RESUMO
Secondary metabolites are produced by microbes in minimal quantities in the natural environment out of necessity. However, in the pharmaceutical industry, their overproduction becomes essential. To achieve higher yields, genetic modifications are employed to create strains that surpass the productivity of the initially isolated strains. While rational screening and genetic engineering have emerged as valuable practices in recent years, the cost-effective technique of mutagenesis and selection, known as "random screening," remains a preferred method for efficient short-term strain development. This review aims to comprehensively explore all aspects of strain improvement, focusing on why random mutagenesis continues to be widely adopted.
Assuntos
Antibacterianos , Meio Ambiente , Antibacterianos/farmacologia , Edição de Genes , Engenharia Genética , Mutagênese/genéticaRESUMO
This perspective text focuses on the pivotal role and historical position that the late Prof. Arnold L. (Arny) Demain has taken since the 1950s in the rise and impact of the field of industrial microbiology and biotechnology. His drive toward academic research with industrial potential-first at Merck & Co. and later at MIT-, his feeling for establishing cordial personal contacts with his students and postdocs (Arny's Army) and his ability for worldwide networking are outlined here, intertwined with the author's personal experiences and impressions. His scientific output is legendary as to research papers, comprehensive reviews, books, and lectures at conferences worldwide. Some of his research experiences in industry and academia are mentioned in a historical context as well as his relentless efforts to advocate the importance and impact of industrial microbiology and biotechnology as an essential green technology for our planet Earth.
Assuntos
Biotecnologia , Microbiologia Industrial , Humanos , IndústriasRESUMO
The Actinomycetales order is one of great genetic and functional diversity, including diversity in the production of secondary metabolites which have uses in medical, environmental rehabilitation, and industrial applications. Secondary metabolites produced by actinomycete species are an abundant source of antibiotics, antitumor agents, anthelmintics, and antifungals. These actinomycete-derived medicines are in circulation as current treatments, but actinomycetes are also being explored as potential sources of new compounds to combat multidrug resistance in pathogenic bacteria. Actinomycetes as a potential to solve environmental concerns is another area of recent investigation, particularly their utility in the bioremediation of pesticides, toxic metals, radioactive wastes, and biofouling. Other applications include biofuels, detergents, and food preservatives/additives. Exploring other unique properties of actinomycetes will allow for a deeper understanding of this interesting taxonomic group. Combined with genetic engineering, microbial experimental evolution, and other enhancement techniques, it is reasonable to assume that the use of marine actinomycetes will continue to increase. Novel products will begin to be developed for diverse applied research purposes, including zymology and enology. This paper outlines the current knowledge of actinomycete usage in applied research, focusing on marine isolates and providing direction for future research.
Assuntos
Actinobacteria , Organismos Aquáticos , Biotecnologia , HumanosRESUMO
BACKGROUND: Oenococcus oeni is a lactic acid bacteria species adapted to the low pH, ethanol-rich environments of wine and cider fermentation, where it performs the crucial role of malolactic fermentation. It has a small genome and has lost the mutS-mutL DNA mismatch repair genes, making it a hypermutable and highly specialized species. Two main lineages of strains, named groups A and B, have been described to date, as well as other subgroups correlated to different types of wines or regions. A third group "C" has also been hypothesized based on sequence analysis, but it remains controversial. In this study we have elucidated the species population structure by sequencing 14 genomes of new strains isolated from cider and kombucha and performing comparative genomics analyses. RESULTS: Sequence-based phylogenetic trees confirmed a population structure of 4 clades: The previously identified A and B, a third group "C" consisting of the new cider strains and a small subgroup of wine strains previously attributed to group B, and a fourth group "D" exclusively represented by kombucha strains. A pair of complete genomes from group C and D were compared to the circularized O. oeni PSU-1 strain reference genome and no genomic rearrangements were found. Phylogenetic trees, K-means clustering and pangenome gene clusters evidenced the existence of smaller, specialized subgroups of strains. Using the pangenome, genomic differences in stress resistance and biosynthetic pathways were found to uniquely distinguish the C and D clades. CONCLUSIONS: The obtained results, including the additional cider and kombucha strains, firmly established the O. oeni population structure. Group C does not appear as fully domesticated as group A to wine, but showed several unique patterns which may be due to ongoing specialization to the cider environment. Group D was shown to be the most divergent member of O. oeni to date, appearing as the closest to a pre-domestication state of the species.
Assuntos
Biodiversidade , Genoma Bacteriano , Chá de Kombucha , Malus/química , Oenococcus/classificação , Oenococcus/genética , Vinho , Filogenia , Sequenciamento Completo do GenomaRESUMO
Microbes can be engineered to synthesize a wide array of bioproducts, yet production phenotype evaluation remains a frequent bottleneck in the design-build-test cycle where strain development requires iterative rounds of library construction and testing. Here, we present Syntrophic Co-culture Amplification of Production phenotype (SnoCAP). Through a metabolic cross-feeding circuit, the production level of a target molecule is translated into highly distinguishable co-culture growth characteristics, which amplifies differences in production into highly distinguishable growth phenotypes. We demonstrate SnoCAP with the screening of Escherichia coli strains for production of two target molecules: 2-ketoisovalerate, a precursor of the drop-in biofuel isobutanol, and L-tryptophan. The dynamic range of the screening can be tuned by employing an inhibitory analog of the target molecule. Screening based on this framework requires compartmentalization of individual producers with the sensor strain. We explore three formats of implementation with increasing throughput capability: confinement in microtiter plates (102-104 assays/experiment), spatial separation on agar plates (104-105 assays/experiment), and encapsulation in microdroplets (105-107 assays/experiment). Using SnoCAP, we identified an efficient isobutanol production strain from a random mutagenesis library, reaching a final titer that is 5-fold higher than that of the parent strain. The framework can also be extended to screening for secondary metabolite production using a push-pull strategy. We expect that SnoCAP can be readily adapted to the screening of various microbial species, to improve production of a wide range of target molecules.
Assuntos
Engenharia Metabólica , Mutagênese , Fenótipo , Técnicas de Cocultura , Escherichia coli/genética , Escherichia coli/metabolismo , Testes GenéticosRESUMO
The need to increase sustainability in agriculture, to ensure food security for the future generations, is leading to the emergence of industrial rearing facilities for insects. One promising species being industrially reared as an alternative protein source for animal feed and as a raw material for the chemical industry is the black soldier fly (Hermetia illucens). However, scientific knowledge toward the optimization of the productivity for this insect is scarce. One knowledge gap concerns the impact of the microbial community associated with H. illucens on the performance and health of this insect. In this review, the first steps in the characterization of the microbiota in H. illucens and the analysis of substrate-dependent dynamics in its composition are summarized and discussed. Furthermore, this review zooms in on the interactions between microorganisms and the insect during H. illucens development. Finally, attention is paid to how the microbiome research can lead to alternative valorization strategies for H. illucens, such as (i) the manipulation of the microbiota to optimize insect biomass production and (ii) the exploitation of the H. illucens-microbiota interplay for the discovery of new enzymes and novel antimicrobial strategies based on H. illucens immunity using either the whole organism or its molecules. The next decade promises to be extremely interesting for this research field and will see an emergence of the microbiological optimization of H. illucens as a sustainable insect for industrial rearing and the exploitation of its microbiome for novel biotechnological applications.
Assuntos
Ração Animal/microbiologia , Dípteros/microbiologia , Microbiota , Ração Animal/análise , Animais , Dípteros/crescimento & desenvolvimento , Larva/microbiologiaRESUMO
The aim of this study was to analyze the bacterial community in the production line of a calcium carbonate filler production company and to investigate possible causes for bacterial presence. Throughout 2012, 24 carbonate slurry and six groundwater samples were analyzed. Pseudomonas and Microbacterium were the most frequent contaminants in the slurry, whereas Pseudomonas and Brevundimonas dominated the groundwater samples. Of the 43 different bacterial strains isolated, only five were found both in the slurry and the groundwater, indicating that the latter was not a major source of contamination. The efficacy of 54 commercial biocidal formulations was tested against an artificial bacterial consortium composed of selected slurry isolates. A formulation containing 7.5-15% (v v-1) bronopol and 1.0-2.5% (v v-1) [chloroisothiazolinone (CIT) + methylisothiazolinone (MIT)] exhibited the highest efficacy. Of the possible causes for bacterial presence, sporogenesis and biocide adsorption to carbonate particles were found to be less probable compared to bacterial adsorption to particles, and the acquisition of resistance to biocides.
Assuntos
Carbonato de Cálcio/química , Materiais de Construção/microbiologia , Descontaminação/métodos , Desinfetantes/farmacologia , Água Subterrânea/microbiologia , Pseudomonas/isolamento & purificação , Materiais de Construção/análise , Água Subterrânea/análise , Testes de Sensibilidade Microbiana , Pseudomonas/efeitos dos fármacosRESUMO
BACKGROUND: Oenococcus oeni is a lactic acid bacterium that is specialised for growth in the ecological niche of wine, where it is noted for its ability to perform the secondary, malolactic fermentation that is often required for many types of wine. Expanding the understanding of strain-dependent genetic variations in its small and streamlined genome is important for realising its full potential in industrial fermentation processes. RESULTS: Whole genome comparison was performed on 191 strains of O. oeni; from this rich source of genomic information consensus pan-genome assemblies of the invariant (core) and variable (flexible) regions of this organism were established. Genetic variation in amino acid biosynthesis and sugar transport and utilisation was found to be common between strains. Furthermore, we characterised previously-unreported intra-specific genetic variations in the natural competence of this microbe. CONCLUSION: By assembling a consensus pan-genome from a large number of strains, this study provides a tool for researchers to readily compare protein-coding genes across strains and infer functional relationships between genes in conserved syntenic regions. This establishes a foundation for further genetic, and thus phenotypic, research of this industrially-important species.
Assuntos
Variação Genética , Genoma Bacteriano , Genômica/métodos , Oenococcus/genética , Vinho/microbiologia , Sequência de Aminoácidos , Aminoácidos/biossíntese , Metabolismo dos Carboidratos , Fermentação , Microbiologia de Alimentos , Ácido Láctico/metabolismo , Dados de Sequência MolecularRESUMO
Methanol synthesized from captured greenhouse gases is an emerging renewable feedstock with great potential for bioproduction. Recent research has raised the prospect of methanol bioconversion to value-added products using synthetic methylotrophic Escherichia coli, as its metabolism can be rewired to enable growth solely on the reduced one-carbon compound. Here we describe the generation of an E. coli strain that grows on methanol at a doubling time of 4.3 h-comparable to many natural methylotrophs. To establish bioproduction from methanol using this synthetic chassis, we demonstrate biosynthesis from four metabolic nodes from which numerous bioproducts can be derived: lactic acid from pyruvate, polyhydroxybutyrate from acetyl coenzyme A, itaconic acid from the tricarboxylic acid cycle and p-aminobenzoic acid from the chorismate pathway. In a step towards carbon-negative chemicals and valorizing greenhouse gases, our work brings synthetic methylotrophy in E. coli within reach of industrial applications.
RESUMO
The LEPR (leptin receptor) genotype is associated with obesity. Gut microbiome composition differs between obese and non-obese adults. However, the impact of LEPR genotype on gut microbiome composition in humans has not yet been studied. In this study, the association between LEPR single nucleotide polymorphism (rs1173100, rs1137101, and rs790419) and the gut microbiome composition in 65 non-obese Korean adults was investigated. Leptin, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels were also measured in all participants. Mean ± SD (standard deviation) of age, body mass index, and leptin hormone levels of participants was 35.2 ± 8.1 years, 21.4 ± 1.8 kg/m2, and 7989.1 ± 6687.4 pg/mL, respectively. Gut microbiome analysis was performed at the phylum level by 16S rRNA sequencing. Among the 11 phyla detected, only one showed significantly different relative abundances between LEPR genotypes. The relative abundance of Candidatus Saccharibacteria was higher in the G/A genotype group than in the G/G genotype group for the rs1137101 single nucleotide polymorphism (p=0.0322). Participant characteristics, including body mass index, leptin levels, and other lipid levels, were similar between the rs1137101 G/G and G/A genotypes. In addition, the relative abundances of Fusobacteria and Tenericutes showed significant positive relationship with plasma leptin concentrations (p=0.0036 and p=0.0000, respectively). In conclusion, LEPR genotype and gut microbiome may be associated even in normal-weight Korean adults. However, further studies with a greater number of obese adults are needed to confirm whether LEPR genotype is related to gut microbiome composition.
RESUMO
The CRISPR-Cas9 system has been widely applied for industrial microbiology but is not effective in certain microorganisms. This forum explores the strategies aimed at overcoming these challenges, including the use of the Cas12a system, Cas9 variants, and non-CRISPR techniques, to provide more effective strategies for expanding applications in microbial engineering.
RESUMO
3-hydroxypropionic acid (3-HP) is among the top platform chemicals proposed for bio based production by microbial fermentation from renewable resources. A promising renewable substrate for 3-HP production is crude glycerol. Only a few microorganisms can efficiently convert glycerol to 3-HP. Among the most promising organisms is Lentilactobacillus diolivorans. In this study, an already established fed-batch process, accumulating 28 g/L 3-HP, was used as a starting point for process engineering. The engineering approaches focused on modulating the cellular redox household towards a more oxidized state, as these conditions favour 3-HP production. Variations of oxygen and glucose availability (controlled by the glucose/glycerol ratio in the feed medium) individually already improved 3-HP production. However, the combination of both optimal parameters (30% O2, 0.025 mol/mol glu/gly) led to the production of 67.7 g/L 3-HP after 180 h of cultivation, which is so far the highest titer reported for 3-HP production using Lactobacillus spp.
Assuntos
Glicerol , Lactobacillus , Glucose , Oxirredução , Estresse Oxidativo , Engenharia MetabólicaRESUMO
Yarrowia lipolytica possesses natural and engineered traits that make it a good host for the industrial bioproduction of chemicals, fuels, foods, and pharmaceuticals. In recent years, academic and industrial researchers have assessed its potential, developed synthetic biology techniques, improved its features, scaled its processes, and identified its limitations. Both publications and patents related to Y. lipolytica have shown a drastic increase during the past decade. Here, we discuss the characteristics of this yeast that make it suitable for industry and the remaining challenges for its wider use at large scale. We present evidence herein that shows the importance and potential of Y. lipolytica in bioproduction such that it may soon be one of the preferred choices of industry.
Assuntos
Yarrowia , Yarrowia/genética , Engenharia Metabólica/métodos , Indústrias , Biologia SintéticaRESUMO
Melanin is a complex multifunctional pigment found in all kingdoms of life, including fungi. The complex chemical structure of fungal melanins, yet to be fully elucidated, lends them multiple unique functions ranging from radioprotection and antioxidant activity to heavy metal chelation and organic compound absorption. Given their many biological functions, fungal melanins present many possibilities as natural compounds that could be exploited for human use. This review summarizes the current discourse and attempts to apply fungal melanin to enhance human health, remove pollutants from ecosystems, and streamline industrial processes. While the potential applications of fungal melanins are often discussed in the scientific community, they are successfully executed less often. Some of the challenges in the applications of fungal melanin to technology include the knowledge gap about their detailed structure, difficulties in isolating melanotic fungi, challenges in extracting melanin from isolated species, and the pathogenicity concerns that accompany working with live melanotic fungi. With proper acknowledgment of these challenges, fungal melanin holds great potential for societal benefit in the coming years.
RESUMO
The Burkholderia cepacia complex (Bcc) is a closely related group of bacteria, composed of at least 20 different species, the accurate identification of which is essential in the context of infectious diseases. In industry, they can contaminate non-food products, including home and personal care products and cosmetics. The Bcc are problematic contaminants due to their ubiquitous presence and intrinsic antimicrobial resistance, which enables them to occasionally overcome preservation systems in non-sterile products. Burkholderia lata and Burkholderia contaminans are amongst the Bcc bacteria encountered most frequently as industrial contaminants, but their identification is not straightforward. Both species were historically established as a part of a group known collectively as taxon K, based upon analysis of the recA gene and multilocus sequence typing (MLST). Here, we deploy a straightforward genomics-based workflow for accurate Bcc classification using average nucleotide identity (ANI) and core-gene analysis. The workflow was used to examine a panel of 23 Burkholderia taxon K industrial strains, which, based on MLST, comprised 13 B. lata, 4 B. contaminans and 6 unclassified Bcc strains. Our genomic identification showed that the B. contaminans strains retained their classification, whilst the remaining strains were reclassified as Burkholderia aenigmatica sp. nov. Incorrect taxonomic identification of industrial contaminants is a problematic issue. Application and testing of our genomic workflow allowed the correct classification of 23 Bcc industrial strains, and also indicated that B. aenigmatica sp. nov. may have greater importance than B. lata as a contaminant species. Our study illustrates how the non-food manufacturing industry can harness whole-genome sequencing to better understand antimicrobial-resistant bacteria affecting their products.
Assuntos
Burkholderia/isolamento & purificação , Genoma Bacteriano , Microbiologia Industrial , Burkholderia/classificação , Burkholderia/genética , Genômica , Tipagem de Sequências Multilocus , FilogeniaRESUMO
Lactic acid bacteria (LAB) are a group of highly specialised bacteria specifically adapted to a diverse range of habitats. They are found in the gut of humans and other animals, in many food fermentations, and on plants. Their natural specialisation in close relation to human activities make them particularly interesting from an industrial point of view. They are relevant not only for traditional food fermentations, but also as probiotics, potential therapeutics and cell factories for the production of many different products. Many new tools and methods are being developed to analyse and modify these microorganisms. This review shall give an overview highlighting some of the most striking characteristics of lactic acid bacteria and our approaches to harness their potential in many respects - from home made food to industrial chemical production, from probiotic activities to the most modern cancer treatments and vaccines.
Assuntos
Lactobacillales , Probióticos , Animais , Fermentação , Microbiologia de Alimentos , HumanosRESUMO
The increasing global perception of the importance of microbial inoculants to promote productivity and sustainability in agriculture prompts the adoption of bio-inputs by the farmers. The utilization of selected elite strains of nitrogen-fixing and other plant-growth promoting microorganisms in single inoculants creates a promising market for composite inoculants. However, combining microorganisms with different physiological and nutritional needs requires biotechnological development. We report the development of a composite inoculant containing Bradyrhizobium diazoefficiens and Azospirillum brasilense for the soybean crop. Evaluation of use of carbon sources indicates differences between the microbial species, with Bradyrhizobium growing better with mannitol and glycerol, and Azospirillum with malic acid and maleic acid, allowing the design of a formulation for co-culture. Species also differ in their growth rates, and the best performance of both microorganisms occurred when Azospirillum was inoculated on the third day of growth of Bradyrhizobium. The composite inoculant developed was evaluated in five field trials performed in Brazil, including areas without and with naturalized populations of Bradyrhizobium. The composite inoculant resulted in symbiotic performance comparable to the application of the two microorganisms separately. In comparison to the single inoculation with Bradyrhizobium, co-inoculation resulted in average increases of 14.7% in grain yield and 16.4% in total N accumulated in the grains. The performance of the composite inoculant was similar or greater than that of the non-inoculated control receiving a high dose of N-fertilizer, indicating the importance of the development and validation of inoculants carrying multiple beneficial microorganisms.
RESUMO
Biofilm formation by foodborne pathogens is a serious threat to food safety and public health. Meat processing plants may harbor various microorganisms and occasional foodborne pathogens; thus, the environmental microbial community might impact pathogen survival via mixed biofilm formation. We collected floor drain samples from two beef plants with different E. coli O157:H7 prevalence history and investigated the effects of the environmental microorganisms on pathogen sanitizer tolerance. The results showed that biofilm forming ability and bacterial species composition varied considerably based on the plants and drain locations. E. coli O157:H7 cells obtained significantly higher sanitizer tolerance in mixed biofilms by samples from the plant with recurrent E. coli O157:H7 prevalence than those mixed with samples from the other plant. The mixed biofilm that best protected E. coli O157:H7 also had the highest species diversity. The percentages of the species were altered significantly after sanitization, suggesting that the community composition affects the role and tolerance level of each individual species. Therefore, the unique environmental microbial community, their ability to form biofilms on contact surfaces and the interspecies interactions all play roles in E. coli O157:H7 persistence by either enhancing or reducing pathogen survival within the biofilm community.
RESUMO
The importance of microbiology has grown exponentially since the development of genomics, transcriptomics, and proteomics, making it possible to clarify microbial biogeochemical processes and their interactions with macroorganisms in both health and disease. Particular attention is being payed to applied microbiology, a discipline that deals with the application of microorganisms to specific endeavors, whose economic value is expected to exceed USD 675.2 billion by 2024. In the Special Issue "Recent Advances in Applied Microbiology", twenty-four papers were published (four reviews and twenty original research papers), covering a wide range of subjects within applied microbiology, including: microbial pathogenesis, the health-promoting properties of microorganisms and their by-products, food conservation, the production of alcoholic beverages, bioremediation and the application of microbiology to several industrial processes.
RESUMO
Plant oil based industrial oleochemistry leads to a large side stream of crude glycerol, which offers itself as a low price carbon source for microbial chemical production. Compared to sugar, glycerol is more reduced and less microorganisms are able to use it as carbon source. An interesting feature of glycerol conversion is that many organisms cannot use it as carbon source at all, but they readily use it as electron sink under anaerobic conditions. In any case the number of pathways by which glycerol enters the microbial metabolism is quite limited. Having said this, an interesting variety of products of industrial relevance is accumulated by naturally occurring microorganisms which can use glycerol. These chemicals range from fuels and solvents to polymer precursors up to food additives. The limited number of metabolic pathways and the manageable amount of products allow to highlight the importance of tapping the outstanding resource of biodiversity for industrial purposes. The interplay of microbial biodiversity, metabolic engineering and bioprocess engineering is key for economic success in industrial microbiology. In this article we shed light on the biodiversity of naturally glycerol consuming microorganisms and their impact and importance on microbial chemical production.