Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(2): 1143-1150, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30657695

RESUMO

Flexible and degradable pressure sensors have received tremendous attention for potential use in transient electronic skins, flexible displays, and intelligent robotics due to their portability, real-time sensing performance, flexibility, and decreased electronic waste and environmental impact. However, it remains a critical challenge to simultaneously achieve a high sensitivity, broad sensing range (up to 30 kPa), fast response, long-term durability, and robust environmental degradability to achieve full-scale biomonitoring and decreased electronic waste. MXenes, which are two-dimensional layered structures with a large specific surface area and high conductivity, are widely employed in electrochemical energy devices. Here, we present a highly sensitive, flexible, and degradable pressure sensor fabricated by sandwiching porous MXene-impregnated tissue paper between a biodegradable polylactic acid (PLA) thin sheet and an interdigitated electrode-coated PLA thin sheet. The flexible pressure sensor exhibits high sensitivity with a low detection limit (10.2 Pa), broad range (up to 30 kPa), fast response (11 ms), low power consumption (10-8 W), great reproducibility over 10 000 cycles, and excellent degradability. It can also be used to predict the potential health status of patients and act as an electronic skin (E-skin) for mapping tactile stimuli, suggesting potential in personal healthcare monitoring, clinical diagnosis, and next-generation artificial skins.

2.
Carbohydr Polym ; 337: 122116, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710566

RESUMO

In response to the burgeoning interest in the development of highly conformable and resilient flexible electronic sensors capable of transducing diverse physical stimuli, this review investigates the pivotal role of natural polymers, specifically those derived from starch, in crafting sustainable and biocompatible sensing materials. Expounding on cutting-edge research, the exploration delves into innovative strategies employed to leverage the distinctive attributes of starch in conjunction with other polymers for the fabrication of advanced sensors. The comprehensive discussion encompasses a spectrum of starch-based materials, spanning all-starch-based gels to starch-based soft composites, meticulously scrutinizing their applications in constructing resistive, capacitive, piezoelectric, and triboelectric sensors. These intricately designed sensors exhibit proficiency in detecting an array of stimuli, including strain, temperature, humidity, liquids, and enzymes, thereby playing a pivotal role in the continuous and non-invasive monitoring of human body motions, physiological signals, and environmental conditions. The review highlights the intricate interplay between material properties, sensor design, and sensing performance, emphasizing the unique advantages conferred by starch-based materials, such as self-adhesiveness, self-healability, and re-processibility facilitated by dynamic bonding. In conclusion, the paper outlines current challenges and future research opportunities in this evolving field, offering valuable insights for prospective investigations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa