Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Endocr J ; 70(4): 343-358, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36889690

RESUMO

After the discovery of GnRH, GnRH neurons have been considered to represent the final common pathway for the neural control of reproduction. There is now compelling data in mammals that two populations of kisspeptin neurons constitute two different systems to control the episodic and surge release of GnRH/LH for the control of different aspects of reproduction, follicular development and ovulation. However, accumulating evidence indicates that kisspeptin neurons in non-mammalian species do not serve as a regulator of reproduction, and the non-mammalian species are believed to show only surge release of GnRH to trigger ovulation. Therefore, the GnRH neurons in non-mammalian species may offer simpler models for the study of their functions in neuroendocrine regulation of reproduction, especially ovulation. Our research group has taken advantage of many unique technical advantages of small fish brain for the study of anatomy and physiology of GnRH neurons, which underlie regular ovulatory cycles during the breeding season. Here, recent advances in multidisciplinary study of GnRH neurons are reviewed, with a focus on studies using small teleost fish models.


Assuntos
Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Feminino , Animais , Hormônio Luteinizante/metabolismo , Kisspeptinas/fisiologia , Reprodução/fisiologia , Neurônios/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
2.
J Reprod Dev ; 69(4): 192-197, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37331801

RESUMO

Gonadal function is often suppressed during lactation in mammals including rodents, ruminants, and primates. This suppression is thought to be mostly due to the inhibition of the tonic (pulsatile) release of gonadotropin-releasing hormone (GnRH) and consequent gonadotropin. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release, and kisspeptin mRNA (Kiss1) and/or kisspeptin expression in the ARC are strongly suppressed by the suckling stimuli in lactating rats. This study aimed to examine whether the central enkephalin-δ-opioid receptor (DOR) signaling mediates the suckling-induced suppression of luteinizing hormone (LH) release in lactating rats. Central administration of a selective DOR antagonist increased the mean plasma LH levels and baseline of LH pulses in ovariectomized lactating mother rats compared to vehicle-injected control dams on day 8 of lactation without affecting the number of Kiss1-expressing cells and the intensity of Kiss1 mRNA signals in the ARC. Furthermore, the suckling stimuli significantly increased the number of enkephalin mRNA (Penk)-expressing cells and the intensity of Penk mRNA signals in the ARC compared to non-lactating control rats. Collectively, these results suggest that central DOR signaling, at least in part, mediates the suppression of LH release induced by suckling stimuli in lactating rats via indirect and/or direct inhibition of ARC kisspeptin neurons.


Assuntos
Kisspeptinas , Receptores Opioides delta , Feminino , Ratos , Animais , Kisspeptinas/genética , Lactação , Hormônio Luteinizante , Hormônio Liberador de Gonadotropina , Mamíferos
3.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958965

RESUMO

Maternal immune activation results in altered levels of cytokines in the maternal-fetal system, which has a negative impact on fetal development, including the gonadotropin-releasing hormone (GnRH) system, which is crucial for the reproduction. Suppression of GnRH-neuron migration may be associated with cytokine imbalances, and primarily with proinflammatory cytokine interleukin (IL)-6. This study aimed to determine the effects of IL-6 and monoclonal antibody to IL-6 or IL-6R or polyclonal IgG on the formation of migration route of GnRH-neurons in ex vivo and in vivo rodent models on day 11.5 of embryonic development. The increased level of IL-6 in mouse nasal explants suppressed peripherin-positive fiber outgrowth, while this led to an increase in the number of GnRH-neurons in the nose and olfactory bulbs and a decrease in their number in the fetal brain. This effect is likely to be realized via IL-6 receptors along the olfactory nerves. The suppressive effect of IL-6 was diminished by monoclonal antibodies to IL-6 or its receptors and by IgG.


Assuntos
Citocinas , Hormônio Liberador de Gonadotropina , Animais , Feminino , Camundongos , Gravidez , Encéfalo/metabolismo , Movimento Celular , Citocinas/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Imunoglobulina G/farmacologia , Interleucina-6/farmacologia , Roedores/metabolismo
4.
Development ; 146(21)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690636

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary-gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human orthologue of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Padronização Corporal , Encéfalo/fisiologia , Movimento Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Neuropilina-1/fisiologia , Neuropilina-2/fisiologia , Nariz , Fenótipo , Receptores de Superfície Celular/genética , Semaforina-3A/fisiologia , Maturidade Sexual/genética , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 530(1): 329-335, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828307

RESUMO

The onset establishment and maintenance of gonadotropin-releasing hormone (GnRH) secretion is an important phenomenon regulating pubertal development and reproduction. GnRH neurons as well as other neurons in the hypothalamus have high-energy demands and require a constant energy supply from their mitochondria machinery to maintain active functioning. However, the involvement of mitochondrial function in GnRH neurons is still unclear. In this study, we examined the role of NADH Dehydrogenase (Ubiquinone) Fe-S protein 4 (Ndufs4), a member of the mitochondrial complex 1, on GnRH neurons using Ndufs4-KO mice and Ndufs4-KO GT1-7 cells. Ndufs4 was highly expressed in GnRH neurons in the medial preoptic area (MPOA) and NPY/AgRP and POMC neurons in the arcuate (ARC) nucleus in WT mice. Conversely, there was a significant decrease in GnRH expression in MPOA and median eminence of Ndufs4-KO mice, followed by impaired peripheral endocrine system. In Ndufs4-KO GT1-7 cells, Gnrh1 expression was significantly decreased with or without stimulation with either kisspeptin or NGF, whereas, stimulation significantly increased Gnrh1 expression in control cells. In contrast, there was no difference in cell signaling activity including ERK and CREB as well as the expression of GPR54, TrkA and p75NTR, suggesting that Ndufs4 is involved in the transcriptional regulation system for GnRH production. These findings may be useful in understanding the mitochondrial function in GnRH neuron.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Animais , Linhagem Celular , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Mitocôndrias/genética , Neurônios/citologia , Precursores de Proteínas/genética
6.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947687

RESUMO

: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.


Assuntos
Citocinas/metabolismo , Hormônio Liberador de Gonadotropina/biossíntese , Inflamação/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores , Barreira Hematoencefálica/metabolismo , Estradiol/metabolismo , Retroalimentação Fisiológica , Feminino , Fertilidade/genética , Hormônio Liberador de Gonadotropina/genética , Humanos , Inflamação/etiologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lipopolissacarídeos/imunologia , Microglia/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Reprodução/genética , Reprodução/imunologia
7.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374337

RESUMO

Different aspects of the reciprocal regulatory influence on the development of gonadotropin-releasing hormone (GnRH)-producing- and immune systems in the perinatal ontogenesis and their functioning in adults in normal and pathological conditions are discussed. The influence of GnRH on the development of the immune system, on the one hand, and the influence of proinflammatory cytokines on the development of the hypothalamic-pituitary-gonadal system, on the other hand, and their functioning in adult offspring are analyzed. We have focused on the effects of GnRH on the formation and functional activity of the thymus, as the central organ of the immune system, in the perinatal period. The main mechanisms of reciprocal regulation of these systems are discussed. The reproductive health of an individual is programmed by the establishment and development of physiological systems during critical periods. Regulatory epigenetic mechanisms of development are not strictly genetically controlled. These processes are characterized by a high sensitivity to various regulatory factors, which provides possible corrections for disorders.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Imunitário , Animais , Moléculas de Adesão Celular/metabolismo , Epigênese Genética , Feminino , Humanos , Inflamação , Masculino , Camundongos , Neurônios/metabolismo , Neurotransmissores/metabolismo , Ratos , Transdução de Sinais , Timo/metabolismo , Fatores de Transcrição/metabolismo
8.
Cell Tissue Res ; 375(1): 179-191, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30078104

RESUMO

Gonadotropin-releasing hormone (GnRH) secretion from GnRH neurons and its modulation by neuropeptides are essential for mammalian reproduction. Here, I review the neuropeptides that have been shown to act directly and that may also act indirectly, on GnRH neurons, the reproduction-related processes with which the neuropeptides may be associated or the physiological information they may convey, as well as their cognate receptors, signaling pathways and roles in the modulation of GnRH neuronal firing, [Ca2+]i, GnRH secretion and reproduction. The review focuses on recent research in mice, which offer the most tractable experimental system for studying mammalian GnRH neurons.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Reprodução/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos , Neurotransmissores/metabolismo , Resposta de Saciedade
9.
Mol Cell Neurosci ; 88: 130-137, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414103

RESUMO

The hypothalamic-pituitary-gonadal (HPG) axis plays a critical role in regulating reproductive function. Gonadotropin-releasing hormone (GnRH), which is secreted by the hypothalamus, acts on pituitary gonadotrophs to stimulate luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion, ultimately affecting the animal's fertility. MicroRNAs are small, non-coding RNAs that are widely expressed throughout the brain and can fine-tune gene expression post-transcriptionally. Recently, growing evidence has unveiled the central position of miRNAs within a key regulatory process involving GnRH secretion and subsequent activation in the pituitary. Although transcriptional regulation of reproduction has been well studied, the post-transcriptional processes are less well understood. In this review, we elaborate comprehensively on the critical role of miRNAs in the reproductive process, including both temporal and spatial aspects. A better understanding of how miRNAs impact the neuroendocrine system may improve our knowledge of reproduction and provide novel targets for therapeutic development.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipotálamo/metabolismo , MicroRNAs/metabolismo , Hipófise/metabolismo , Animais , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos
10.
Cell Tissue Res ; 364(2): 405-14, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26667127

RESUMO

The onset of puberty is initiated by an increase in the release of the gonadotropin-releasing hormone (GnRH) from GnRH neurons in the hypothalamus. However, the precise mechanism that leads to the activation of GnRH neurons at puberty remains controversial. Spines are small protrusions on the surface of dendrites that normally receive excitatory inputs. In this study, we analyzed the number and morphology of spines on GnRH neurons to investigate changes in synaptic inputs across puberty in rats. For morphological estimation, we measured the diameter of the head (DH) of each spine and classified them into small-type (DH < 0.65 µm), large-type (DH > 0.65 µm) and giant-type (DH > 0.9 µm). The greatest number of spines was observed at the proximal dendrite within 50 µm of the soma. At the soma and proximal dendrite, the number of spines was greater in adults than in juveniles in both male and female individuals. Classification of spines revealed that the increase in spine number was due to increases in large- and giant-type spines. To further explore the relationship between spines on GnRH neurons and pubertal development, we next analyzed adult rats neonatally exposed to estradiol benzoate, in which puberty onset and reproductive functions are disrupted. We found a decrease in the number of all types of spines. These results suggest that GnRH neurons become to receive more and greater excitatory inputs on the soma and proximal dendrites as a result of the changes that occur at puberty and that alteration to spines plays a pivotal role in normal pubertal development.


Assuntos
Espinhas Dendríticas/fisiologia , Estradiol/análogos & derivados , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Animais , Estradiol/farmacologia , Feminino , Hipotálamo/metabolismo , Masculino , Microscopia Confocal , Ratos , Ratos Transgênicos
11.
J Neurosci Res ; 93(10): 1611-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26084811

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in reproductive function. GnRH is released in distinct pulses that are regulated by neurotransmitters or neuromodulators. With immunohistochemistry and GAD67-GFP knockin mice, this study shows for the first time that a subset of GnRH neurons in the forebrain of adult mouse is γ-aminobutyric acid (GABA)-ergic. There is a gender difference in the percentage of GnRH neurons expressing GAD67-GFP in female vs. male mice. The percentage of GnRH neurons expressing GAD67-GFP decreased after castration of female mice and increased to the normal female level after estradiol treatment. The percentage of GnRH neurons expressing GAD67-GFP did not change significantly in intact, castrated, or castration + testosterone propionate-treated male mice. During the female estrous cycle, the percentage of GnRH neurons expressing GAD67-GFP was higher during the estrous stage than during the diestrous stage. During sexual maturation of postnatal development, GnRH neurons did not express GAD67-GFP until postnatal day (P) 15, and the gender differences were first detected at P30, which corresponds to the maturation stage. In conclusion, our data suggest that 1) a subset of GnRH neurons in mouse forebrain is GABA-ergic, 2) expression of GAD67-GFP in GnRH neurons is at least in part regulated by estrogen, and 3) GnRH neurons secrete GABA to regulate themselves.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Prosencéfalo/citologia , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Castração , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Propionato de Testosterona/farmacologia
12.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36592113

RESUMO

Energy availability is an important regulator of reproductive function at various reproductive phases in mammals. Glucoprivation induced by 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, as an experimental model of malnutrition suppresses the pulsatile release of GnRH/LH and induces gluconeogenesis. The present study was performed with the aim of examining whether enkephalin-δ-opioid receptor (DOR) signaling mediates the suppression of pulsatile GnRH/LH release and gluconeogenesis during malnutrition. The administration of naltrindole hydrochloride (NTI), a selective DOR antagonist, into the third ventricle blocked the suppression of LH pulses and part of gluconeogenesis induced by IV 2DG administration in ovariectomized rats treated with a negative feedback level of estradiol-17â€…ß (OVX + low E2). The IV 2DG administration significantly increased the number of Penk (enkephalin gene)-positive cells coexpressing fos (neuronal activation marker gene) in the paraventricular nucleus (PVN), but not in the arcuate nucleus (ARC) in OVX + low E2 rats. Furthermore, double in situ hybridization for Penk/Pdyn (dynorphin gene) in the PVN revealed that approximately 35% of the PVN Penk-expressing cells coexpressed Pdyn. Double in situ hybridization for Penk/Crh (corticotropin-releasing hormone gene) in the PVN and Penk/Kiss1 (kisspeptin gene) in the ARC revealed that few Penk-expressing cells coexpressed Crh and Kiss1. Taken together, these results suggest that central enkephalin-DOR signaling mediates the suppression of pulsatile LH release during malnutrition. Moreover, the current study suggests that central enkephalin-DOR signaling is also involved in gluconeogenesis during malnutrition in female rats.


Assuntos
Encefalinas , Gluconeogênese , Receptores Opioides delta , Animais , Feminino , Ratos , Núcleo Arqueado do Hipotálamo/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Glucose/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Mamíferos/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo
13.
Dis Model Mech ; 15(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833364

RESUMO

Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper.


Assuntos
Hormônio Liberador de Gonadotropina , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fator 8 de Crescimento de Fibroblasto/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
14.
Endocrinology ; 162(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175140

RESUMO

Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.


Assuntos
Hipotálamo/fisiologia , Plasticidade Neuronal/fisiologia , Puberdade/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Neurônios/metabolismo
15.
Anim Reprod ; 18(4): e20210063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925558

RESUMO

Within the hypothalamic-pituitary-gonad (HPG) axis, the major hierarchical component is gonadotropin-releasing hormone (GnRH) neurons, which directly or indirectly receive regulatory inputs from a wide array of regulatory signals and pathways, involving numerous circulating hormones, neuropeptides, and neurotransmitters, and which operate as a final output for the brain control of reproduction. In recent years, there has been an increasing interest in neuropeptides that have the potential to stimulate or inhibit GnRH in the hypothalamus of pigs. Among them, Kisspeptin is a key component in the precise regulation of GnRH neuron secretion activity. Besides, other neuropeptides, including neurokinin B (NKB), neuromedin B (NMB), neuromedin S (NMS), α-melanocyte-stimulating hormone (α-MSH), Phoenixin (PNX), show potential for having a stimulating effect on GnRH neurons. On the contrary, RFamide-related peptide-3 (RFRP-3), endogenous opioid peptides (EOP), neuropeptide Y (NPY), and Galanin (GAL) may play an inhibitory role in the regulation of porcine reproductive nerves and may directly or indirectly regulate GnRH neurons. By combining data from suitable model species and pigs, we aim to provide a comprehensive summary of our current understanding of the neuropeptides acting on GnRH neurons, with a particular focus on their central regulatory pathways and underlying molecular basis.

16.
Endocrinology ; 162(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270714

RESUMO

Energetic status often affects reproductive function, glucose homeostasis, and feeding in mammals. Malnutrition suppresses pulsatile release of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) and increases gluconeogenesis and feeding. The present study aims to examine whether ß-endorphin-µ-opioid receptor (MOR) signaling mediates the suppression of pulsatile GnRH/LH release and an increase in gluconeogenesis/feeding induced by malnutrition. Ovariectomized female rats treated with a negative feedback level of estradiol-17ß (OVX + low E2) receiving 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, intravenously (iv) were used as a malnutrition model. An administration of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective MOR antagonist, into the third ventricle blocked the suppression of the LH pulse and increase in gluconeogenesis/feeding induced by iv 2DG administration. Histological analysis revealed that arcuate Kiss1 (kisspeptin gene)-expressing cells and preoptic Gnrh1 (GnRH gene)-expressing cells co-expressed little Oprm1 (MOR gene), while around 10% of arcuate Slc17a6 (glutamatergic marker gene)-expressing cells co-expressed Oprm1. Further, the CTOP treatment decreased the number of fos-positive cells in the paraventricular nucleus (PVN) in OVX + low E2 rats treated with iv 2DG but failed to affect the number of arcuate fos-expressing Slc17a6-positive cells. Taken together, these results suggest that the central ß-endorphin-MOR signaling mediates the suppression of pulsatile LH release and that the ß-endorphin may indirectly suppress the arcuate kisspeptin neurons, a master regulator for GnRH/LH pulses during malnutrition. Furthermore, the current study suggests that central ß-endorphin-MOR signaling is also involved in gluconeogenesis and an increase in food intake by directly or indirectly acting on the PVN neurons during malnutrition in female rats.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Antagonistas de Entorpecentes/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores Opioides mu/metabolismo , beta-Endorfina/metabolismo , Animais , Glicemia/análise , Feminino , Gluconeogênese , Hipotálamo , Kisspeptinas/metabolismo , Ratos , Ratos Wistar , Receptores Opioides mu/biossíntese , Transdução de Sinais , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
17.
Brain Struct Funct ; 226(1): 105-120, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169188

RESUMO

Glucagon-like peptide-1 (GLP-1) regulates reproduction centrally, although, the neuroanatomical basis of the process is unknown. Therefore, the putative networking of the central GLP-1 and gonadotropin-releasing hormone (GnRH) systems was addressed in male mice using whole mount immunocytochemistry and optogenetics. Enhanced antibody penetration and optical clearing procedures applied to 500-1000 µm thick basal forebrain slices allowed the simultaneous visualization of the two distinct systems in the basal forebrain. Beaded GLP-1-IR axons innervated about a quarter of GnRH neurons (23.2 ± 1.4%) forming either single or multiple contacts. GnRH dendrites received a more intense GLP-1 innervation (64.6 ± 0.03%) than perikarya (35.4 ± 0.03%). The physiological significance of the innervation was examined by optogenetic activation of channelrhodopsin-2 (ChR2)-expressing axons of preproglucagon (GCG) neurons upon the firing of GnRH neurons by patch clamp electrophysiology in acute brain slices of triple transgenic mice (Gcg-cre/ChR2/GFP-GnRH). High-frequency laser beam stimulation (20 Hz, 10 ms pulse width, 3 mW laser power) of ChR2-expressing GCG axons in the mPOA increased the firing rate of GnRH neurons (by 75 ± 17.3%, p = 0.0007). Application of the GLP-1 receptor antagonist, Exendin-3-(9-39) (1 µM), prior to the photo-stimulation, abolished the facilitatory effect. In contrast, low-frequency trains of laser pulses (0.2 Hz, 60 pulses) had no effect on the spontaneous postsynaptic currents of GnRH neurons. The findings indicate a direct wiring of GLP-1 neurons with GnRH cells which route is excitatory for the GnRH system. The pathway may relay metabolic signals to GnRH neurons and synchronize metabolism with reproduction.


Assuntos
Prosencéfalo Basal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Animais , Axônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Transmissão Sináptica/fisiologia
18.
Genes (Basel) ; 12(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198905

RESUMO

Kallmann syndrome (KS) is a combination of isolated hypogonadotropic hypogonadism (IHH) with olfactory dysfunction, representing a heterogeneous disorder with a broad phenotypic spectrum. The genetic background of KS has not yet been fully established. This study was conducted on 46 Polish KS subjects (41 males, 5 females; average age: 29 years old). The studied KS patients were screened for defects in a 38-gene panel with next-generation sequencing (NGS) technology. The analysis revealed 27 pathogenic and likely pathogenic (P/LP) variants, and 21 variants of uncertain significance (VUS). The P/LP variants were detected in 20 patients (43.5%). The prevalence of oligogenic P/LP defects in selected genes among KS patients was 26% (12/46), whereas the co-occurrence of other variants was detected in 43% (20 probands). The examined KS patients showed substantial genotypic and phenotypic variability. A marked difference in non-reproductive phenotypes, involving defects in genes responsible for GnRH neuron development/migration and genes contributing to pituitary development and signaling, was observed. A comprehensive gene panel for IHH testing enabled the detection of clinically relevant variants in the majority of KS patients, which makes targeted NGS an effective molecular tool. The significance of oligogenicity and the high incidence of alterations in selected genes should be further elucidated.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Síndrome de Kallmann/genética , Mutação , Neurogênese , Fenótipo , Adolescente , Adulto , Movimento Celular , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Síndrome de Kallmann/metabolismo , Síndrome de Kallmann/patologia , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Transdução de Sinais
19.
Dis Model Mech ; 13(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996360

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons provide a fundamental signal for the onset of puberty and subsequent reproductive functions by secretion of gonadotropin-releasing hormone. Their disrupted development or function leads to congenital hypogonadotropic hypogonadism (CHH). To model the development of human GnRH neurons, we generated a stable GNRH1-TdTomato reporter cell line in human pluripotent stem cells (hPSCs) using CRISPR-Cas9 genome editing. RNA-sequencing of the reporter clone, differentiated into GnRH neurons by dual SMAD inhibition and FGF8 treatment, revealed 6461 differentially expressed genes between progenitors and GnRH neurons. Expression of the transcription factor ISL1, one of the top 50 most upregulated genes in the TdTomato-expressing GnRH neurons, was confirmed in 10.5 gestational week-old human fetal GnRH neurons. Among the differentially expressed genes, we detected 15 genes that are implicated in CHH and several genes that are implicated in human puberty timing. Finally, FGF8 treatment in the neuronal progenitor pool led to upregulation of 37 genes expressed both in progenitors and in TdTomato-expressing GnRH neurons, which suggests upstream regulation of these genes by FGF8 signaling during GnRH neuron differentiation. These results illustrate how hPSC-derived human GnRH neuron transcriptomic analysis can be utilized to dissect signaling pathways and gene regulatory networks involved in human GnRH neuron development.This article has an associated First Person interview with the first author of the paper.


Assuntos
Genes Reporter , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Feto/citologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Humanos , Hipogonadismo/genética , Proteínas com Homeodomínio LIM/metabolismo , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-30733708

RESUMO

RNF216, encoding an E3 ubiquitin ligase, has been identified as a causative gene for Gordon Holmes syndrome, characterized by ataxia, dementia, and hypogonadotropic hypogonadism. However, it is still elusive how deficiency in RNF216 leads to hypogonadotropic hypogonadism. In this study, by using GN11 immature GnRH neuronal cell line, we demonstrated an important role of RNF216 in the GnRH neuron migration. RNA interference of RNF216 inhibited GN11 cell migration, but had no effect on the proliferation of GN11 cells or GnRH expression. Knockdown of RNF216 increased the protein levels of its targets, Arc and Beclin1. RNAi of Beclin1, but not Arc, normalized the suppressive effect caused by RNF216 knockdown. As Beclin1 plays a critical role in the autophagy regulation, we further demonstrated that RNAi of RNF216 led to increase in autophagy, and autophagy inhibitor CQ and 3-MA rescued the GN11 cell migration deficit caused by RNF216 knockdown. We further demonstrated that pharmacological increase autophagy by rapamycin could suppress the GN11 cell migration. We thus have identified that RNF216 regulates the migration of GnRH neuron by suppressing Beclin1 mediated autophagy, and indicated a potential contribution of autophagy to the hypogonadotropic hypogonadism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa