RESUMO
OBJECTIVE: This study aimed to assess the association between two tag single nucleotide polymorphisms (SNPs) (rs68177277 and rs11624293) of G protein-coupled receptor 65 (GPR65) gene and ankylosing spondylitis (AS) susceptibility in a Chinese Han population. METHODS: 673 patients with AS diagnosed according to the modified New York criteria and 679 age- and gender-matched healthy controls were recruited. SNP genotyping for rs68177277 and rs11624293 polymorphisms were performed using the SNPscan technique. Disease activity was assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). RESULTS: Genotype and allele distribution of rs11624293 but not rs68177277 were significantly different between AS and controls (pâ¯=â¯0.004 and pâ¯=â¯0.002). Compared to the wild-type T/T genotype and T allele at rs11624293, the frequencies of C/T genotype and C allele were significantly higher in AS than controls after adjusting for age and gender (ORâ¯=â¯1.527, 95%CIs: 1.190-1.958; ORâ¯=â¯1.515, 95%CIs: 1.183-1.942, respectively). Dominant and co-dominant model of rs11624293 were predictive of AS susceptibility. In AS patients, the genotype of rs11624293 was significantly associated with BASFI scores in those with low disease activity (BASDAIâ¯<â¯4, pâ¯=â¯0.007). CONCLUSIONS: The results of our study suggest that rs11624293 polymorphism of GPR65 gene is associated with the susceptibility and severity of AS in Chinese Han population.
Assuntos
Genótipo , Receptores Acoplados a Proteínas G/genética , Espondilite Anquilosante/genética , Adulto , Estudos de Casos e Controles , China , Progressão da Doença , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Risco , Adulto JovemRESUMO
BACKGROUND & AIMS: A novel family of proton-sensing G-protein-coupled receptors, including ovarian cancer G-protein-coupled receptor 1 (OGR1) (GPR68) has been identified to play a role in pH homeostasis. Hypoxia is known to change tissue pH as a result of anaerobic glucose metabolism through the stabilization of hypoxia-inducible factor-1α. We investigated how hypoxia regulates the expression of OGR1 in the intestinal mucosa and associated cells. METHODS: OGR1 expression in murine tumors, human colonic tissue, and myeloid cells was determined by quantitative reverse-transcription polymerase chain reaction. The influence of hypoxia on OGR1 expression was studied in monocytes/macrophages and intestinal mucosa of inflammatory bowel disease (IBD) patients. Changes in OGR1 expression in MonoMac6 (MM6) cells under hypoxia were determined upon stimulation with tumor necrosis factor (TNF), in the presence or absence of nuclear factor-κB (NF-κB) inhibitors. To study the molecular mechanisms involved, chromatin immunoprecipitation analysis of the OGR1 promoter was performed. RESULTS: OGR1 expression was significantly higher in tumor tissue compared with normal murine colon tissue. Hypoxia positively regulated the expression of OGR1 in MM6 cells, mouse peritoneal macrophages, primary human intestinal macrophages, and colonic tissue from IBD patients. In MM6 cells, hypoxia-enhanced TNF-induced OGR1 expression was reversed by inhibition of NF-κB. In addition to the effect of TNF and hypoxia, OGR1 expression was increased further at low pH. Chromatin immunoprecipitation analysis showed that HIF-1α, but not NF-κB, binds to the promoter of OGR1 under hypoxia. CONCLUSIONS: The enhancement of TNF- and hypoxia-induced OGR1 expression under low pH points to a positive feed-forward regulation of OGR1 activity in acidic conditions, and supports a role for OGR1 in the pathogenesis of IBD.