RESUMO
In this paper, we propose a novel switched approach to perform smartphone-based pedestrian navigation tasks even in scenarios where GNSS signals are unavailable. Specifically, when GNSS signals are available, the proposed approach estimates both the position and the average bias affecting the measurements from the accelerometers. This average bias is then utilized to denoise the accelerometer data when GNSS signals are unavailable. We test the effectiveness of denoising the acceleration measurements through the estimated average bias by a synthetic example. The effectiveness of the proposed approach is then validated through a real experiment which is conducted along a pre-planned 150 m path.
RESUMO
Combining multiple devices for localization has important applications in the military field. This paper exploits the land-based short-wave platforms and satellites for fusion localization. The ionospheric reflection height error and satellite position errors have a great impact on the short-wave localization and satellite localization accuracy, respectively. In this paper, an iterative constrained weighted least squares (ICWLS) algorithm is proposed for these two kinds of errors. The algorithm converts the nonconvex equation constraints to linear constraints using the results of the previous iteration, thus ensuring convergence to the globally optimal solution. Simulation results show that the localization accuracy of the algorithm can reach the corresponding Constrained Cramér-Rao Lower Bound (CCRLB). Finally, the localization results of the two methods are fused using Kalman filtering. Simulations show that the fused localization accuracy is improved compared to the single-means localization.
RESUMO
The knee flexion angle is an important measurement for studies of the human gait. Running is a common activity with a high risk of knee injury. Studying the running gait in realistic situations is challenging because accurate joint angle measurements typically come from optical motion-capture systems constrained to laboratory settings. This study considers the use of shank and thigh inertial sensors within three different filtering algorithms to estimate the knee flexion angle for running without requiring sensor-to-segment mounting assumptions, body measurements, specific calibration poses, or magnetometers. The objective of this study is to determine the knee flexion angle within running applications using accelerometer and gyroscope information only. Data were collected for a single test participant (21-year-old female) at four different treadmill speeds and used to validate the estimation results for three filter variations with respect to a Vicon optical motion-capture system. The knee flexion angle filtering algorithms resulted in root-mean-square errors of approximately three degrees. The results of this study indicate estimation results that are within acceptable limits of five degrees for clinical gait analysis. Specifically, a complementary filter approach is effective for knee flexion angle estimation in running applications.
Assuntos
Articulação do Joelho , Joelho , Feminino , Humanos , Adulto Jovem , Fenômenos Biomecânicos , Calibragem , MarchaRESUMO
Aiming at the complex characteristics of negative pressure waves in low-pressure pipelines inside of buildings, we proposed an estimation method of pressure fluctuation trends based on the robust Kalman filter and the improved VMD, which can be used for leakage detection. The reconstructed baseline signal can accurately describe the fluctuation trend of the negative pressure wave after the pressure drop, and quantitatively express the characteristic difference between the leakage condition and the gas usage condition. The robust Kalman filter was used to estimate the pressure fluctuations. The parameters of VMD were adaptively calculated based on the WAA and discrete scale space. The trend components contained in the IMFs were separated by a reconstruction based on the Fourier series. Based on the simulation signal, the method can accurately restore the trend component contained in the complex pressure signal. Based on the actual signals, the accuracy of small leakage detection is 96.7% and the accuracy of large leakage detection is 73.3%.
RESUMO
Given the challenges associated with the low accuracy, complexity of the equipment, and poor interference resistance observed in current wireless multipath channel measurements, this study introduces a novel algorithm called KFSC-WRELAX. This algorithm integrates techniques involving pseudorandom noise (PN) sequences, Kalman filtering (KF), sliding correlation, and weighted Fourier transform combined with the RELAXation (WRELAX) algorithm. An m-sequence is employed as the probing sequence for channel detection. The effectiveness of the KFSC-WRELAX algorithm is demonstrated through both simulation experiments and corridor testing, showing that it can accurately determine the delays in various paths with robust performance at a signal-to-noise ratio (SNR) of -5 dB or higher.
RESUMO
Wireless sensor networks (WSNs) are essential for a wide range of applications, including environmental monitoring and smart city developments, thanks to their ability to collect and transmit diverse physical and environmental data. The nature of WSNs, coupled with the variability and noise sensitivity of cost-effective sensors, presents significant challenges in achieving accurate data analysis and anomaly detection. To address these issues, this paper presents a new framework, called Online Adaptive Kalman Filtering (OAKF), specifically designed for real-time anomaly detection within WSNs. This framework stands out by dynamically adjusting the filtering parameters and anomaly detection threshold in response to live data, ensuring accurate and reliable anomaly identification amidst sensor noise and environmental changes. By highlighting computational efficiency and scalability, the OAKF framework is optimized for use in resource-constrained sensor nodes. Validation on different WSN dataset sizes confirmed its effectiveness, showing 95.4% accuracy in reducing false positives and negatives as well as achieving a processing time of 0.008 s per sample.
RESUMO
Real-time acquisition of location information for agricultural robotic systems is a prerequisite for achieving high-precision intelligent navigation. This paper proposes a data filtering and combined positioning method, and establishes an active screening model. The dynamic and static positioning drift points of the carrier are eliminated or replaced, reducing the complexity of the original Global Navigation Satellite System (GNSS) output data in the positioning system. Compared with the traditional Kalman filter combined positioning method, the proposed active filtering-Kalman filter algorithm can reduce the maximum distance deviation of the carrier along a straight line from 0.145 m to 0.055 m and along a curve from 0.184 m to 0.0640 m. This study focuses on agricultural robot positioning technology, which has an important influence on the development of smart agriculture.
RESUMO
In recent years, the problem of cyber-physical systems' remote state estimations under eavesdropping attacks have been a source of concern. Aiming at the existence of eavesdroppers in multi-system CPSs, the optimal attack energy allocation problem based on a SINR (signal-to-noise ratio) remote state estimation is studied. Assume that there are N sensors, and these sensors use a shared wireless communication channel to send their state measurements to the remote estimator. Due to the limited power, eavesdroppers can only attack M channels out of N channels at most. Our goal is to use the Markov decision processes (MDP) method to maximize the eavesdropper's state estimation error, so as to determine the eavesdropper's optimal attack allocation. We propose a backward induction algorithm which uses MDP to obtain the optimal attack energy allocation strategy. Compared with the traditional induction algorithm, this algorithm has lower computational cost. Finally, the numerical simulation results verify the correctness of the theoretical analysis.
RESUMO
In the autonomous navigation of mobile robots, precise positioning is crucial. In forest environments with weak satellite signals or in sites disturbed by complex environments, satellite positioning accuracy has difficulty in meeting the requirements of autonomous navigation positioning accuracy for robots. This article proposes a vision SLAM/UWB tightly coupled localization method and designs a UWB non-line-of-sight error identification method using the displacement increment of the visual odometer. It utilizes the displacement increment of visual output and UWB ranging information as measurement values and applies the extended Kalman filtering algorithm for data fusion. This study utilized the constructed experimental platform to collect images and ultra-wideband ranging data in outdoor environments and experimentally validated the combined positioning method. The experimental results show that the algorithm outperforms individual UWB or loosely coupled combination positioning methods in terms of positioning accuracy. It effectively eliminates non-line-of-sight errors in UWB, improving the accuracy and stability of the combined positioning system.
RESUMO
Aiming at the problem that traditional wireless sensor networks produce errors in the positioning and tracking of motorised targets due to noise interference, this paper proposes a motorised target tracking method with a convolutional bi-directional long and short-term memory neural network and extended Kalman filtering, which is trained by using the simulated RSSI value and the actual target value of motorised targets collected from the convolutional bi-directional neural network to the sensor anchor node, so as to obtain a more accurate initial value of the manoeuvre target, and at the same time, the extended Kalman filtering method is used to accurately locate and track the real-time target, so as to obtain the accurate positioning and tracking information of the real-time target. Through experimental simulation, it can be seen that the algorithm proposed in this paper has good tracking effect in both linear manoeuvre target tracking scenarios and non-linear manoeuvre target tracking scenarios.
RESUMO
Data assimilation techniques for state and parameter estimation are frequently applied in the context of computational neuroscience. In this work, we show how an adaptive variant of the unscented Kalman filter (UKF) performs on the tracking of a conductance-based neuron model. Unlike standard recursive filter implementations, the robust adaptive unscented Kalman filter (RAUKF) jointly estimates the states and parameters of the neuronal model while adjusting noise covariance matrices online based on innovation and residual information. We benchmark the adaptive filter's performance against existing nonlinear Kalman filters and explore the sensitivity of the filter parameters to the system being modelled. To evaluate the robustness of the proposed solution, we simulate practical settings that challenge tracking performance, such as a model mismatch and measurement faults. Compared to standard variants of the Kalman filter the adaptive variant implemented here is more accurate and robust to faults.
Assuntos
Algoritmos , Modelos NeurológicosRESUMO
Today, more and more Internet public media platforms allowing people to make donations or seek help are being founded in China. However, there are few specialized sports-related public welfare platforms. In this paper, a sports-related public welfare platform that aims to help people who were disabled due to participation in sports and those who are disabled but want to participate in sports was developed based on multi-sensor technology. A multi-sensor data fusion algorithm was developed, and its estimation performance was verified by comparing it with the existing Kalman consistent filtering algorithm in terms of average estimation and average consistency errors. Experimental results prove that the speed of the data collection and analysis of the sports-related public welfare platform using the algorithm established in this paper was greatly improved. Relevant data on how users used this platform showed that various factors affected users' practical satisfaction with sports-related public welfare media platforms. It is suggested that a sports-related public welfare media platform should pay attention to the aid effect, and specific efforts should be devoted to improving the reliability and timeliness of public welfare aid information, and ensuring the stability of the platform system.
Assuntos
Esportes , Humanos , Reprodutibilidade dos Testes , Tecnologia , Coleta de Dados , AlgoritmosRESUMO
Some advantages of using cameras as sensor devices on feedback systems are the flexibility of the data it represents, the possibility to extract real-time information, and the fact that it does not require contact to operate. However, in unstructured scenarios, Image-Based Visual Servoing (IBVS) robot tasks are challenging. Camera calibration and robot kinematics can approximate a jacobian that maps the image features space to the robot actuation space, but they can become error-prone or require online changes. Uncalibrated visual servoing (UVS) aims at executing visual servoing tasks without previous camera calibration or through camera model uncertainties. One way to accomplish that is through jacobian identification using environment information in an estimator, such as the Kalman filter. The Kalman filter is optimal with Gaussian noise, but unstructured environments may present target occlusion, reflection, and other characteristics that confuse feature extraction algorithms, generating outliers. This work proposes RMCKF, a correntropy-induced estimator based on the Kalman Filter and the Maximum Correntropy Criterion that can handle non-Gaussian feature extraction noise. Unlike other approaches, we designed RMCKF for particularities in UVS, to deal with independent features, the IBVS control action, and simulated annealing. We designed Monte Carlo experiments to test RMCKF with non-Gaussian Kalman Filter-based techniques. The results showed that the proposed technique could outperform its relatives, especially in impulsive noise scenarios and various starting configurations.
RESUMO
In the context of Kalman filters, the predicted error covariance matrix Pk+1 and measurement noise covariance matrix R are used to represent the uncertainty of state variables and measurement noise, respectively. However, in real-world situations, these matrices may vary with time due to measurement faults. To address this issue in CubeSat attitude estimation, an adaptive extended Kalman filter has been proposed that can dynamically estimate the predicted error covariance matrix and measurement noise covariance matrix using an expectation-maximization approach. Simulation experiments have shown that this algorithm outperforms existing methods in terms of attitude estimation accuracy, particularly in sunlit and shadowed phases of the orbit, with the same filtering parameters and initial conditions.
RESUMO
This paper proposes a time- and event-triggered hybrid scheduling for remote state estimation with limited communication resources. A smart sensor observes a physical process and decides whether to send the local state estimate to a remote estimator via a wireless communication channel; the estimator computes the state estimate of the process according to the received data packets and the known scheduling mechanism. Based on the existing optimal time-triggered scheduling, we employ a stochastic event trigger to save precious communication chances and further improve the estimation performance. The minimum mean-squared error (MMSE) state estimate is derived since the Gaussian property is preserved. The estimation performance upper bound and communication rate are analyzed. The main results are illustrated by numerical examples.
RESUMO
With the development of intelligent IoT applications, vast amounts of data are generated by various volume sensors. These sensor data need to be reduced at the sensor and then reconstructed later to save bandwidth and energy. As the reduced data increase, the reconstructed data become less accurate. Usually, the trade-off between reduction rate and reconstruction accuracy is controlled by the reduction threshold, which is calculated by experiments based on historical data. Considering the dynamic nature of IoT, a fixed threshold cannot balance the reduction rate with the reconstruction accuracy adaptively. Aiming to dynamically balance the reduction rate with the reconstruction accuracy, an autonomous IoT data reduction method based on an adaptive threshold is proposed. During data reduction, concept drift detection is performed to capture IoT dynamic changes and trigger threshold adjustment. During data reconstruction, a data trend is added to improve reconstruction accuracy. The effectiveness of the proposed method is demonstrated by comparing the proposed method with the basic Kalman filtering algorithm, LMS algorithm, and PIP algorithm on stationary and nonstationary datasets. Compared with not applying the adaptive threshold, on average, there is an 11.7% improvement in accuracy for the same reduction rate or a 17.3% improvement in reduction rate for the same accuracy.
RESUMO
Drastic changes in the random load of an electromechanical system bring about a reliability problem for the proportional solenoid valve based on a thermal effect. In order to accurately and effectively express the thermal load of a proportional solenoid valve under random load conditions and to meet the requirements of online acquisition, adaptive anomaly detection, and the missing substitution of thermal load data, a thermal load prediction model based on the Kalman filter algorithm is proposed. Taking the compound operation process of an excavator as the object and based on the field testing of an excavator and the independent testing experiment of a proportional solenoid valve in a non-installed state, a method of obtaining historical samples of the proportional solenoid valve's power and thermal load is given. The k-means clustering algorithm is used to cluster the historical samples of the power and thermal load corresponding to the working posture of a multi-tool excavator. The Grubbs criterion is used to eliminate the outliers in the clustering samples, and unbiased estimation is performed on the clustering samples to obtain the prediction model. The results show that the cross-validation of the sample data under the specific sample characteristics of the thermal load model was carried out. Compared with other methods, the prediction accuracy of the thermal load model based on the Kalman filter is higher, the adaptability is strong, and the maximum prediction deviation percentage is stable within 5%. This study has value as a reference for random cycle thermal load analyses of low-frequency electromechanical products.
RESUMO
This paper proposes a novel vehicle state estimation (VSE) method that combines a physics-informed neural network (PINN) and an unscented Kalman filter on manifolds (UKF-M). This VSE aimed to achieve inertial measurement unit (IMU) calibration and provide comprehensive information on the vehicle's dynamic state. The proposed method leverages a PINN to eliminate IMU drift by constraining the loss function with ordinary differential equations (ODEs). Then, the UKF-M is used to estimate the 3D attitude, velocity, and position of the vehicle more accurately using a six-degrees-of-freedom vehicle model. Experimental results demonstrate that the proposed PINN method can learn from multiple sensors and reduce the impact of sensor biases by constraining the ODEs without affecting the sensor characteristics. Compared to the UKF-M algorithm alone, our VSE can better estimate vehicle states. The proposed method has the potential to automatically reduce the impact of sensor drift during vehicle operation, making it more suitable for real-world applications.
RESUMO
To address the issue of low positioning accuracy of mobile robots in trellis kiwifruit orchards with weak signal environments, this study investigated an outdoor integrated positioning method based on ultra-wideband (UWB), light detection and ranging (LiDAR), and odometry (ODOM). Firstly, a dynamic error correction strategy using the Kalman filter (KF) was proposed to enhance the dynamic positioning accuracy of UWB. Secondly, the particle filter algorithm (PF) was employed to fuse UWB/ODOM/LiDAR measurements, resulting in an extended Kalman filter (EKF) measurement value. Meanwhile, the odometry value served as the predicted value in the EKF. Finally, the predicted and measured values were fused through the EKF to estimate the robot's pose. Simulation results demonstrated that the UWB/ODOM/LiDAR integrated positioning method achieved a mean lateral error of 0.076 m and a root mean square error (RMSE) of 0.098 m. Field tests revealed that compared to standalone UWB positioning, UWB-based KF positioning, and LiDAR/ODOM integrated positioning methods, the proposed approach improved the positioning accuracy by 64.8%, 13.8%, and 38.3%, respectively. Therefore, the proposed integrated positioning method exhibits promising positioning performance in trellis kiwifruit orchards with potential applicability to other orchard environments.
RESUMO
In a single-observer passive localization system, the velocity and position of the target are estimated simultaneously. However, this can lead to correlated errors and distortion of the estimated value, making independent estimation of the speed and position necessary. In this study, we introduce a novel optimization strategy, suboptimal estimation, for independently estimating the velocity vector in single-observer passive localization. The suboptimal estimation strategy converts the estimation of the velocity vector into a search for the global optimal solution by dynamically weighting multiple optimization criteria from the starting point in the solution space. Simulation verification is conducted using uniform motion and constant acceleration models. The results demonstrate that the proposed method converges faster with higher accuracy and strong robustness.