RESUMO
Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.
Assuntos
Proteínas Quinases Ativadas por AMP , Antivirais , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Metabolismo dos Lipídeos , Replicação Viral , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Camundongos , Antivirais/farmacologia , Humanos , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/virologia , Proteínas Quinases Ativadas por AMP/metabolismo , Chalconas/farmacologia , Triterpenos/farmacologia , Proteínas não Estruturais Virais/metabolismo , Infecções por Flavivirus/tratamento farmacológico , Infecções por Flavivirus/virologia , Infecções por Flavivirus/metabolismo , Flavivirus/efeitos dos fármacos , Linhagem CelularRESUMO
Cryptococcus neoformans has been designated as critical fungal pathogens by the World Health Organization, mainly due to limited treatment options and the prevalence of antifungal resistance. Consequently, the utilization of novel antifungal agents is crucial for the effective treatment of C. neoformans infections. This study exposed that the minimum inhibitory concentration (MIC) of isobavachalcone (IBC) against C. neoformans H99 was 8 µg/mL, and IBC dispersed 48-h mature biofilms by affecting cell viability at 16 µg/mL. The antifungal efficacy of IBC was further validated through microscopic observations using specific dyes and in vitro assays, which confirmed the disruption of cell wall/membrane integrity. RNA-Seq analysis was employed to decipher the effect of IBC on the C. neoformans H99 transcriptomic profiles. Real-time quantitative reverse transcription PCR (RT-qPCR) analysis was performed to validate the transcriptomic data and identify the differentially expressed genes. The results showed that IBC exhibited various mechanisms to impede the growth, biofilm formation, and virulence of C. neoformans H99 by modulating multiple dysregulated pathways related to cell wall/membrane, drug resistance, apoptosis, and mitochondrial homeostasis. The transcriptomic findings were corroborated by the antioxidant analyses, antifungal drug sensitivity, molecular docking, capsule, and melanin assays. In vivo antifungal activity analysis demonstrated that IBC extended the lifespan of C. neoformans-infected Caenorhabditis elegans. Overall, the current study unveiled that IBC targeted multiple pathways simultaneously to inhibit growth significantly, biofilm formation, and virulence, as well as to disperse mature biofilms of C. neoformans H99 and induce cell death.
Assuntos
Chalconas , Criptococose , Cryptococcus neoformans , Animais , Cryptococcus neoformans/genética , Antifúngicos/farmacologia , RNA-Seq , Simulação de Acoplamento Molecular , Biofilmes , Caenorhabditis elegansRESUMO
Isobavachalcone (IBC) is a flavonoid component of the traditional Chinese medicine Psoraleae Fructus, with a range of pharmacological properties. However, IBC causes some hepatotoxicity, and the mechanism of toxicity is unclear. The purpose of this paper was to investigate the possible mechanism of toxicity of IBC on HepG2 cells and zebrafish embryos. The results showed that exposure to IBC increased zebrafish embryo mortality and decreased hatchability. Meanwhile, IBC induced liver injury and increased expression of ALT and AST activity. Further studies showed that IBC caused the increase of ROS and MDA the decrease of CAT, GSH, and GSH-Px; the increase of Fe2+ content; and the changes of ferroptosis related genes (acsl4, gpx4, and xct) and iron storage related genes (tf, fth, and fpn) in zebrafish embryos. Through in vitro verification, it was found that IBC also caused oxidative stress and increased Fe2+ content in HepG2 cells. IBC caused depolarization of mitochondrial membrane potential (MMP) and reduction of mitochondrial ATP, as well as altered expression of ACSl4, SLC7A11, GPX4, and FTH1 proteins. Treatment of HepG2 cells with ferrostatin-1 could reverse the effect of IBC. Targeting the System Xc--GSH-GPX4 pathway of ferroptosis and preventing oxidative stress damage might offer a theoretical foundation for practical therapy and prevention of IBC-induced hepatotoxicity.
Assuntos
Chalconas , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Humanos , Chalconas/toxicidade , Chalconas/farmacologia , Ferroptose/efeitos dos fármacos , Células Hep G2 , Transdução de Sinais/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Embrião não Mamífero/efeitos dos fármacos , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacosRESUMO
Isobavachalcone (IBC) is a flavonoid component derived from Psoraleae Fructus that can increase skin pigmentation and treat vitiligo. However, IBC has been reported to be hepatotoxic. Current studies on IBC hepatotoxicity are mostly on normal organisms but lack studies on hepatotoxicity in patients. This study established the depigmented zebrafish model by using phenylthiourea (PTU) and investigated the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC and the underlying mechanism. Morphological, histological, and ultrastructural examination and RT-qPCR verification were used to evaluate the effects of IBC on the livers of zebrafish larvae. IBC significantly decreased liver volume, altered lipid metabolism, and induced pathological and ultrastructural changes in the livers of zebrafish with depigmentation compared with normal zebrafish. The RNA-sequencing and RT-qPCR results showed that the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC was closely related to the calcium signaling pathway, lipid decomposition and metabolism, and oxidative stress. This work delved into the mechanism of the enhanced IBC-induced hepatotoxicity in depigmented zebrafish and provided a new insight into the hepatotoxicity of IBC.
Assuntos
Sinalização do Cálcio , Chalconas , Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Chalconas/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacosRESUMO
In this study, seventeen isobavachalcone (IBC) derivatives (1-17) were synthesised, and evaluated for their cytotoxic activity against three human lung cancer cell lines. Among these derivatives, compound 16 displayed the most potent cytotoxic activity against H1975 and A549 cells, with IC50 values of 4.35 and 14.21 µM, respectively. Compared with IBC, compound 16 exhibited up to 4.11-fold enhancement of cytotoxic activity on human non-small cell lung cancer H1975 cells. In addition, we found that compound 16 suppressed H1975 cells via inducing apoptosis and necroptosis. The initial mechanism of compound 16 induced cell death in H1975 cells involves the increasing of Bax/Bcl-2 ratio and Cyt C protein level, down-regulating of Akt protein level, and cleaving caspase-9 and -3 induced apoptosis; the up-regulation of RIP3, p-RIP3, MLKL, and p-MLKL levels induced necroptosis. Moreover, compound 16 also caused mitochondrial dysfunction, thereby decreasing cellular ATP levels, and resulting in excessive reactive oxygen species (ROS) accumulation.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Necroptose , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismoRESUMO
Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.
Assuntos
Chalconas , Sirtuína 2 , Neoplasias de Mama Triplo Negativas , Humanos , Sirtuína 2/farmacologia , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína)/farmacologia , Tubulina (Proteína)/uso terapêutico , Proliferação de Células , ApoptoseRESUMO
Inhibition of extensive osteoclastogenesis and bone resorption is considered a potential therapeutic target for the treatment of osteoporosis. Isobavachalcone (IBC) is derived from the traditional Chinese herb Psoralea corylifolia Linn. We showed that IBC dose-dependently suppressed receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis in bone marrow monocyte/macrophage (BMMs) and osteoclastic bone-resorption function without cytotoxicity at a dose of no more than 8 µmin vitro. Mechanistically, the results of western blot and quantitative real-time polymerase chain reaction (qRT-PCR) indicated that IBC inhibited the RANKL-induced degradation of IκBα and phosphorylation of nuclear factor kappa B (NF-κB) in BMMs, and subsequently downregulated the expression of osteoclastic-specific genes and osteoclastogenesis-related proteins. TRAP staining and qRT-PCR showed that IBC can inhibit osteoclast differentiation by down-regulating the expression of miR-193-3p on osteoclast differentiation. Overall, our findings suggest that IBC may serve as a promising compound for the treatment of osteoporosis and other metabolic bone diseases.
Assuntos
Reabsorção Óssea , MicroRNAs , Osteoporose , Humanos , NF-kappa B/metabolismo , Osteogênese , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Transdução de Sinais , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osteoporose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismoRESUMO
Blister blight (BB) disease is caused by the obligate biotrophic fungal pathogen Exobasidium vexans Massee and seriously affects the yield and quality of Camellia sinensis. The use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption. Botanic fungicide isobavachalcone (IBC) has the potential to control fungal diseases on many crops but has not been used on tea plants. In this study, the field control effects of IBC were evaluated by comparison and in combination with natural elicitor chitosan oligosaccharides (COSs) and the chemical pesticide pyraclostrobin (Py), and the preliminary action mode of IBC was also investigated. The bioassay results for IBC or its combination with COSs showed a remarkable control effect against BB (61.72% and 70.46%). IBC, like COSs, could improve the disease resistance of tea plants by enhancing the activity of tea-plant-related defense enzymes, including polyphenol oxidase (PPO), catalase (CAT), phenylalanine aminolase (PAL), peroxidase (POD), superoxide dismutase (SOD), ß-1,3-glucanase (Glu), and chitinase enzymes. The fungal community structure and diversity of the diseased tea leaves were examined using Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of the ribosomal rDNA genes. It was obvious that IBC could significantly alter the species' richness and the diversity of the fungal community in affected plant sites. This study broadens the application range of IBC and provides an important strategy for the control of BB disease.
Assuntos
Camellia sinensis , Chalconas , Camellia sinensis/genética , Resistência à Doença/genética , Chalconas/farmacologia , Chá , Doenças das Plantas/microbiologiaRESUMO
Isobavachalcone (IBC), also known as isobapsoralcone, is a natural flavonoid widely derived from many medicinal plants, including Fabaceae, Moraceae, and so forth. IBC has been paid more and more attention by researchers in recent years due to its pharmacological activity in many diseases. This review aims to describe in detail the plant sources, pharmacokinetics, toxicity, pharmacological activities, and molecular mechanisms of IBC on various diseases. We found that IBC can be obtained not only by extraction but also by chemical synthesis. Pharmacokinetic studies have shown that IBC has low bioavailability, but can penetrate the blood-brain barrier and is widely distributed in the brain. Its pharmacological activities mainly include anticancer, antibacterial, anti-inflammatory, antiviral, neuroprotective, bone protection, and other activities. In particular, IBC shows strong anti-tumor and anti-inflammatory therapeutic potential due to its anti-cancer and anti-inflammatory activities. However, due to its hepatotoxicity, there may be more drug interactions. Therefore, more and more in-depth studies are needed for its clinical application. Mechanically, IBC can induce the production of reactive oxygen species (ROS), inhibit AKT, ERK, and Wnt pathways, and promote apoptosis of cancer cells through mitochondrial or endoplasmic reticulum pathways. IBC can inhibit the NF-κB pathway and the production of multiple inflammatory mediators by activating NRF2/HO-1 pathway, thus producing anti-inflammatory effects. Moreover, we discussed the limitations of current research on IBC and put forward some new perspectives and challenges, which provide a strong basis for clinical application and new drug development of IBC in the future.
Assuntos
Chalconas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose , Chalconas/química , Chalconas/farmacologia , NF-kappa B/metabolismoRESUMO
Toll-like receptors (TLRs) are integral membrane-bound receptors that are central to innate and adaptive immune responses. They are known to activate a cascade of downstream signals to induce the secretion of inflammatory cytokines, chemokines, and type I interferons. Dysregulated activation of TLR signaling pathways can induce the activation of various transcription factors, such as nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). TLRs act via MyD88- and TRIF-mediated pathways to induce inflammatory responses. To evaluate the therapeutic potential of isobavachalcone (IBC), a natural chalcone component of Angelica keiskei, we examined its effects on signal transduction via TLR signaling pathways. IBC inhibited the activation of NF-κB and IRF3 induced by TLR agonists and their target genes. IBC also inhibited the activation of NF-κB and IRF3 induced by overexpression of downstream signaling components of TLR signaling pathways. These results suggest that IBC can regulate both MyD88- and TRIF-dependent signaling pathways of TLRs, resulting in a dramatic increase of new therapeutic options for various inflammatory diseases involving TLRs.
Assuntos
Chalconas , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/farmacologia , Chalconas/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , NF-kappa B , Transdução de Sinais , Relação Estrutura-Atividade , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismoRESUMO
Standardized treatment guidelines and effective drugs are not available for human triple-negative breast cancer (TNBC). Many efforts have recently been exerted to investigate the efficacy of natural compounds as anticancer agents owing to their low toxicity. However, no study has examined the effects of isobavachalcone (IBC) on the programmed cell death (PCD) of human triple-negative breast MDA-MB-231 cancer cells. In this study, IBC substantially inhibited the proliferation of MDA-MB-231 cells in concentration- and time-dependent manners. In addition, we found that IBC induced multiple cell death processes, such as apoptosis, necroptosis, and autophagy in MDA-MB-231 cells. The initial mechanism of IBC-mediated cell death in MDA-MB-231 cells involves the downregulation of Akt and p-Akt-473, an increase in the Bax/Bcl-2 ratio, and cleaved caspases-3 induced apoptosis; the upregulation of RIP3, p-RIP3 and MLKL induced necroptosis; as well as a simultaneous increase in LC3-II/I ratio induced autophagy. In addition, we observed that IBC induced mitochondrial dysfunction, thereby decreasing cellular ATP levels and increasing reactive oxygen species accumulation to induce PCD. These results suggest that IBC is a promising lead compound with anti-TNBC activity.
Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proteína X Associada a bcl-2 , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Trifosfato de Adenosina/farmacologia , Proliferação de CélulasRESUMO
Isobavachalcone (IBC), a naturally occurring chalcone, is mainly isolated from the seeds of Psoralea corylifolia Linn. IBC demonstrates multiple pharmacological activities, including anti-cancer, anti-microbial, anti-inflammatory, antioxidative, neuroprotective, and among others. Several potential targets of IBC, such as AKT, dihydroorotate dehydrogenase (DHODH), have been identified. The pharmacokinetic profiles of IBC have been reported as well. In this review, the pharmacological activities, the underlying mechanisms, the potential targets, and the pharmacokinetic profiles of IBC were summarized. IBC might be a promising lead compound for drug discovery.
Assuntos
Antioxidantes/farmacologia , Chalconas/farmacologia , Extratos Vegetais/farmacologia , Psoralea , Animais , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Chalconas/isolamento & purificação , Chalconas/uso terapêutico , Humanos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêuticoRESUMO
Isobavachalcone (IBC) has been shown to induce apoptosis and differentiation of acute myeloid leukemia (AML) cells. However, the underlying molecular mechanisms are not fully understood. Herein, IBC exhibited significant inhibition on the cell viability, proliferation, and the colony formation ability of AML cells. Moreover, IBC induced mitochondrial apoptosis evidenced by reduced mitochondrial membrane potential, increased Bax level, decreased Bcl-2, Bcl-xL, and Mcl-1 levels, elevated cytochrome c level in the cytosol and increased cleavage of caspase-9, caspase-3, and PARP. Furthermore, IBC obviously promoted the differentiation of AML cells, accompanied by the increase of the phosphorylation of MEK and ERK and the C/EBPα expression as well as the C/EBPß LAP/LIP isoform ratio, which was significantly reversed by U0126, a specific inhibitor of MEK. Notably, IBC enhanced the intracellular ROS level. More importantly, IBC-induced apoptosis and differentiation of HL-60 cells were significantly mitigated by NAC. In addition, IBC also exhibited an obvious anti-AML effect in NOD/SCID mice with the engraftment of HL-60 cells. Together, our study suggests that the ROS-medicated signaling pathway is highly involved in IBC-induced apoptosis and differentiation of AML cells.
Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Células HL-60 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismoRESUMO
The incidence of ulcerative colitis (UC), one of the two types of inflammatory bowel disease, is increasing in many countries. Various natural products have been demonstrated with therapeutic potentials for UC. Herein, the therapeutic effects and mechanisms of isobavachalcone (IBC), a natural chalcone, were evaluated in dextran sulfate sodium (DSS)-induced colitis mice and lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The results demonstrated that IBC treatment significantly improved the clinical symptoms, assessed by the disease activity index (DAI) scores and the histological changes of the colon. The levels of myeloperoxidase (MPO), TNF-α, IL-6, IL-1ß, and prostaglandin E2 (PGE2) in colon tissues were suppressed by IBC. The upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB p65 in colon tissues were reversed by IBC as well. Furthermore, IBC significantly inhibited LPS-triggered secretion of TNF-α, IL-6, and nitrite, and nuclear translocation of NF-κB p65, in RAW264.7 cells. The luciferase reporter assay indicated that IBC significantly inhibited LPS-triggered transcription of toll-like receptor 4 (TLR4). Molecular docking results showed that the binding pocket of IBC was adjacent to Ser276 of p65-p50 heterodimer and IBC could form H-bond with Thr191. Collectively, these results demonstrated that IBC ameliorated colitis in mice possibly through inhibition of NF-κB p65.
Assuntos
Chalconas , Colite Ulcerativa , Colite , Animais , Chalconas/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Citocinas , Sulfato de Dextrana , Flavonoides/farmacologia , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Transdução de SinaisRESUMO
Magnaporthe oryzae (M. oryzae) is a typical cause of rice blast in agricultural production. Isobavachalcone (IBC), an active ingredient of Psoralea corylifolia L. extract, is an effective fungicide against rice blast. To determine the mechanism of IBC against M. oryzae, the effect of IBC on the metabolic pathway of M. oryzae was explored by transcriptome profiling. In M. oryzae, the expression of pyruvate dehydrogenase E1 (PDHE1), part of the tricarboxylic acid (TCA cycle), was significantly decreased in response to treatment with IBC, which was verified by qPCR and testing of enzyme activity. To further elucidate the interactions between IBC and PDHE1, the 3D structure model of the PDHE1 from M. oryzae was established based on homology modeling. The model was utilized to analyze the molecular interactions through molecular docking and molecular dynamics simulation, revealing that IBC has π-π stacking interactions with residue TYR139 and undergoes hydrogen bonding with residue ASP217 of PDHE1. Additionally, the nonpolar residues PHE111, MET174, ILE 187, VAL188, and MET250 form strong hydrophobic interactions with IBC. The above results reveal that PDHE1 is a potential target for antifungal agents, which will be of great significance for guiding the design of new fungicides. This research clarified the mechanism of IBC against M. oryzae at the molecular level, which will underpin further studies of the inhibitory mechanism of flavonoids and the discovery of new targets. It also provides theoretical guidance for the field application of IBC.
Assuntos
Chalconas/farmacologia , Proteínas Fúngicas/metabolismo , Magnaporthe/efeitos dos fármacos , Oryza/enzimologia , Doenças das Plantas/imunologia , Piruvato Desidrogenase (Lipoamida)/antagonistas & inibidores , Transcriptoma/efeitos dos fármacos , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Magnaporthe/fisiologia , Simulação de Acoplamento Molecular , Oryza/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Conformação Proteica , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismoRESUMO
Isobavachalcone (IBC) is an active substance from the medicinal plant Psoralea corylifolia. This prenylated chalcone was reported to possess antioxidative, anti-inflammatory, antibacterial, and anticancer activities. Multidrug resistance (MDR) associated with the over-expression of the transporters of vast substrate specificity such as ABCB1 (P-glycoprotein) belongs to the main causes of cancer chemotherapy failure. The cytotoxic, MDR reversing, and ABCB1-inhibiting potency of isobavachalcone was studied in two cellular models: human colorectal adenocarcinoma HT29 cell line and its resistant counterpart HT29/Dx in which doxorubicin resistance was induced by prolonged drug treatment, and the variant of MDCK cells transfected with the human gene encoding ABCB1. Because MDR modulators are frequently membrane-active substances, the interaction of isobavachalcone with model phosphatidylcholine bilayers was studied by means of differential scanning calorimetry. Molecular modeling was employed to characterize the process of membrane permeation by isobavachalcone. IBC interacted with ABCB1 transporter, being a substrate and/or competitive inhibitor of ABCB1. Moreover, IBC intercalated into model membranes, significantly affecting the parameters of their main phospholipid phase transition. It was concluded that isobavachalcone interfered both with the lipid phase of cellular membrane and with ABCB1 transporter, and for this reason, its activity in MDR cancer cells was presumptively beneficial.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Psoralea/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ligação Competitiva , Linhagem Celular Tumoral , Chalconas/química , Chalconas/isolamento & purificação , Cães , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Células HT29 , Humanos , Concentração Inibidora 50 , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Células Madin Darby de Rim Canino , Membranas Artificiais , Modelos Moleculares , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Extratos Vegetais/química , Plantas Medicinais , Ligação Proteica , Transgenes , Verapamil/farmacologiaRESUMO
Pseudorabies virus (PRV) is an important pathogen that threatens the global swine industry. Currently, there is no effective drug that can clinically prevent or treat PRV infections. Isobavachalcone (IBC), a natural chalcone compound derived from Psoralea corylifolia, displays multiple biological activities, such as antibacterial, antifungal, and anticancer activities. Recently, it was found that IBC exhibited antiviral activity against an RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), in vitro. In the current study, we further demonstrated for the first time that IBC has a strong inhibitory effect on PRV. Through a viral luciferase expression assay, we showed that the inhibition step occurs mainly in the late stage of viral replication. Finally, via a cell-to-cell fusion assay, we demonstrated that IBC inhibits PRV by blocking virus-mediated cell fusion. Thus, IBC may be a candidate for further therapeutic evaluation against PRV infection in vivo.
Assuntos
Antivirais/farmacologia , Fusão Celular , Chalconas/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Rim/citologia , SuínosRESUMO
Skeletal muscle atrophy is a condition characterized by damaged muscle fibers and reduced numbers of muscle cells due to various causes. Muscle atrophy is associated with chronic diseases, such as heart failure, diabetes, and aging-related diseases. Isobavachalcone (IBC) is a flavonoid found in various foods and natural products, and studies have investigated its diverse effects, including its neuroprotective and anticancer effects. However, no studies have evaluated the effects of IBC on muscle atrophy. Thus, in this study, we assessed the effects of IBC on prevention of muscle atrophy. To evaluate the preventive effects of IBC on muscle atrophy, we used C2C12 myoblasts and induced muscle atrophy by tumor necrosis factor (TNF)-α. IBC regulated the expression levels of muscle atrophy F-box and muscle RING finger-1 in response to damaged muscle cells, thereby restoring the expression of myosin heavy chain and myogenin. Moreover, IBC regulated the phosphorylation of the nuclear factor-κB and p38 and upregulated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1, which are involved in regulating oxidative stress. Our results indicated that IBC acted to relieve TNF-α-induced skeletal muscle atrophy by regulating the factors related to inflammation and oxidative stress.
Assuntos
Chalconas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Heme Oxigenase-1/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Oestrogen receptor (ER) is expressed in approximately 60%-70% of human breast cancer. Clinical trials and retrospective analyses have shown that ER-positive (ER+) tumours are more tolerant to chemotherapeutic drug resistance than ER-negative (ER-) tumours. In addition, isobavachalcone (IBC) is known as a kind of phytoestrogen with antitumour effect. However, the underlying mechanism of IBC in ER+ breast cancer needs to be elucidated further. Our in vitro experiments showed that IBC could attenuate 17ß-estradiol (E2 )-induced paclitaxel resistance and that E2 could stimulate CD44 expression in ER+ breast cancer cells but not in ER- cells. Meanwhile, E2 could promote ERα expression to render ER+ breast cancer cells resistant to paclitaxel. Furthermore, we established paclitaxel-resistant breast cancer cell lines and determined the function of ERα in the enhancement of paclitaxel resistance via the regulation of CD44 transcription. IBC down-regulated ERα and CD44 expression and thus inhibited tumour growth in paclitaxel-resistant xenograft models. Overall, our data demonstrated for the first time that IBC could decrease CD44 expression level via the ERα pathway and make ER+ breast cancer cells sensitive to paclitaxel treatment.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Chalconas/farmacologia , Receptor alfa de Estrogênio/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Células MCF-7 , Paclitaxel/efeitos adversos , Paclitaxel/farmacologiaRESUMO
We isolated isobavachalcone (IBC) from Angelica keiskei (AK) as an anti-obesity component. IBC dose-dependently inhibited 3T3-L1 adipocyte differentiation by down-regulating adipogenic factors. At the mitotic clonal expansion stage (MCE), IBC caused cell cycle arrest in G0/G1 with decreased expression of cell cycle-regulating proteins. IBC also inhibited autophagic flux by inducing intracellular accumulation of LC3B and SQSTM1/p62 proteins while decreasing expression levels of regulating factors for autophagy initiation. In parallel with the inhibition of adipocyte differentiation, IBC decreased intrahepatic fat deposits and rescued the liver steatosis in high fat cholesterol diet-fed zebrafish. In this study, we found that IBC isolated from AK suppresses mitotic clonal expansion and autophagy flux of adipocytes and also shows anti-obesity activity in a high cholesterol-diet zebrafish model by decreasing intrahepatic fat deposits. These results suggest that IBC could be a leading pharmacological compound for the development of anti-obesity drugs.