Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(30): e2308010120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459531

RESUMO

Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.


Assuntos
Antígenos Transformantes de Poliomavirus , Vírus 40 dos Símios , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Desnaturação de Ácido Nucleico , Adenilil Imidodifosfato , Replicação do DNA , DNA/genética , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples , DNA Viral/genética , DNA Viral/metabolismo
2.
J Med Virol ; 96(7): e29789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988206

RESUMO

Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with integration of Merkel cell polyomavirus (MCPyV). MCPyV-encoded T-antigens (TAs) are pivotal for sustaining MCC's oncogenic phenotype, i.e., repression of TAs results in reactivation of the RB pathway and subsequent cell cycle arrest. However, the MCC cell line LoKe, characterized by a homozygous loss of the RB1 gene, exhibits uninterrupted cell cycle progression after shRNA-mediated TA repression. This unique feature allows an in-depth analysis of the effects of TAs beyond inhibition of the RB pathway, revealing the decrease in expression of stem cell-related genes upon panTA-knockdown. Analysis of gene regulatory networks identified members of the E2F family (E2F1, E2F8, TFDP1) as key transcriptional regulators that maintain stem cell properties in TA-expressing MCC cells. Furthermore, minichromosome maintenance (MCM) genes, which encodes DNA-binding licensing proteins essential for stem cell maintenance, were suppressed upon panTA-knockdown. The decline in stemness occurred simultaneously with neural differentiation, marked by the increased expression of neurogenesis-related genes such as neurexins, BTG2, and MYT1L. This upregulation can be attributed to heightened activity of PBX1 and BPTF, crucial regulators of neurogenesis pathways. The observations in LoKe were confirmed in an additional MCPyV-positive MCC cell line in which RB1 was silenced before panTA-knockdown. Moreover, spatially resolved transcriptomics demonstrated reduced TA expression in situ in a part of a MCC tumor characterized by neural differentiation. In summary, TAs are critical for maintaining stemness of MCC cells and suppressing neural differentiation, irrespective of their impact on the RB-signaling pathway.


Assuntos
Antígenos Transformantes de Poliomavirus , Antígenos Virais de Tumores , Poliomavírus das Células de Merkel , Células-Tronco Neoplásicas , Proteínas de Ligação a Retinoblastoma , Humanos , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/genética , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Poliomavírus das Células de Merkel/genética , Células-Tronco Neoplásicas/virologia , Células-Tronco Neoplásicas/metabolismo , Neurônios/virologia , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo
3.
BMC Vet Res ; 20(1): 198, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745180

RESUMO

BACKGROUND: Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS: In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS: Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.


Assuntos
Fibroblastos , Animais , Fibroblastos/virologia , Ovinos , Camundongos , Vírus do Orf/genética , Camundongos Nus , Proliferação de Células , Vírus 40 dos Símios , Linhagem Celular , Apoptose , Antígenos Virais de Tumores/genética
4.
Virol J ; 20(1): 155, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464367

RESUMO

BACKGROUND: Human polyomavirus BK (BKPyV) causes associated nephropathy and contributes to urinary tract cancer development in renal transplant recipients. Large tumor antigen (LT) is an early protein essential in the polyomavirus life cycle. Protein acetylation plays a critical role in regulating protein stability, so this study investigated the acetylation of the BKPyV LT protein. METHODS: The BKPyV LT nucleotide was synthesized, and the protein was expressed by transfection into permissive cells. The BKPyV LT protein was immunoprecipitated and subjected to LC-MS/MS analysis to determine the acetylation residues. The relative lysine was then mutated to arginine in the LT nucleotide and BKPyV genome to analyze the role of LT lysine acetylation in the BKPyV life cycle. RESULTS: BKPyV LT acetylation sites were identified at Lys3 and Lys230 by mass spectrometry. HDAC3 and HDAC8 and their deacetylation activity are required for BKPyV LT expression. In addition, mutations of Lys3 and Lys230 to arginine increased LT expression, and the interaction of HDAC3 and LT was confirmed by coimmunoprecipitation. CONCLUSIONS: HDAC3 is a newly identified protein that interacts with BKPyV LT, and LT acetylation plays a vital role in the BKPyV life cycle.


Assuntos
Vírus BK , Transplante de Rim , Infecções por Polyomavirus , Polyomavirus , Infecções Tumorais por Vírus , Humanos , Vírus BK/genética , Transplante de Rim/efeitos adversos , Lisina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antígenos de Neoplasias , Estabilidade Proteica , Histona Desacetilases/genética , Proteínas Repressoras
5.
Infection ; 51(4): 967-980, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36512270

RESUMO

PURPOSE: BK Polyomavirus (BKPyV) infection manifests as renal inflammation and can cause kidney damage. Tumor necrosis factor-α (TNF-α) is increased in renal inflammation and injury. The aim of this study was to investigate the effect of TNF-α blockade on BKPyV infection. METHODS: Urine specimens from 22 patients with BKPyV-associated nephropathy (BKPyVN) and 35 non-BKPyVN kidney transplant recipients were analyzed. RESULTS: We demonstrated increased urinary levels of TNF-α and its receptors, TNFR1 and TNFR2, in BKPyVN patients. Treating BKPyV-infected human proximal tubular cells (HRPTECs) with TNF-α stimulated the expression of large T antigen and viral capsid protein-1 mRNA and proteins and BKPyV promoter activity. Knockdown of TNFR1 or TNFR2 expression caused a reduction in TNF-α-stimulated viral replication. NF-κB activation induced by overexpression of constitutively active IKK2 significantly increased viral replication and the activity of the BKPyV promoter containing an NF-κB binding site. The addition of a NF-κB inhibitor on BKPyV-infected cells suppressed viral replication. Blockade of TNF-α functionality by etanercept reduced BKPyV-stimulated expression of TNF-α, interleukin-1ß (IL-1ß), IL-6 and IL-8 and suppressed TNF-α-stimulated viral replication. In cultured HRPTECs and THP-1 cells, BKPyV infection led to increased expression of TNF-α, interleukin-1 ß (IL-1ß), IL-6 and TNFR1 and TNFR2 but the stimulated magnitude was far less than that induced by poly(I:C). This may suggest that BKPyV-mediated autocrine effect is not a major source of TNFα. CONCLUSION: TNF-α stimulates BKPyV replication and inhibition of its signal cascade or functionality attenuates its stimulatory effect. Our study provides a therapeutic anti-BKPyV target.


Assuntos
Vírus BK , Infecções por Polyomavirus , Humanos , Vírus BK/genética , Fator de Necrose Tumoral alfa , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/genética , NF-kappa B , Interleucina-6 , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/patologia , Inflamação
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614338

RESUMO

Merkel cell polyomavirus (MCPyV) is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. MCPyV large T-antigen (LTag) and small T-antigen (sTag) are the main oncoproteins involved in MCPyV-induced MCC. A hallmark of MCPyV-positive MCC cells is the expression of a C-terminal truncated LTag. Protein kinase A (PKA) plays a fundamental role in a variety of biological processes, including transcription by phosphorylating and thereby regulating the activity of transcription factors. As MCPyV LTag has been shown to be phosphorylated and acts as a transcription factor for the viral early and late promoter, we investigated whether LTag can be phosphorylayted by PKA, and whether this affects the transcript activity of LTag. Using a phosphorylation prediction algorithm, serine 191, 203, and 265 were identified as putative phosphorylation sites for PKA. Mass spectrometry of in vitro PKA-phosphorylated peptides confirmed phosphorylation of S203 and S265, but not S191. Full-length LTag inhibited early and late promoter activity of MCPyV, whereas the truncated MKL2 LTag variant stimulated both promoters. Single non-phosphorylable, as well as phosphomimicking mutations did not alter the inhibitory effect of full-length LTag. However, the non-phosphorylable mutations abrogated transactivation of the MCPyV promoters by MKL2 LTag, whereas phosphomimicking substitutions restored the ability of MKL2 LTag to activate the promoters. Triple LTag and MKL2 LTag mutants had the same effect as the single mutants. Activation of the PKA signaling pathway did not enhance MCPyV promoter activity, nor did it affect LTag expression levels in MCPyV-positive Merkel cell carcinoma (MCC) cells. Our results show that phosphorylation of truncated LTag stimulates viral promoter activity, which may contribute to higher levels of the viral oncoproteins LTag and sTag. Interfering with PKA-induced LTag phosphorylation/activity may be a therapeutic strategy to treat MCPyV-positive MCC patients.


Assuntos
Antígenos Transformantes de Poliomavirus , Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/virologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Poliomavírus das Células de Merkel/metabolismo , Fosforilação , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/virologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/virologia , Antígenos Transformantes de Poliomavirus/metabolismo , Transcrição Gênica
7.
J Virol ; 95(15): e0012721, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011542

RESUMO

Small-molecule drugs inhibiting BK polyomavirus (BKPyV) represent a significant unmet clinical need in view of polyomavirus-associated nephropathy or hemorrhagic cystitis, which complicate 5% to 25% of kidney and hematopoietic cell transplantations. We characterized the inhibitory activity of acitretin on BKPyV replication in primary human renal proximal tubular epithelial cells (RPTECs). Effective inhibitory concentrations of 50% (EC50) and 90% (EC90) were determined in dilution series measuring BKPyV loads, transcripts, and protein expression, using cell proliferation, metabolic activity, and viability to estimate cytotoxic concentrations and selectivity indices (SI). The acitretin EC50 and EC90 in RPTECs were 0.64 (SI50, 250) and 3.25 µM (SI90, 49.2), respectively. Acitretin effectively inhibited BKPyV replication until 72 h postinfection when added 24 h before infection until 12 h after infection, but decreased to <50% at later time points. Acitretin did not interfere with nuclear delivery of BKPyV genomes, but it decreased large T-antigen transcription and protein expression. Acitretin did not inhibit the initial round of BKPyV replication following transfection of full-length viral genomes, but it affected subsequent rounds of reinfection. Acitretin also inhibited BKPyV replication in human urothelial cells and in Vero cells, but not in COS-7 cells constitutively expressing Simian virus 40 (SV40) large T antigen. Retinoic acid agonists (all-trans retinoic acid, 9-cis retinoic acid [9-cis-RA], 13-cis-RA, bexarotene, and tamibarotene) and the RAR/RXR antagonist RO41-5253 also inhibited BKPyV replication, pointing to an as-yet-undefined mechanism. IMPORTANCE Acitretin selectively inhibits BKPyV replication in primary human cell culture models of nephropathy and hemorrhagic cystitis. Since acitretin is an approved drug in clinical use reaching BKPyV-inhibiting concentrations in systemically treated patients, further studies are warranted to provide data for clinical repurposing of retinoids for treatment and prevention of replicative BKPyV-diseases.


Assuntos
Acitretina/farmacologia , Antivirais/farmacologia , Vírus BK/crescimento & desenvolvimento , Retinoides/farmacologia , Tretinoína/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antígenos Virais de Tumores/biossíntese , Antígenos Virais de Tumores/genética , Células COS , Linhagem Celular , Chlorocebus aethiops , Cistite/tratamento farmacológico , Cistite/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Nefropatias/tratamento farmacológico , Nefropatias/virologia , Testes de Sensibilidade Microbiana , Infecções por Polyomavirus/tratamento farmacológico , Tretinoína/análogos & derivados , Infecções Tumorais por Vírus/tratamento farmacológico , Células Vero
8.
Cancer Control ; 29: 10732748221140785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36377557

RESUMO

BACKGROUND: In vitro studies have produced conflicting results about the significance of the JC Polyoma Virus (JCV) in the human cancers. OBJECTIVES: Our study aims to detect the presence of JCV Large T antigen (LTag) together with viral load quantitation in the prostate tumor samples to assess if JCV harbors risk factor for prostate cancer (PCa). METHOD: This was a case control-based study. A total of 110 patients participated in this study, including 55 patients with PCa and another 55 patients with benign prostatic hyperplasia (BPH) as cases and controls, respectively. Tissue, blood and urine samples were collected from each participant. Tissues samples were analyzed for the presence of JCV Ltag using a direct immunofluorescence assay (IF). Only positive IF tested samples were subjected to viral quantitation assay. Data were collected and managed using SPSS version 20. RESULT: The JCV LTag in the cases group was 23.63% (13/55) which was higher than that of the controls group 5.45% (3/55) with a P. value of .006 and O.R of 5.76. The mean of viral load was significantly higher among cases tissue specimens 20156 ± 5450 copies/ml compared to controls group 6378 ± 2456copies/ml with P-value of .002. The virus was detected in 11/13 (84.6%) urine samples of cases with a mean viral load of 14068 ± 4590 copies/ml compared to 2/3 (66.6%) of controls viral load 2534 ± 1267 copies/ml. CONCLUSION: In conclusion, a higher JCV LTag with more viral load were detected in cases group compared to controls. Our findings support a strong relationship between JCV infection and the probability of developing PCa.


Assuntos
Vírus JC , Neoplasias da Próstata , Masculino , Humanos , Vírus JC/genética , Estudos de Casos e Controles , DNA Viral , Fatores de Risco , Imunofluorescência
9.
Rev Med Virol ; 31(6): e2220, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33729628

RESUMO

Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.


Assuntos
Antivirais/uso terapêutico , Polyomavirus/efeitos dos fármacos , Vírus de DNA , Humanos
10.
J Infect Dis ; 224(7): 1160-1169, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32060513

RESUMO

BACKGROUND: Human polyomaviruses can reactivate in transplant patients, causing nephropathy, progressive multifocal leukoencephalopathy, Merkel cell carcinoma, pruritic, rash or trichodysplasia spinulosa. Sirolimus and related mechanistic target of rapamycin (mTOR) inhibitors are transplant immunosuppressants. It is unknown if they directly reactivate polyomavirus replication from latency beyond their general effects on immunosuppression. METHODS: In vitro expression and turnover of large T (LT) proteins from BK virus, JC virus (JCV), Merkel cell polyomavirus (MCV), human polyomavirus 7 (HPyV7), and trichodysplasia spinulosa polyomavirus (TSV) after drug treatment were determined by immunoblotting, proximity ligation, replicon DNA replication, and whole virus immunofluorescence assays. RESULTS: mTOR inhibition increased LT protein expression for all 5 pathogenic polyomaviruses tested. This correlated with LT stabilization, decrease in the S-phase kinase-associated protein 2 (Skp2) E3 ligase targeting these LT proteins for degradation, and increase in virus replication for JCV, MCV, TSV, and HPyV7. Treatment with sirolimus, but not the calcineurin inhibitor tacrolimus, at levels routinely achieved in patients, resulted in a dose-dependent increase in viral DNA replication for BKV, MCV, and HPyV7. CONCLUSIONS: mTOR inhibitors, at therapeutic levels, directly activate polyomavirus replication through a Skp2-dependent mechanism, revealing a proteostatic latency mechanism common to polyomaviruses. Modifying existing drug regimens for transplant patients with polyomavirus-associated diseases may reduce symptomatic polyomavirus replication while maintaining allograft-sparing immunosuppression.


Assuntos
Replicação do DNA/efeitos dos fármacos , Inibidores de MTOR/farmacologia , Polyomavirus/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S , Sirolimo/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus BK , DNA Viral , Humanos , Vírus JC , Poliomavírus das Células de Merkel , Polyomavirus/genética , Infecções por Polyomavirus/tratamento farmacológico , Serina-Treonina Quinases TOR , Tacrolimo/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-33288638

RESUMO

Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent. Cidofovir has been modified in various ways to improve its efficacies as a broad-spectrum antiviral agent. However, the actual mechanisms and targets of cidofovir and its modified derivatives as antipolyomavirus agents are still under research. Here, polyomavirus large tumor antigen (Tag) activities were identified as the viral target of cidofovir derivatives. The alkoxyalkyl ester derivatives of cidofovir efficiently inhibit polyomavirus DNA replication in cell-free human extracts and a viral in vitro replication system utilizing only purified proteins. We present evidence that DNA helicase and DNA binding activities of polyomavirus Tags are diminished in the presence of low concentrations of alkoxyalkyl ester derivatives of cidofovir, suggesting that the inhibition of viral DNA replication is at least in part mediated by inhibiting single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) binding activities of Tags. These findings show that the alkoxyalkyl ester derivatives of cidofovir are effective in vitro without undergoing further conversions, and we conclude that the inhibitory mechanisms of nucleotide analog-based drugs are more complex than previously believed.


Assuntos
Antígenos Virais de Tumores , Polyomavirus , Citosina , Replicação do DNA , DNA Viral/genética , Ésteres/farmacologia , Humanos , Nucleotídeos , Polyomavirus/genética , Replicação Viral
12.
Exp Mol Pathol ; 123: 104687, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592199

RESUMO

BACKGROUND: The JC polyomavirus has been blamed to contribute in colorectal cancer (CRC), however, the topic is still controversial. Varying detection rate of JCPyV genome has been reported mainly due to technical reasons. Here, we provide summative data on the topic, with emphasize on technical issues. METHODS: Formalin-fixed paraffin-embedded tissue samples from 50 patients with CRC, consisting of tumoral and non-cancerous marginal tissue (totally 100 samples) were included in the study. After DNA extraction, specific JCPyV T-Ag sequences were targeted using Real-time PCR. To unwind the supercoiled JCPyV genome, pretreatment with topoisomerase I, was applied. Immunohistochemical (IHC) staining was performed using an anti-T-Ag monoclonal antibody. RESULTS: In the first attempts, no samples were found to be positive in Real-time PCR assays. However, JCPyV sequences were found in 60% of CRC tissues and 38% of non-cancerous colorectal mucosa after application of pre-treatment step with topoisomerase I enzyme (P = 0.028). T-Ag protein was found in the nuclear compartment of the stained cells in IHC assays. CONCLUSIONS: The presence of JCPyV in CRC tissues, as well as T-Ag localization in the nucleolus, where its oncogenic effect takes place, may provide supporting evidence for JCPyV involvement in CRC development. The study highlights the importance of using topoisomerase I to enhance JCPyV genome detection. Also, colorectal tissue is one of the permissive human tissue for JC resistance after preliminary infection.


Assuntos
Neoplasias Colorretais/virologia , DNA Topoisomerases Tipo I/farmacologia , Genoma Viral/genética , Vírus JC/isolamento & purificação , Nucléolo Celular/genética , Nucléolo Celular/virologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Topoisomerases Tipo I/química , Feminino , Humanos , Vírus JC/genética , Vírus JC/patogenicidade , Masculino , Pessoa de Meia-Idade , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Replicação Viral/genética
13.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445385

RESUMO

Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Carcinoma de Célula de Merkel/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma de Célula de Merkel/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Cutâneas/imunologia , Microambiente Tumoral
14.
Virol J ; 17(1): 54, 2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306957

RESUMO

BACKGROUND: Merkel cell polyomavirus (MCPyV) is a human polyomavirus that establishes a life-long harmless infection in most individuals, with dermal fibroblasts believed to be the natural host cell. However, this virus is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. Several MCPyV variants with polymorphism in their promoter region have been isolated, but it is not known whether these differences affect the biological properties of the virus. METHODS: Using transient transfection studies in human dermal fibroblasts and the MCC cell line MCC13, we compared the transcription activity of the early and late promoters of the most commonly described non-coding control region MCPyV variant and six other isolates containing specific mutation patterns. RESULTS: Both the early and late promoters were significantly stronger in human dermal fibroblasts compared with MCC13 cells, and a different promoter strength between the MCPyV variants was observed. The expression of full-length large T-antigen, a viral protein that regulates early and late promoter activity, inhibited early and late promoter activities in both cell lines. Nonetheless, a truncated large T-antigen, which is expressed in virus-positive MCCs, stimulated the activity of its cognate promoter. CONCLUSION: The promoter activities of all MCPyV variants tested was stronger in human dermal fibroblasts, a cell line that supports viral replication, than in MCC13 cells, which are not permissive for MCPyV. Truncated large T-antigen, but not full-length large T-antigen stimulated viral promoter activity. Whether, the difference in promoter strength and regulation by large T-antigen may affect the replication and tumorigenic properties of the virus remains to be determined.


Assuntos
Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/virologia , Fibroblastos/virologia , Poliomavírus das Células de Merkel/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Variação Genética , Humanos , Transcrição Gênica , Transfecção , Replicação Viral
15.
Virus Genes ; 56(2): 128-135, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997082

RESUMO

The human DNA damage response (DDR) is a complex signaling network constituting many factors responsible for the preservation of genomic integrity. Human polyomaviruses (HPyVs) are able to harness the DDR machinery during their infectious cycle by expressing an array of tumor (T) antigens. These molecular interactions between human polyomavirus T antigens and the DDR create conditions that promote viral replication at the expense of host genomic stability to cause disease as well as carcinogenesis in the cases of the Merkel cell polyomavirus and BK polyomavirus. This review focuses on the six HPyVs with disease association, emphasizing strain-dependent differences in their selective manipulation of the DDR. Appreciation of the HPyV-DDR interface at a molecular scale is conducive to the development of novel therapeutic approaches.


Assuntos
Antígenos Transformantes de Poliomavirus/genética , Vírus BK/genética , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/genética , Vírus BK/patogenicidade , Carcinogênese/genética , Dano ao DNA/genética , Instabilidade Genômica/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Poliomavírus das Células de Merkel/patogenicidade , Neoplasias/genética , Neoplasias/virologia , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus
16.
J Am Soc Nephrol ; 29(2): 680-693, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29279304

RESUMO

Polyomavirus nephropathy (PVN) is a common viral infection of renal allografts, with biopsy-proven incidence of approximately 5%. A generally accepted morphologic classification of definitive PVN that groups histologic changes, reflects clinical presentation, and facilitates comparative outcome analyses is lacking. Here, we report a morphologic classification scheme for definitive PVN from the Banff Working Group on Polyomavirus Nephropathy, comprising nine transplant centers in the United States and Europe. This study represents the largest systematic analysis of definitive PVN undertaken thus far. In a retrospective fashion, clinical data were collected from 192 patients and correlated with morphologic findings from index biopsies at the time of initial PVN diagnosis. Histologic features were centrally scored according to Banff guidelines, including additional semiquantitative histologic assessment of intrarenal polyomavirus replication/load levels. In-depth statistical analyses, including mixed effects repeated measures models and logistic regression, revealed two independent histologic variables to be most significantly associated with clinical presentation: intrarenal polyomavirus load levels and Banff interstitial fibrosis ci scores. These two statistically determined histologic variables formed the basis for the definition of three PVN classes that correlated strongest with three clinical parameters: presentation at time of index biopsy, serum creatinine levels/renal function over 24 months of follow-up, and graft failure. The PVN classes 1-3 as described here can easily be recognized in routine renal biopsy specimens. We recommend using this morphologic PVN classification scheme for diagnostic communication, especially at the time of index diagnosis, and in scientific studies to improve comparative data analysis.


Assuntos
Nefropatias/classificação , Nefropatias/patologia , Rim/patologia , Infecções por Polyomavirus/complicações , Polyomavirus , Infecções Tumorais por Vírus/complicações , Adulto , Biópsia , Creatinina/sangue , Feminino , Fibrose , Taxa de Filtração Glomerular , Humanos , Nefropatias/fisiopatologia , Nefropatias/virologia , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Polyomavirus/fisiologia , Prognóstico , Estudos Retrospectivos , Carga Viral , Replicação Viral
17.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795410

RESUMO

JC virus (JCV) is a DNA virus causing progressive multifocal leukoencephalopathy (PML) in immunodeficient patients. In the present study, 22 genetic quasispecies with more than 1.5% variant frequency were detected in JCV genomes from six clinical samples of PML by next-generation sequencing. A mutation from A to C at nucleotide (nt) 3495 in JCV Mad1 resulting in a V-to-G amino acid substitution at amino acid (aa) position 392 of the large T antigen (TAg) was identified in all six cases of PML at 3% to 19% variant frequencies. Transfection of JCV Mad1 DNA possessing the V392G substitution in TAg into IMR-32 and human embryonic kidney 293 (HEK293) cells resulted in dramatically decreased production of JCV-encoded proteins. The virus DNA copy number was also reduced in supernatants of the mutant virus-transfected cells. Transfection of the IMR-32 and HEK293 cells with a virus genome containing a revertant mutation recovered viral production and protein expression. Cotransfection with equal amounts of wild-type genome and mutated JCV genome did not reduce the expression of viral proteins or viral replication, suggesting that the mutation did not have any dominant-negative function. Finally, immunohistochemistry demonstrated that TAg was expressed in all six pathological samples in which the quasispecies were detected. In conclusion, the V392G amino acid substitution in TAg identified frequently in PML lesions has a function in suppressing JCV replication, but the frequency of the mutation was restricted and its role in PML lesions was limited. IMPORTANCE: DNA viruses generally have lower mutation frequency than RNA viruses, and the detection of quasispecies in JCV has rarely been reported. In the present study, a next-generation sequencer identified a JCV quasispecies with an amino acid substitution in the T antigen in patients with PML. In vitro studies showed that the mutation strongly repressed the expression of JC viral proteins and reduced the viral replication. However, because the frequency of the mutation was low in each case, the total expression of virus proteins was sustained in vivo. Thus, JC virus replicates in PML lesions in the presence of a mutant virus which is able to repress virus replication.


Assuntos
DNA Viral/genética , Genoma Viral , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/virologia , Mutação , Replicação Viral , Adulto , Idoso , Sequência de Aminoácidos , Substituição de Aminoácidos , Antígenos Virais de Tumores , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , DNA Viral/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Vírus JC/metabolismo , Leucoencefalopatia Multifocal Progressiva/patologia , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/virologia , Alinhamento de Sequência , Análise de Sequência de DNA , Transfecção
18.
Histopathology ; 73(1): 162-166, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29430700

RESUMO

AIMS: Merkel cell carcinoma represents poorly differentiated neuroendocrine carcinoma of cutaneous origin. In most studies, the vast majority of Merkel cell carcinomas are Merkel cell polyomavirus (MCPyV)-associated. SV40 polyomavirus immunohistochemistry is typically used in the diagnosis of other polyomavirus-associated diseases, including tubulointerstitial nephritis and progressive multifocal leukoencephalopathy, given cross-reactivity with BK and JC polyomaviruses. MCPyV-specific immunohistochemistry is commercially available, but, if antibodies against SV40 also cross-reacted with MCPyV, that would be advantageous from a resource-utilisation perspective. METHODS AND RESULTS: Tissue microarrays were constructed from 39 Merkel cell carcinomas, 24 small-cell lung carcinomas, and 18 extrapulmonary visceral small-cell carcinomas. SV40 large T antigen immunohistochemistry (clone PAb416) was performed; MCPyV large T antigen immunohistochemistry (clone CM2B4) had been previously performed. UniProt was used to compare the amino acid sequences of the SV40, BK, JC and MCPyV large T antigens, focusing on areas recognised by the PAb416 and CM2B4 clones. SV40 immunohistochemistry was negative in all tumours; MCPyV immunohistochemistry was positive in 38% of Merkel cell carcinomas and in 0% of non-cutaneous poorly differentiated neuroendocrine carcinomas. UniProt analysis revealed a high degree of similarity between SV40, BK, and JC viruses in the region recognised by PAb416. There was less homology between SV40 and MCPyV in this region, which was also interrupted by two long stretches of amino acids unique to MCPyV. The CM2B4 clone recognises a unique epitope in one of these stretches. CONCLUSIONS: The PAb416 antibody against the SV40 large T antigen does not cross-react with MCPyV large T antigen, and thus does not label Merkel cell carcinoma.


Assuntos
Anticorpos Monoclonais/imunologia , Carcinoma de Célula de Merkel/diagnóstico , Poliomavírus das Células de Merkel/imunologia , Neoplasias Cutâneas/diagnóstico , Antígenos Transformantes de Poliomavirus/imunologia , Carcinoma de Célula de Merkel/virologia , Reações Cruzadas , Humanos , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/imunologia , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/imunologia
19.
Int J Mol Sci ; 19(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949882

RESUMO

Merkel cell carcinoma (MCC) is a rare and aggressive type of skin cancer associated with a poor prognosis. This carcinoma was named after its presumed cell of origin, the Merkel cell, which is a mechanoreceptor cell located in the basal epidermal layer of the skin. Merkel cell polyomavirus seems to be the major causal factor for MCC because approximately 80% of all MCCs are positive for viral DNAs. UV exposure is the predominant etiological factor for virus-negative MCCs. Intracellular microRNA analysis between virus-positive and virus-negative MCC cell lines and tumor samples have identified differentially expressed microRNAs. Comparative microRNA profiling has also been performed between MCCs and other non-MCC tumors, but not between normal Merkel cells and malignant Merkel cells. Finally, Merkel cell polyomavirus encodes one microRNA, but its expression in virus-positive MCCs is low, or non-detectable or absent, jeopardizing its biological relevance in tumorigenesis. Here, we review the results of microRNA studies in MCCs and discuss the potential application of microRNAs as biomarkers for the diagnosis, progression and prognosis, and treatment of MCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Célula de Merkel/genética , MicroRNAs/genética , Animais , Biomarcadores Tumorais/metabolismo , Humanos , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Modelos Biológicos
20.
Clin Otolaryngol ; 43(5): 1335-1344, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29992788

RESUMO

BACKGROUND: The purpose of this study was to determine whether the expression of 15-lipoxygenase-1 (ALOX15) in primary tumour specimens predicts lymph node metastasis and subsequently clinical outcome in Merkel cell carcinoma (MCC) patients. METHODS: A retrospective medical chart review of 33 patients was performed between 1994 and 2014. Eleven out of 33 (33%) Patients with primary MCC stages I and II were categorised as group I. Twenty two out of 33 (67%) Patients with regional lymph node metastases and/or distant metastases were defined as group II. All available tumour samples were immunostained for ALOX15, Podoplanin and MCPyV large T-protein antibody. RESULTS: ALOX15 expression was observed in 19/23 (83%) primary tumour samples and in all lymph node metastasis. Primary tumours in patients with stage III and IV disease showed a higher expression rate of ALOX15 compared to patients with early stage disease (11/12 (92%) and 8/11 (73%), respectively). In group I, five patients (45%) were MCPyV positive, whereas in group II, 15 patients (68%) were MCPyV positive. The median lymphatic vessel density in ALOX15 negative group I primary tumour samples was lower compared to the median lymphatic vessel density in ALOX15 positive group I primary tumour probes (2.7 range, 1-4.3 vs 4.7 range, 4.0-7.3). Furthermore, all 17 samples of MCC metastases showed ALOX15 expression with a median lymphatic vessel density (not lymph node metastases) of 5.3 (range 2.0-7.3). CONCLUSION: In the current study, we were able to show ALOX15 expression in the primary MCC sample and the metastasis sample. Based on the findings of the current study, expression rate of ALOX15 in primary MCC and metastases is possibly linked to an increased lymphatic vessel density.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/secundário , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Carcinoma de Célula de Merkel/mortalidade , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Estudos Retrospectivos , Neoplasias Cutâneas/mortalidade , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa