ATs can recognize a wide variety of substrates, sequence similarity analysis allowed us to classify the ATs into fifteen distinct families. Each AT family is originated from enzymes experimentally characterized to have AT activity, classified according to sequence similarity, and confirmed with tertiary structure similarity for families that have crystallized structures available. All the sequences and structures of the AT families described here are present in the thioester-active enzyme (ThYme) database. The AT sequences and structures classified into families and available in the ThYme database could contribute to enlightening the understanding acyl transfer to thioester-containing substrates, most commonly coenzyme A, which occur in multiple metabolic pathways, mostly with fatty acids.


Assuntos
Aciltransferases , Coenzima A , Humanos , Aciltransferases/metabolismo
10.
BMC Genomics ; 25(1): 26, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172704

RESUMO

Databases of genome sequences are growing exponentially, but, in some cases, assembly is incomplete and genes are poorly annotated. For evolutionary studies, it is important to identify all members of a given gene family in a genome. We developed a method for identifying most, if not all, members of a gene family from raw genomes in which assembly is of low quality, using the P-type ATPase superfamily as an example. The method is based on the translation of an entire genome in all six reading frames and the co-occurrence of two family-specific sequence motifs that are in close proximity to each other. To test the method's usability, we first used it to identify P-type ATPase members in the high-quality annotated genome of barley (Hordeum vulgare). Subsequently, after successfully identifying plasma membrane H+-ATPase family members (P3A ATPases) in various plant genomes of varying quality, we tested the hypothesis that the number of P3A ATPases correlates with the ability of the plant to tolerate saline conditions. In 19 genomes of glycophytes and halophytes, the total number of P3A ATPase genes was found to vary from 7 to 22, but no significant difference was found between the two groups. The method successfully identified P-type ATPase family members in raw genomes that are poorly assembled.


Assuntos
Hordeum , ATPases do Tipo-P , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Genoma de Planta , ATPases do Tipo-P/genética , Hordeum/genética , Hordeum/metabolismo , Filogenia
11.
Plant Mol Biol ; 114(5): 102, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316221

RESUMO

Australian wild limes occur in highly diverse range of environments and are a unique genetic resource within the genus Citrus. Here we compare the haplotype-resolved genome assemblies of six Australian native limes, including four new assemblies generated using PacBio HiFi and Hi-C sequencing data. The size of the genomes was between 315 and 391 Mb with contig N50s from 29.5 to 35 Mb. Gene completeness of the assemblies was estimated to be from 98.4 to 99.3% and the annotations from 97.7 to 98.9% based upon BUSCO, confirming the high contiguity and completeness of the assembled genomes. High collinearity was observed among the genomes and the two haplotype assemblies for each species. Gene duplication and evolutionary analysis demonstrated that the Australian citrus have undergone only one ancient whole-genome triplication event during evolution. The highest number of species-specific and expanded gene families were found in C. glauca and they were primarily enriched in purine, thiamine metabolism, amino acids and aromatic amino acids metabolism which might help C. glauca to mitigate drought, salinity, and pathogen attacks in the drier environments in which this species is found. Unique genes related to terpene biosynthesis, glutathione metabolism, and toll-like receptors in C. australasica, and starch and sucrose metabolism genes in both C. australis and C. australasica might be important candidate genes for HLB tolerance in these species. Expanded gene families were not lineage specific, however, a greater number of genes related to plant-pathogen interactions, predominantly disease resistant protein, was found in C. australasica and C. australis.


Assuntos
Citrus , Genoma de Planta , Genoma de Planta/genética , Austrália , Citrus/genética , Filogenia , Anotação de Sequência Molecular , Haplótipos , Duplicação Gênica , Evolução Molecular , Especificidade da Espécie
12.
Neurogenetics ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976082

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.

13.
Neurogenetics ; 25(3): 179-191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795246

RESUMO

Primary microcephaly is a rare neurogenic and genetically heterogeneous disorder characterized by significant brain size reduction that results in numerous neurodevelopmental disorders (NDD) problems, including mild to severe intellectual disability (ID), global developmental delay (GDD), seizures and other congenital malformations. This disorder can arise from a mutation in genes involved in various biological pathways, including those within the brain. We characterized a recessive neurological disorder observed in nine young adults from five independent consanguineous Pakistani families. The disorder is characterized by microcephaly, ID, developmental delay (DD), early-onset epilepsy, recurrent infection, hearing loss, growth retardation, skeletal and limb defects. Through exome sequencing, we identified novel homozygous variants in five genes that were previously associated with brain diseases, namely CENPJ (NM_018451.5: c.1856A > G; p.Lys619Arg), STIL (NM_001048166.1: c.1235C > A; p.(Pro412Gln), CDK5RAP2 (NM_018249.6 c.3935 T > G; p.Leu1312Trp), RBBP8 (NM_203291.2 c.1843C > T; p.Gln615*) and CEP135 (NM_025009.5 c.1469A > G; p.Glu490Gly). These variants were validated by Sanger sequencing across all family members, and in silico structural analysis. Protein 3D homology modeling of wild-type and mutated proteins revealed substantial changes in the structure, suggesting a potential impact on function. Importantly, all identified genes play crucial roles in maintaining genomic integrity during cell division, with CENPJ, STIL, CDK5RAP2, and CEP135 being involved in centrosomal function. Collectively, our findings underscore the link between erroneous cell division, particularly centrosomal function, primary microcephaly and ID.


Assuntos
Proteínas de Ciclo Celular , Deficiência Intelectual , Microcefalia , Linhagem , Humanos , Microcefalia/genética , Deficiência Intelectual/genética , Masculino , Feminino , Proteínas de Ciclo Celular/genética , Adulto , Proteínas Cromossômicas não Histona/genética , Proteínas do Tecido Nervoso/genética , Divisão Celular/genética , Mutação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Genômica , Adulto Jovem , Consanguinidade , Sequenciamento do Exoma , Homozigoto , Deficiências do Desenvolvimento/genética , Adolescente , Paquistão , Proteínas Associadas aos Microtúbulos
14.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36947137

RESUMO

Protein domains that emerged more recently in evolution have a higher structural disorder and greater clustering of hydrophobic residues along the primary sequence. It is hard to explain how selection acting via descent with modification could act so slowly as not to saturate over the extraordinarily long timescales over which these trends persist. Here, we hypothesize that the trends were created by a higher level of selection that differentially affects the retention probabilities of protein domains with different properties. This hypothesis predicts that loss rates should depend on disorder and clustering trait values. To test this, we inferred loss rates via maximum likelihood for animal Pfam domains, after first performing a set of stringent quality control methods to reduce annotation errors. Intermediate trait values, matching those of ancient domains, are associated with the lowest loss rates, making our results difficult to explain with reference to previously described homology detection biases. Simulations confirm that effect sizes are of the right magnitude to produce the observed long-term trends. Our results support the hypothesis that differential domain loss slowly weeds out those protein domains that have nonoptimal levels of disorder and clustering. The same preferences also shape the differential diversification of Pfam domains, thereby further impacting proteome composition.


Assuntos
Proteoma , Animais , Domínios Proteicos , Probabilidade , Interações Hidrofóbicas e Hidrofílicas , Bases de Dados de Proteínas
15.
Am J Epidemiol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010749

RESUMO

Binge eating disorder (BED) is a public health concern that has received little research attention in military families. Further research is needed to identify risk and protective factors to inform intervention and prevention efforts. This longitudinal study examined predictors of probable BED in a sample of U.S. military spouses (N = 5,269). Data were derived from the Millennium Cohort Family Study, which included baseline assessments of risk and protective factors and a follow-up assessment of probable BED approximately 3 years later. Results of a multivariable logistic regression model indicated that spouses with probable posttraumatic stress disorder, adverse childhood experiences, or who were former smokers had increased risk of probable BED at follow-up. Spouses whose service member had a deployment with combat exposure, or had not deployed, had higher risk of probable BED than spouses whose service member deployed without combat exposure. Age >34 years was the only protective factor to emerge as significant in the adjusted model. Results highlighted the need for interventions to improve psychoeducation and coping skills in military spouses, which may mitigate BED symptoms stemming from military-related stressors (e.g., combat deployment) or prior trauma, especially once maladaptive coping mechanisms (e.g., smoking) have ceased.

16.
BMC Immunol ; 25(1): 13, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331731

RESUMO

The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to understand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the generation of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain (HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropriate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruction without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were compared to each other and to a method that groups sequences based on identical junction sequences and another method that only determines subclones. We found that after accounting for data set variability, in particular sequencing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, including the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance of choosing an appropriate method.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Humanos , Mutação , Receptores de Antígenos de Linfócitos B/genética , Sequenciamento de Nucleotídeos em Larga Escala
17.
Am J Hum Genet ; 108(7): 1330-1341, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102099

RESUMO

Adaptor protein (AP) complexes mediate selective intracellular vesicular trafficking and polarized localization of somatodendritic proteins in neurons. Disease-causing alleles of various subunits of AP complexes have been implicated in several heritable human disorders, including intellectual disabilities (IDs). Here, we report two bi-allelic (c.737C>A [p.Pro246His] and c.1105A>G [p.Met369Val]) and eight de novo heterozygous variants (c.44G>A [p.Arg15Gln], c.103C>T [p.Arg35Trp], c.104G>A [p.Arg35Gln], c.229delC [p.Gln77Lys∗11], c.399_400del [p.Glu133Aspfs∗37], c.747G>T [p.Gln249His], c.928-2A>C [p.?], and c.2459C>G [p.Pro820Arg]) in AP1G1, encoding gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), associated with a neurodevelopmental disorder (NDD) characterized by mild to severe ID, epilepsy, and developmental delay in eleven families from different ethnicities. The AP1γ1-mediated adaptor complex is essential for the formation of clathrin-coated intracellular vesicles. In silico analysis and 3D protein modeling simulation predicted alteration of AP1γ1 protein folding for missense variants, which was consistent with the observed altered AP1γ1 levels in heterologous cells. Functional studies of the recessively inherited missense variants revealed no apparent impact on the interaction of AP1γ1 with other subunits of the AP-1 complex but rather showed to affect the endosome recycling pathway. Knocking out ap1g1 in zebrafish leads to severe morphological defect and lethality, which was significantly rescued by injection of wild-type AP1G1 mRNA and not by transcripts encoding the missense variants. Furthermore, microinjection of mRNAs with de novo missense variants in wild-type zebrafish resulted in severe developmental abnormalities and increased lethality. We conclude that de novo and bi-allelic variants in AP1G1 are associated with neurodevelopmental disorder in diverse populations.


Assuntos
Complexo 1 de Proteínas Adaptadoras/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Alelos , Animais , Análise Mutacional de DNA , Feminino , Células HEK293 , Humanos , Masculino , Linhagem , Ratos , Peixe-Zebra/genética
18.
Planta ; 259(5): 113, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581452

RESUMO

MAIN CONCLUSION: Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.


Assuntos
Glicosídeo Hidrolases , Polissacarídeos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Carboidratos , Plantas/metabolismo , Glicosídeos/metabolismo
19.
Clin Genet ; 105(4): 423-429, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38088234

RESUMO

Intellectual disability (ID) is a large group of neurodevelopmental disorders characterized by a congenital limitation in intellectual functioning (reasoning, learning, and problem solving), adaptive behavior (conceptual, social, and practical skills), originated at birth and manifested before the age of 18. By whole exome sequencing of five consanguineous Pakistani families presenting hallmark features of ID, global developmental delay, aggressive and self-injurious behaviors, microcephaly, febrile seizures and facial dysmorphic features, we identified three novel homozygous missense variants (NM_024298.5: c.588G > T; p.Trp196Cys, c.736 T > C; p.Tyr246His and c.524A > C; p. Asp175Ala) and one rare homozygous in-frame deletion variant (c.758_778del;p.Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7) gene previously associated with autosomal recessive neurodevelopmental disorder. The segregation of the variants was validated by Sanger sequencing in all family members. In silico homology modeling of wild-type and mutated proteins revealed substantial changes in the structure of both proteins, indicating a possible effect on function. The identification and validation of new pathogenic MBOAT7 variants in five cases of autosomal recessive ID further highlight the importance of this genes in proper brain function and development.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Recém-Nascido , Humanos , Sequenciamento do Exoma , Linhagem , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/patologia , Família , Malformações do Sistema Nervoso/complicações , Aciltransferases/genética , Proteínas de Membrana/genética
20.
Mol Phylogenet Evol ; 192: 107986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142794

RESUMO

Chemoreception is critical for the survival and reproduction of animals. Except for a reduced group of insects and chelicerates, the molecular identity of chemosensory proteins is poorly understood in invertebrates. Gastropoda is the extant mollusk class with the greatest species richness, including marine, freshwater, and terrestrial lineages, and likely, highly diverse chemoreception systems. Here, we performed a comprehensive comparative genome analysis taking advantage of the chromosome-level information of two Gastropoda species, one of which belongs to a lineage that underwent a whole genome duplication event. We identified thousands of previously uncharacterized chemosensory-related genes, the majority of them encoding G protein-coupled receptors (GPCR), mostly organized into clusters distributed across all chromosomes. We also detected gene families encoding degenerin epithelial sodium channels (DEG-ENaC), ionotropic receptors (IR), sensory neuron membrane proteins (SNMP), Niemann-Pick type C2 (NPC2) proteins, and lipocalins, although with a lower number of members. Our phylogenetic analysis of the GPCR gene family across protostomes revealed: (i) remarkable gene family expansions in Gastropoda; (ii) clades including members from all protostomes; and (iii) species-specific clades with a substantial number of receptors. For the first time, we provide new and valuable knowledge into the evolution of the chemosensory gene families in invertebrates other than arthropods.


Assuntos
Artrópodes , Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Artrópodes/genética , Genoma/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa