Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(34): 20706-20716, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32764145

RESUMO

Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/genética , Epigênese Genética/genética , Epigenômica , Feminino , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Masculino , Metiltransferases/metabolismo , Camundongos
2.
Eur Heart J ; 43(43): 4562-4576, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35292818

RESUMO

AIMS: Histone H3 dimethylation at lysine 79 is a key epigenetic mark uniquely induced by methyltransferase disruptor of telomeric silencing 1-like (DOT1L). We aimed to determine whether DOT1L modulates vascular smooth muscle cell (VSMC) phenotype and how it might affect atherosclerosis in vitro and in vivo, unravelling the related mechanism. METHODS AND RESULTS: Gene expression screening of VSMCs stimulated with the BB isoform of platelet-derived growth factor led us to identify Dot1l as an early up-regulated epigenetic factor. Mouse and human atherosclerotic lesions were assessed for Dot1l expression, which resulted specifically localized in the VSMC compartment. The relevance of Dot1l to atherosclerosis pathogenesis was assessed through deletion of its gene in the VSMCs via an inducible, tissue-specific knock-out mouse model crossed with the ApoE-/- high-fat diet model of atherosclerosis. We found that the inactivation of Dot1l significantly reduced the progression of the disease. By combining RNA- and H3K79me2-chromatin immunoprecipitation-sequencing, we found that DOT1L and its induced H3K79me2 mark directly regulate the transcription of Nf-κB-1 and -2, master modulators of inflammation, which in turn induce the expression of CCL5 and CXCL10, cytokines fundamentally involved in atherosclerosis development. Finally, a correlation between coronary artery disease and genetic variations in the DOT1L gene was found because specific polymorphisms are associated with increased mRNA expression. CONCLUSION: DOT1L plays a key role in the epigenetic control of VSMC gene expression, leading to atherosclerosis development. Results identify DOT1L as a potential therapeutic target for vascular diseases.


Assuntos
Aterosclerose , Músculo Liso Vascular , Humanos , Camundongos , Animais , Músculo Liso Vascular/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Monócitos/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Camundongos Knockout , Inativação Gênica , Células Cultivadas
3.
Genomics ; 112(1): 853-858, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170440

RESUMO

Abnormal histone modifications (HMs) and transcription factors (TFs) can alter the expression of cancer-related genes to promote tumorigenesis. We studied the variations of 11 HMs and 2 TFs in human breast cancer cells (MCF-7) compared to human normal mammary epithelial cells (HMEC), and the effects of HMs/TFs in various regions of the genome on the expression changes of breast cancer-related genes. Based on HMs and TFs signals' differences between MCF-7 and HMEC flanking TSSs, the up- and down-regulated genes in MCF-7 were predicted by Random Forest, and important HMs and regions were found. Results indicate that H3K79me2, H3K27ac, and H3K4me1 are particularly important for the changes of gene expression in MCF-7. Especially, H3K79me2 around the 60-th bin flanking TSSs may be the key for regulating gene expression. Our studies reveal H3K79me2 may be a core HM for breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Código das Histonas , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
4.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769020

RESUMO

The nature of genome organization into two basic structural compartments is as yet undiscovered. However, it has been indicated to be a mechanism of gene expression regulation. Using the classification approach, we ranked genomic marks that hint at compartmentalization. We considered a broad range of marks, including GC content, histone modifications, DNA binding proteins, open chromatin, transcription and genome regulatory segmentation in GM12878 cells. Genomic marks were defined over CTCF or RNAPII loops, which are basic elements of genome 3D structure, and over 100 kb genomic windows. Experiments were carried out to empirically assess the whole set of features, as well as the individual features in classification of loops/windows, into compartment A or B. Using Monte Carlo Feature Selection and Analysis of Variance, we constructed a ranking of feature importance for classification. The best simple indicator of compartmentalization is DNase-seq open chromatin measurement for CTCF loops, H3K4me1 for RNAPII loops and H3K79me2 for genomic windows. Among DNA binding proteins, this is RUNX3 transcription factor for loops and RNAPII for genomic windows. Chromatin state prediction methods that indicate active elements like promoters, enhancers or heterochromatin enhance the prediction of loop segregation into compartments. However, H3K9me3, H4K20me1, H3K27me3 histone modifications and GC content poorly indicate compartments.


Assuntos
Fator de Ligação a CCCTC/genética , Cromatina/genética , Genoma/genética , RNA Polimerase II/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica/genética , Genômica/métodos , Código das Histonas/genética , Histonas/genética , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética
5.
Exp Cell Res ; 385(1): 111597, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525340

RESUMO

Cancer stem cells (CSCs) are a subpopulation of chemoresistant cells that play a critical role in disease recurrence following chemotherapy. It has been reported that microRNA-133b (miR-133b) acts as a tumor suppressor in colorectal cancer (CRC). However, whether miR-133b is associated with CRC stemness and chemoresistance is not clear. In this study, we report that miR-133b is downregulated in colorectal spheroids, which are enriched with CSCs and display stem cell-like characteristics, including upreulation of CSCs surface markers and elevated chemoresistance. Additionally, miR-133b overexpression reduces CRC stemness and overrides chemoresistance to 5-Fluorouracil (5-FU) and oxaliplatin (OXP), indicating a negative role of miR-133b in regulating CRC stemness and chemoresistance. Moreover, miR-133b directly targets and suppresses the expression of disruptor of telomeric silencing 1-like (DOT1L), an exclusive H3K79 methyltransferase. Furthermore, miR-133b overexpression suppresses DOT1L-mediated H3K79me2 modification of stem cell genes, which is consistent with their downregulated transcription. More importantly, DOT1L restoration abrogates the suppressive effects of miR-133b on CRC stemness and chemoresistance, hence demonstrating that miR-133b regulates CRC stemness and chemoresistance through targeting DOT1L. Overall, these results imply that miR-133b might represent a novel therapeutic target in interfering CRC stemness and chemoresistance.


Assuntos
Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Histona-Lisina N-Metiltransferase/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Oxaliplatina/farmacologia , Transcrição Gênica/genética , Regulação para Cima/genética
6.
Cell Rep ; 43(7): 114368, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38905100

RESUMO

DOT1L mediates the methylation of histone H3 at lysine 79 and, in turn, the transcriptional activation or repression in a context-dependent manner, yet the regulatory mechanisms and functions of DOT1L/H3K79me remain to be fully explored. Following peptide affinity purification and proteomic analysis, we identified that DCAF1-a component of the E3 ligase complex involved in HIV regulation-is associated with H3K79me2 and DOT1L. Interestingly, blocking the expression or catalytic activity of DOT1L or repressing the expression of DCAF1 significantly enhances the tumor necrosis factor alpha (TNF-α)/nuclear factor κB (NF-κB)-induced reactivation of the latent HIV-1 genome. Mechanistically, upon TNF-α/NF-κB activation, DCAF1 is recruited to the HIV-1 long terminal repeat (LTR) by DOT1L and H3K79me2. Recruited DCAF1 subsequently induces the ubiquitination of NF-κB and restricts its accumulation at the HIV-1 LTR. Altogether, our findings reveal a feedback modulation of HIV reactivation by DOT1L-mediated histone modification regulation and highlight the potential of targeting the DOT1L/DCAF1 axis as a therapeutic strategy for HIV treatment.


Assuntos
HIV-1 , Histona-Lisina N-Metiltransferase , Histonas , NF-kappa B , Ubiquitina-Proteína Ligases , Humanos , HIV-1/fisiologia , HIV-1/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Repetição Terminal Longa de HIV/genética , Células HEK293 , Ativação Viral , Metilação , Fator de Necrose Tumoral alfa/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Lisina/metabolismo , Proteínas Serina-Treonina Quinases
7.
Biophys Rep ; 9(1): 45-56, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37426199

RESUMO

Abnormal histone modifications (HMs) can promote the occurrence of breast cancer. To elucidate the relationship between HMs and gene expression, we analyzed HM binding patterns and calculated their signal changes between breast tumor cells and normal cells. On this basis, the influences of HM signal changes on the expression changes of breast cancer-related genes were estimated by three different methods. The results showed that H3K79me2 and H3K36me3 may contribute more to gene expression changes. Subsequently, 2109 genes with differential H3K79me2 or H3K36me3 levels during cancerogenesis were identified by the Shannon entropy and submitted to perform functional enrichment analyses. Enrichment analyses displayed that these genes were involved in pathways in cancer, human papillomavirus infection, and viral carcinogenesis. Univariate Cox, LASSO, and multivariate Cox regression analyses were then adopted, and nine potential breast cancer-related driver genes were extracted from the genes with differential H3K79me2/H3K36me3 levels in the TCGA cohort. To facilitate the application, the expression levels of nine driver genes were transformed into a risk score model, and its robustness was tested via time-dependent receiver operating characteristic curves in the TCGA dataset and an independent GEO dataset. At last, the distribution levels of H3K79me2 and H3K36me3 in the nine driver genes were reanalyzed in the two cell lines and the regions with significant signal changes were located.

8.
Cells ; 11(18)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139405

RESUMO

A subset of expressed genes is associated with a broad H3K4me3 (histone H3 trimethylated at lysine 4) domain that extends throughout the gene body. Genes marked in this way in normal cells are involved in cell-identity and tumor-suppressor activities, whereas in cancer cells, genes driving the cancer phenotype (oncogenes) have this feature. Other histone modifications associated with expressed genes that display a broad domain have been less studied. Here, we identified genes with the broadest H3K79me2 (histone H3 dimethylated at lysine 79) domain in human leukemic cell lines representing different forms of leukemia. Taking a bioinformatic approach, we provide evidence that genes with the broadest H3K79me2 domain have known roles in leukemia (e.g., JMJD1C). In the mixed-lineage leukemia cell line MOLM-13, the HOXA9 gene is in a 100 kb broad H3K79me2 domain with other HOXA protein-coding and oncogenic long non-coding RNA genes. The genes in this domain contribute to leukemia. This broad H3K79me2 domain has an unstable chromatin structure, as was evident by enhanced chromatin accessibility throughout. Together, we provide evidence that identification of genes with the broadest H3K79me2 domain will aid in generating a panel of genes in the diagnosis and therapeutic treatment of leukemia in the future.


Assuntos
Leucemia , RNA Longo não Codificante , Linhagem Celular , Cromatina , Biologia Computacional , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia/genética , Lisina/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo
9.
Comput Struct Biotechnol J ; 20: 5535-5546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249560

RESUMO

Lung adenocarcinoma is a malignancy with a low overall survival and a poor prognosis. Studies have shown that lung adenocarcinoma progression relates to locus-specific/global changes in histone modifications. To explore the relationship between histone modification and gene expression changes, we focused on 11 histone modifications and quantitatively analyzed their influences on gene expression. We found that, among the studied histone modifications, H3K79me2 displayed the greatest impact on gene expression regulation. Based on the Shannon entropy, 867 genes with differential H3K79me2 levels during tumorigenesis were identified. Enrichment analyses showed that these genes were involved in 16 common cancer pathways and 11 tumors and were target-regulated by trans-regulatory elements, such as Tp53 and WT1. Then, an open-source computational framework was presented (https://github.com/zlq-imu/Identification-of-potential-LUND-driver-genes). Twelve potential driver genes were extracted from the genes with differential H3K79me2 levels during tumorigenesis. The expression levels of these potential driver genes were significantly increased/decreased in tumor cells, as assayed by RT-qPCR. A risk score model comprising these driver genes was further constructed, and this model was strongly negatively associated with the overall survival of patients in different datasets. The proportional hazards assumption and outlier test indicated that this model could robustly distinguish patients with different survival rates. Immune analyses and responses to immunotherapeutic and chemotherapeutic agents showed that patients in the high and low-risk groups may have distinct tendencies for clinical selection. Finally, the regions with clear H3K79me2 signal changes on these driver genes were accurately identified. Our research may offer potential molecular biomarkers for lung adenocarcinoma treatment.

10.
Hum Cell ; 35(1): 98-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34635982

RESUMO

Myocardial infarction (MI) represents the most critical condition in coronary artery disease, and the fibrotic process, detrimental to optimal recovery, often sustains. In the present work, we assessed whether suppression of disruptor of telomeric silencing 1-like (DOT1L) could alleviate fibrosis in vivo and cardiac fibroblast (CFS) proliferation in vitro, and elucidated the possible mechanism involved in these events. After left coronary artery ligation, we found that the MI mice exhibited a decrease in cardiac function, along with evident MI and myocardial fibrosis. In addition, AngII increased CFS viability and migration, and enhanced the expression of fibrotic proteins. Inhibition of DOT1L ameliorated proliferation and fibrosis in CFS. Furthermore, DOT1L promoted the expression of spleen tyrosine kinase (SYK) by increasing the H3K79me2 modification of the SYK promoter. SYK upregulation reversed the inhibitory effect of DOT1L knockdown on CFS proliferation and fibrosis by activating the TGF-ß1/Smad3 signaling. SYK also mitigated the ameliorative effect of DOT1L knockdown on myocardial injury and fibrosis caused by MI in vivo. In conclusion, these data indicated that DOT1L depletion might be a promising therapeutic target for fibrosis in MI.


Assuntos
Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/fisiologia , Infarto do Miocárdio/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Fibroblastos/fisiologia , Fibrose , Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miocárdio/patologia
11.
Oncoimmunology ; 11(1): 2052640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309733

RESUMO

Chronic inflammation and oncogenic pathway activation are key-contributing factors in colorectal cancer pathogenesis. However, colorectal intrinsic mechanisms linking these two factors in cancer development are poorly defined. Here, we show that intestinal epithelial cell (IEC)-specific deletion of Dot1l histone methyltransferase (Dot1lΔIEC ) reduced H3K79 dimethylation (H3K79me2) in IECs and inhibited intestinal tumor formation in ApcMin - and AOM-DSS-induced colorectal cancer models. IEC-Dot1l abrogation was accompanied by alleviative colorectal inflammation and reduced Wnt/ß-catenin signaling activation. Mechanistically, Dot1l deficiency resulted in an increase in Foxp3+RORϒ+ regulatory T (Treg) cells and a decrease in inflammatory Th17 and Th22 cells, thereby reducing local inflammation in the intestinal tumor microenvironment. Furthermore, Dot1l deficiency caused a reduction of H3K79me2 occupancies in the promoters of the Wnt/ß-catenin signaling genes, thereby diminishing Wnt/ß-catenin oncogenic signaling pathway activation in colorectal cancer cells. Clinically, high levels of tumor H3K79me2 were detected in patients with colorectal carcinomas as compared to adenomas, and negatively correlated with RORϒ+FOXP3+ Treg cells. Altogether, we conclude that DOT1L is an intrinsic molecular node connecting chronic immune activation and oncogenic signaling pathways in colorectal cancer. Our work suggests that targeting the DOT1L pathway may control colorectal carcinogenesis. Significance: IEC-intrinsic DOT1L controls T cell subset balance and key oncogenic pathway activation, impacting colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais , Histona-Lisina N-Metiltransferase , Subpopulações de Linfócitos T , Carcinogênese/metabolismo , Neoplasias Colorretais/patologia , Fatores de Transcrição Forkhead/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Inflamação , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Microambiente Tumoral , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
12.
J Anim Sci Technol ; 63(5): 984-997, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34796342

RESUMO

This study sought to evaluate DNA damage and repair in porcine postovulatory aged oocytes. The DNA damage response, which was assessed by H2A.X expression, increased in porcine aged oocytes over time. However, the aged oocytes exhibited a significant decrease in the expression of RAD51, which reflects the DNA damage repair capacity. Further experiments suggested that the DNA repair ability was suppressed by the downregulation of genes involved in the homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression levels of the cell cycle checkpoint genes, CHEK1 and CHEK2, were upregulated in porcine aged oocytes in response to induced DNA damage. Immunofluorescence results revealed that the expression level of H3K79me2 was significantly lower in porcine aged oocytes than in control oocytes. In addition, embryo quality was significantly reduced in aged oocytes, as assessed by measuring the cell proliferation capacity. Our results provide evidence that DNA damage is increased and the DNA repair ability is suppressed in porcine aged oocytes. These findings increase our understanding of the events that occur during postovulatory oocyte aging.

13.
Elife ; 102021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263728

RESUMO

MLL-rearranged leukemia depends on H3K79 methylation. Depletion of this transcriptionally activating mark by DOT1L deletion or high concentrations of the inhibitor pinometostat downregulates HOXA9 and MEIS1, and consequently reduces leukemia survival. Yet, some MLL-rearranged leukemias are inexplicably susceptible to low-dose pinometostat, far below concentrations that downregulate this canonical proliferation pathway. In this context, we define alternative proliferation pathways that more directly derive from H3K79me2 loss. By ICeChIP-seq, H3K79me2 is markedly depleted at pinometostat-downregulated and MLL-fusion targets, with paradoxical increases of H3K4me3 and loss of H3K27me3. Although downregulation of polycomb components accounts for some of the proliferation defect, transcriptional downregulation of FLT3 is the major pathway. Loss-of-FLT3-function recapitulates the cytotoxicity and gene expression consequences of low-dose pinometostat, whereas overexpression of constitutively active STAT5A, a target of FLT3-ITD-signaling, largely rescues these defects. This pathway also depends on MLL1, indicating combinations of DOT1L, MLL1 and FLT3 inhibitors should be explored for treating FLT3-mutant leukemia.


Assuntos
Rearranjo Gênico , Histonas/metabolismo , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia/genética , Metilação , Proteína Meis1/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
14.
Cells ; 10(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943918

RESUMO

Experiments on Vicia faba root meristem cells exposed to 150 µM cadmium chloride (CdCl2) were undertaken to analyse epigenetic changes, mainly with respect to DNA replication stress. Histone modifications examined by means of immunofluorescence labeling included: (1) acetylation of histone H3 on lysine 56 (H3K56Ac), involved in transcription, S phase, and response to DNA damage during DNA biosynthesis; (2) dimethylation of histone H3 on lysine 79 (H3K79Me2), correlated with the replication initiation; (3) phosphorylation of histone H3 on threonine 45 (H3T45Ph), engaged in DNA synthesis and apoptosis. Moreover, immunostaining using specific antibodies against 5-MetC-modified DNA was used to determine the level of DNA methylation. A significant decrease in the level of H3K79Me2, noted in all phases of the CdCl2-treated interphase cell nuclei, was found to correspond with: (1) an increase in the mean number of intranuclear foci of H3K56Ac histones (observed mainly in S-phase), (2) a plethora of nuclear and nucleolar labeling patterns (combined with a general decrease in H3T45Ph), and (3) a decrease in DNA methylation. All these changes correlate well with a general viewpoint that DNA modifications and post-translational histone modifications play an important role in gene expression and plant development under cadmium-induced stress conditions.


Assuntos
Cádmio/toxicidade , Replicação do DNA/genética , Epigênese Genética , Meristema/citologia , Meristema/genética , Estresse Fisiológico/genética , Vicia faba/genética , 5-Metilcitosina/metabolismo , Acetilação/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Cromatina/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA de Plantas/metabolismo , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Lisina/metabolismo , Meristema/efeitos dos fármacos , Metilação/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Vicia faba/citologia , Vicia faba/efeitos dos fármacos
15.
Front Cell Dev Biol ; 8: 621578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511133

RESUMO

Chronic myelogenous leukemia (CML) is a type of cancer with a series of characteristics that make it particularly suitable for observations on leukemogenesis. Research have exhibited that the occurrence and progression of CML are associated with the dynamic alterations of histone modification (HM) patterns. In this study, we analyze the distribution patterns of 11 HM signals and calculate the signal changes of these HMs in CML cell lines as compared with that in normal cell lines. Meanwhile, the impacts of HM signal changes on expression level changes of CML-related genes are investigated. Based on the alterations of HM signals between CML and normal cell lines, the up- and down-regulated genes are predicted by the random forest algorithm to identify the key HMs and their regulatory regions. Research show that H3K79me2, H3K36me3, and H3K27ac are key HMs to expression level changes of CML-related genes in leukemogenesis. Especially H3K79me2 and H3K36me3 perform their important functions in all 100 bins studied. Our research reveals that H3K79me2 and H3K36me3 may be the core HMs for the clinical treatment of CML.

16.
Biomolecules ; 10(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244385

RESUMO

Triple-negative breast cancer (TNBC) is among the most aggressive and potentially metastatic malignancies. Most affected patients have poor clinical outcomes due to the lack of specific molecular targets on tumor cells. The upregulated expression of disruptor of telomeric silencing 1-like (DOT1L), a histone methyltransferase specific for the histone H3 lysine 79 residue (H3K79), is strongly correlated with TNBC cell aggressiveness. Therefore, DOT1L is considered a potential molecular target in TNBC. Fluoro-neplanocin A (F-NepA), an inhibitor of S-adenosylhomocysteine hydrolase, exhibited potent antiproliferative activity against various types of cancer cells, including breast cancers. However, the molecular mechanism underlying the anticancer activity of F-NepA in TNBC cells remains to be elucidated. We determined that F-NepA exhibited a higher growth-inhibitory activity against TNBC cells relative to non-TNBC breast cancer and normal breast epithelial cells. Moreover, F-NepA effectively downregulated the level of H3K79me2 in MDA-MB-231 TNBC cells by inhibiting DOT1L activity. F-NepA also significantly inhibited TNBC cell migration and invasion. These activities of F-NepA might be associated with the upregulation of E-cadherin and downregulation of N-cadherin and Vimentin in TNBC cells. Taken together, these data highlight F-NepA as a strong potential candidate for the targeted treatment of high-DOT1L-expressing TNBC.


Assuntos
Adenosina/análogos & derivados , Movimento Celular/efeitos dos fármacos , Halogenação , Histonas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adenosina/química , Adenosina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Humanos , Metilação/efeitos dos fármacos
17.
Cell Mol Immunol ; 17(1): 76-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275539

RESUMO

Epigenetic modification, including histone modification, precisely controls target gene expression. The posttranscriptional regulation of the innate signaling-triggered production of inflammatory cytokines and type I interferons has been fully elucidated, whereas the roles of histone modification alteration and epigenetic modifiers in regulating inflammatory responses need to be further explored. Di/tri-methylation modifications of histone 3 lysine 79 (H3K79me2/3) have been shown to be associated with gene transcriptional activation. Disruptor of telomeric silencing-1-like (Dot1l) is the only known exclusive H3K79 methyltransferase and regulates the proliferation and differentiation of tumor cells. However, the roles of Dot1l and Dot1l-mediated H3K79 methylation in innate immunity and inflammatory responses remain unclear. Here, we found that H3K79me2/3 modification levels at the Il6 and Ifnb1 promoters, as well as H3K79me2 modification at the Tnfα promoter, were increased in macrophages activated by Toll-like receptor (TLR) ligands or virus infection. The innate signals upregulated Dot1l expression in macrophages and THP1 cells. Dot1l silencing or a Dot1l inhibitor preferentially suppressed the production of IL-6 and interferon (IFN)-ß but not of TNF-α in macrophages and THP1 cells triggered by TLR ligands or virus infection. Dot1l was recruited to the proximal promoter of the Il6 and Ifnb1 but not Tnfα gene and then mediated H3K79me2/3 modification at the Il6 and Ifnb1 promoters, consequently facilitating the transcription and expression of Il6 and Ifnb1. Thus, Dot1l-mediated selective H3K79me2/3 modifications at the Il6 and Ifnb1 promoters are required for the full activation of innate immune responses. This finding adds new insights into the epigenetic regulation of inflammatory responses and pathogenesis of autoimmune diseases.


Assuntos
Histona-Lisina N-Metiltransferase/imunologia , Histonas/imunologia , Imunidade Inata , Interferon beta/imunologia , Interleucina-6/imunologia , Macrófagos/imunologia , Animais , Masculino , Metilação , Camundongos
18.
Comput Struct Biotechnol J ; 18: 2657-2669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033585

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world. It has been reported that HCC is closely related to the changes of histone modifications. However, finding histone modification patterns in key genes which related to HCC is still an important task. In our study, the patterns of 11 kinds of histone modifications in the promoter regions for the different types of genes were analyzed by hierarchical screening for hepatocyte (normal) cell line and HepG2 (tumor) cell line. The important histone modifications and their key modification regions in different types of genes were found. The results indicate that these important genes may play a pivotal role in the occurrence of HCC. By analyzing the differences of histone modifications and gene expression levels for these important genes between the two cell lines, we found that the signals of H3K4me3, H3K27ac, H3K9ac, and H3K4me2 in HCC are significantly stronger. The changed regions of important histone modifications in 17 key genes were also identified. For example, the H3K4me3 signals increased 150 times in regions (-1500, -500) bp and (0, 1000) bp of ARHGAP5 in tumor cell line than in normal cell line. Finally, a prognostic risk scoring model was constructed, and the effects of key genes on the prognosis of HCC were verified by the survival analysis. Our results may provide a more precise potential therapeutic targets for identifying key genes and histone modifications in HCC as new biomarkers.

19.
Mol Oncol ; 13(4): 873-893, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30628173

RESUMO

Forkhead box transcription factor M1 (FOXM1) is a proliferation-associated transcription factor involved in tumorigenesis through transcriptional regulation of its target genes in various cells, including dendritic cells (DCs). Although previous work has shown that FOXM1 enhances DC maturation in response to house dust mite allergens, it is not known whether FOXM1 affects DC maturation in the context of tumor-specific immunity. In this study, we examined the central role of FOXM1 in regulating bone marrow-derived dendritic cell (BMDC) maturation phenotypes and function in pancreatic cancer and colon cancer. FOXM1 retarded maturation phenotypes of BMDCs, inhibited promotion of T-cell proliferation, and decreased interleukin-12 (IL-12) p70 in tumor-bearing mice (TBM). Notably, FOXM1 expression was epigenetically regulated by dimethylation on H3 lysine 79 (H3K79me2), a modification present in both tumor cells and BMDCs. Increased H3K79me2 enrichment was observed at the FOXM1 promoter in both BMDCs from TBM, and in BMDCs from wild-type mice cultured with tumor-conditioned medium that mimics the tumor microenvironment (TME). Furthermore, inhibition of the H3K79 methyltransferase DOT1L not only decreased enrichment of H3K79me2, but also downregulated expression of FOXM1 and partially reversed its immunosuppressive effects on BMDCs. Furthermore, we found that FOXM1 upregulated transcription of Wnt family number 5A (Wnt5a) in BMDCs in vitro; we also observed that exogenous Wnt5a expression abrogated BMDC maturation phenotypes by inhibiting FOXM1 and H3K79me2 modification. Therefore, our results reveal that upregulation of FOXM1 by H3K79me2 in pancreatic cancer and colon cancer significantly inhibits maturation phenotypes and function of BMDCs through the Wnt5a signaling pathway, and thus provide novel insights into FOXM1-based antitumor immunotherapy.


Assuntos
Diferenciação Celular , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células Dendríticas/patologia , Epigênese Genética , Proteína Forkhead Box M1/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Epigênese Genética/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilação , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Compostos de Fenilureia/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tioestreptona/farmacologia , Proteína Wnt-5a/metabolismo
20.
Genome Med ; 10(1): 30, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665865

RESUMO

BACKGROUND: Accumulating evidence suggests alternative splicing (AS) is a co-transcriptional splicing process not only controlled by RNA-binding splicing factors, but also mediated by epigenetic regulators, such as chromatin structure, nucleosome density, and histone modification. Aberrant AS plays an important role in regulating various diseases, including cancers. METHODS: In this study, we integrated AS events derived from RNA-seq with H3K79me2 ChIP-seq data across 34 different normal and cancer cell types and found the higher enrichment of H3K79me2 in two AS types, skipping exon (SE) and alternative 3' splice site (A3SS). RESULTS: Interestingly, by applying self-organizing map (SOM) clustering, we unveiled two clusters mainly comprised of blood cancer cell types with a strong correlation between H3K79me2 and SE. Remarkably, the expression of transcripts associated with SE was not significantly different from that of those not associated with SE, indicating the involvement of H3K79me2 in splicing has little impact on full mRNA transcription. We further showed that the deletion of DOT1L1, the sole H3K79 methyltransferase, impeded leukemia cell proliferation as well as switched exon skipping to the inclusion isoform in two MLL-rearranged acute myeloid leukemia cell lines. Our data demonstrate H3K79me2 was involved in mediating SE processing, which might in turn influence transformation and disease progression in leukemias. CONCLUSIONS: Collectively, our work for the first time reveals that H3K79me2 plays functional and regulatory roles through a co-transcriptional splicing mechanism.


Assuntos
Processamento Alternativo/genética , Histonas/metabolismo , Lisina/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Éxons/genética , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Histona-Lisina N-Metiltransferase , Humanos , Metilação , Metiltransferases/metabolismo , Neoplasias/genética , Motivos de Nucleotídeos/genética , Sítios de Splice de RNA/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa