Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Neuroinflammation ; 20(1): 67, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894951

RESUMO

Traumatic brain injury (TBI) often results in prolonged or permanent brain dysfunction with over 2.8 million affected annually in the U.S., including over 56,000 deaths, with over 5 million total survivors exhibiting chronic deficits. Mild TBI (also known as concussion) accounts for over 75% of all TBIs every year. Mild TBI is a heterogeneous disorder, and long-term outcomes are dependent on the type and severity of the initial physical event and compounded by secondary pathophysiological consequences, such as reactive astrocytosis, edema, hypoxia, excitotoxicity, and neuroinflammation. Neuroinflammation has gained increasing attention for its role in secondary injury as inflammatory pathways can have both detrimental and beneficial roles. For example, microglia-resident immune cells of the central nervous system (CNS)-influence cell death pathways and may contribute to progressive neurodegeneration but also aid in debris clearance and neuroplasticity. In this review, we will discuss the acute and chronic role of microglia after mild TBI, including critical protective responses, deleterious effects, and how these processes vary over time. These descriptions are contextualized based on interspecies variation, sex differences, and prospects for therapy. We also highlight recent work from our lab that was the first to describe microglial responses out to chronic timepoints after diffuse mild TBI in a clinically relevant large animal model. The scaled head rotational acceleration of our large animal model, paired with the gyrencephalic architecture and appropriate white:gray matter ratio, allows us to produce pathology with the same anatomical patterns and distribution of human TBI, and serves as an exemplary model to examine complex neuroimmune response post-TBI. An improved understanding of microglial influences in TBI could aid in the development of targeted therapeutics to accentuate positive effects while attenuating detrimental post-injury responses over time.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Feminino , Humanos , Masculino , Microglia/metabolismo , Doenças Neuroinflamatórias , Pesquisa Translacional Biomédica , Lesões Encefálicas Traumáticas/patologia , Concussão Encefálica/complicações , Modelos Animais de Doenças
2.
J Surg Res ; 284: 6-16, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527768

RESUMO

INTRODUCTION: To assess the safety and efficacy of an experimental large-diameter vascular graft externally sealed with an elastomeric polymer when used as an interposition graft in the descending aorta of sheep. METHODS: The experimental vascular grafts as well as control gelatin sealed interposition grafts were inserted into the descending aorta of juvenile sheep. The grafts were assessed by time to hemostasis and blood loss during surgery and hematology and biochemistry panels at distinct time points. Magnetic resonance imaging (MRI) was performed at 3 and at 6 mo after surgery, after which the animals were euthanized and necropsies were carried out including macroscopic and microscopic examination of the grafts, anastomoses, and distal organs. RESULTS: All animals survived the study period. There was no perceivable difference in the surgical handling of the grafts. The median intraoperative blood loss was 27.5 mL (range 10.0-125.0 mL) in the experimental group and 50.0 mL (range 10.0-75.0 mL) in the control group. The median time to hemostasis was 5.0 min (range 2.0-16.0 min) minutes in the experimental group versus 6.0 min (range 4.0-6.0 min) in the control group. MRI showed normal flow and graft patency in both groups. Healing and perianastomotic endothelialization was similar in both groups. CONCLUSIONS: The experimental graft has a similar safety and performance profile and largely comparable necropsy results, in comparison to a commonly used prosthetic vascular graft, with the experimental grafts eliciting a nonadherent external fibrous capsule as the major difference compared to the control grafts that were incorporated into the periadventitia. Survival, hemostatic sealing, and hematologic and radiologic results were comparable between the study groups.


Assuntos
Implante de Prótese Vascular , Prótese Vascular , Animais , Ovinos , Implante de Prótese Vascular/efeitos adversos , Elastômeros , Hemorragia , Grau de Desobstrução Vascular , Oclusão de Enxerto Vascular
3.
Adv Exp Med Biol ; 1415: 117-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440023

RESUMO

Gene therapy is a potential cure for several inherited retinal dystrophies, and adeno-associated virus (AAV) has emerged as a vector of choice for therapeutic gene delivery to the retina. However, prior exposure to AAVs can cause a humoral immune response resulting in the presence of antibodies in the serum, which can subsequently interfere with the AAV-mediated gene therapy. The antibodies bind specifically to a serotype but often display broad cross-reactivity. A subset of these antibodies called neutralizing antibodies (NABs) can render the AAV inactive, thereby reducing the efficacy of the therapy. The preexisting NAB levels against different serotypes vary by species, and these variations need to be considered while designing studies. Since large animals often serve as preclinical models to test gene therapies, in this review we compile studies reporting preexisting NABs against commonly used AAV serotypes in humans and large animal models and discuss strategies to deal with NABs.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Animais , Humanos , Dependovirus/genética , Sorogrupo , Vetores Genéticos/genética , Terapia Genética/métodos , Modelos Animais
4.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768805

RESUMO

Cardiovascular complications are the main cause of morbidity and mortality from diabetes. Herein, vascular inflammation is a major pathological manifestation. We previously characterized the cardiac microvascular inflammatory phenotype in diabetic patients and highlighted micro-RNA 92a (miR-92a) as a driver of endothelial dysfunction. In this article, we further dissect the molecular underlying of these findings by addressing anti-inflammatory Krüppel-like factors 2 and 4 (KLF2 and KLF4). We show that KLF2 dysregulation in diabetes correlates with greater monocyte adhesion as well as migratory defects in cardiac microvascular endothelial cells. We also describe, for the first time, a role for myocyte enhancer factor 2D (MEF2D) in cardiac microvascular dysfunction in diabetes. We show that both KLFs 2 and 4, as well as MEF2D, are dysregulated in human and porcine models of diabetes. Furthermore, we prove a direct interaction between miR-92a and all three targets. Altogether, our data strongly qualify miR-92a as a potential therapeutic target for diabetes-associated cardiovascular disease.


Assuntos
Diabetes Mellitus , MicroRNAs , Humanos , Animais , Suínos , Fatores de Transcrição MEF2/genética , Células Endoteliais , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Diabetes Mellitus/genética , Inflamação
5.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175506

RESUMO

Cell-therapy-based nerve repair strategies hold great promise. In the field, there is an extensive amount of evidence for better regenerative outcomes when using tissue-engineered nerve grafts for bridging severe gap injuries. Although a massive number of studies have been performed using rodents, only a limited number involving nerve injury models of large animals were reported. Nerve injury models mirroring the human nerve size and injury complexity are crucial to direct the further clinical development of advanced therapeutic interventions. Thus, there is a great need for the advancement of research using large animals, which will closely reflect human nerve repair outcomes. Within this context, this review highlights various stem cell-based nerve repair strategies involving large animal models such as pigs, rabbits, dogs, and monkeys, with an emphasis on the limitations and strengths of therapeutic strategy and outcome measurements. Finally, future directions in the field of nerve repair are discussed. Thus, the present review provides valuable knowledge, as well as the current state of information and insights into nerve repair strategies using cell therapies in large animals.


Assuntos
Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Doenças do Sistema Nervoso Periférico , Traumatismos do Sistema Nervoso , Humanos , Animais , Coelhos , Cães , Suínos , Engenharia Tecidual , Células de Schwann/fisiologia , Células-Tronco , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/lesões
6.
Basic Res Cardiol ; 117(1): 21, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389088

RESUMO

Inflammatory cell infiltration is central to healing after acute myocardial infarction (AMI). The relation of regional inflammation to edema, infarct size (IS), microvascular obstruction (MVO), intramyocardial hemorrhage (IMH), and regional and global LV function is not clear. Here we noninvasively characterized regional inflammation and contractile function in reperfused AMI in pigs using fluorine (19F) cardiovascular magnetic resonance (CMR). Adult anesthetized pigs underwent left anterior descending coronary artery instrumentation with either 90 min occlusion (n = 17) or without occlusion (sham, n = 5). After 3 days, in surviving animals a perfluorooctyl bromide nanoemulsion was infused intravenously to label monocytes/macrophages. At day 6, in vivo 1H-CMR was performed with cine, T2 and T2* weighted imaging, T2 and T1 mapping, perfusion and late gadolinium enhancement followed by 19F-CMR. Pigs were sacrificed for subsequent ex vivo scans and histology. Edema extent was 35 ± 8% and IS was 22 ± 6% of LV mass. Six of ten surviving AMI animals displayed both MVO and IMH (3.3 ± 1.6% and 1.9 ± 0.8% of LV mass). The 19F signal, reflecting the presence and density of monocytes/macrophages, was consistently smaller than edema volume or IS and not apparent in remote areas. The 19F signal-to-noise ratio (SNR) > 8 in the infarct border zone was associated with impaired remote systolic wall thickening. A whole heart value of 19F integral (19F SNR × milliliter) > 200 was related to initial LV remodeling independently of edema, IS, MVO, and IMH. Thus, 19F-CMR quantitatively characterizes regional inflammation after AMI and its relation to edema, IS, MVO, IMH and regional and global LV function and remodeling.


Assuntos
Meios de Contraste , Infarto do Miocárdio , Animais , Gadolínio , Hemorragia/patologia , Inflamação , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Infarto do Miocárdio/patologia , Suínos
7.
Mol Ther ; 29(11): 3140-3152, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601132

RESUMO

Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Edição de Genes , Terapia Genética , Animais , Estudos Clínicos como Assunto , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Terapia Genética/tendências , Vetores Genéticos/genética , Humanos
8.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G588-G602, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549599

RESUMO

Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/metabolismo , Isquemia Mesentérica/metabolismo , Reepitelização , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Proteínas de Homeodomínio/genética , Mucosa Intestinal/patologia , Masculino , Isquemia Mesentérica/genética , Isquemia Mesentérica/patologia , Fenótipo , Índice de Gravidade de Doença , Células-Tronco/patologia , Sus scrofa , Técnicas de Cultura de Tecidos
9.
BMC Pulm Med ; 21(1): 418, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922518

RESUMO

BACKGROUND: Mechanisms of positive effects of pulmonary artery (PA) denervation (PADN) remain poorly understood. The study aimed to evaluate pulmonary hemodynamic changes after PADN and their association with the extent of PA wall damage in an acute thromboxane A2 (TXA2)-induced pulmonary hypertension (PH) model in swine. METHODS: In this experimental sham-controlled study, 17 normotensive male white Landrace pigs (the mean weight 36.2 ± 4.5 kg) were included and randomly assigned to group I (n = 9)-PH modeling before and after PADN, group II (n = 4)-PADN only, or group III (n = 4)-PH modeling before and after a sham procedure. Radiofrequency (RF) PADN was performed in the PA trunk and at the proximal parts of the right and left PAs. PA wall lesions were characterized at the autopsy study using histological and the immunohistochemical examination. RESULTS: In groups I and II, no statistically significant changes in the mean pulmonary arterial pressure nor systemic blood pressure were found after PADN (-0.8 ± 3.4 vs 4.3 ± 8.6 mmHg, P = 0.47; and 6.0 ± 15.9 vs -8.3 ± 7.5 mmHg, P = 0.1; correspondingly). There was a trend towards a lower diastolic pulmonary arterial pressure after PADN in group I when compared with group III during repeat PH induction (34.4 ± 2.9 vs 38.0 ± 0.8; P = 0.06). Despite the presence of severe PA wall damage at the RF application sites, S100 expression was preserved in the majority of PA specimens. The presence of high-grade PA lesions was associated with HR acceleration after PADN (ρ = 0.68, p = 0.03). No significant correlation was found between the grade of PA lesion severity and PA pressure after PADN with or without PH induction. CONCLUSIONS: Extended PADN does not affect PH induction using TXA2. Significant PA adventitia damage is associated with HR acceleration after PADN. Possible delayed effects of PADN on perivascular nerves and pulmonary hemodynamics require further research in chronic experiments.


Assuntos
Denervação/métodos , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/cirurgia , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/cirurgia , Animais , Pressão Sanguínea , Ablação por Cateter/métodos , Modelos Animais de Doenças , Hemodinâmica , Masculino , Suínos
10.
Proc Natl Acad Sci U S A ; 115(50): E11807-E11816, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487224

RESUMO

Endogenous remyelination of the CNS can be robust and restore function, yet in multiple sclerosis it becomes less complete with time. Promoting remyelination is a major therapeutic goal, both to restore function and to protect axons from degeneration. Remyelination is thought to depend on oligodendrocyte progenitor cells, giving rise to nascent remyelinating oligodendrocytes. Surviving, mature oligodendrocytes are largely regarded as being uninvolved. We have examined this question using two large animal models. In the first model, there is extensive demyelination and remyelination of the CNS, yet oligodendrocytes survive, and in recovered animals there is a mix of remyelinated axons interspersed between mature, thick myelin sheaths. Using 2D and 3D light and electron microscopy, we show that many oligodendrocytes are connected to mature and remyelinated myelin sheaths, which we conclude are cells that have reextended processes to contact demyelinated axons while maintaining mature myelin internodes. In the second model in vitamin B12-deficient nonhuman primates, we demonstrate that surviving mature oligodendrocytes extend processes and ensheath demyelinated axons. These data indicate that mature oligodendrocytes can participate in remyelination.


Assuntos
Oligodendroglia/fisiologia , Remielinização/fisiologia , Animais , Axônios/fisiologia , Gatos , Diferenciação Celular , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Macaca mulatta , Microscopia Eletrônica de Transmissão , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/citologia
11.
Basic Res Cardiol ; 115(3): 33, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291522

RESUMO

Nonrevascularizable coronary artery disease is a frequent cause of hibernating myocardium leading to heart failure (HF). Currently, there is a paucity of therapeutic options for patients with this condition. There is a lack of animal models resembling clinical features of hibernating myocardium. Here we present a large animal model of hibernating myocardium characterized by serial multimodality imaging. Yucatan minipigs underwent a surgical casein ameroid implant around the proximal left anterior descending coronary artery (LAD), resulting in a progressive obstruction of the vessel. Pigs underwent serial multimodality imaging including invasive coronary angiography, cardiac magnetic resonance (CMR), and hybrid 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT). A total of 43 pigs were operated on and were followed for 120 ± 37 days with monthly multimodality imaging. 24 pigs (56%) died during the follow-up. Severe LAD luminal stenosis was documented in all survivors. In the group of 19 long-term survivors, 17 (90%) developed left ventricular systolic dysfunction [median LVEF of 35% (IQR 32.5-40.5%)]. In 17/17, at-risk territory was viable on CMR and 14 showed an increased glucose uptake in the at-risk myocardium on 18FDG-PET/CT. The present pig model resembles most of the human hibernated myocardium characteristics and associated heart failure (systolic dysfunction, viable myocardium, and metabolic switch to glucose). This human-like model might be used to test novel interventions for nonrevascularizable coronary artery disease and ischemia heart failure as a previous stage to clinical trials.


Assuntos
Modelos Animais de Doenças , Miocárdio Atordoado/patologia , Animais , Angiografia Coronária/métodos , Insuficiência Cardíaca/patologia , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Suínos , Porco Miniatura , Pesquisa Translacional Biomédica
12.
Cell Tissue Res ; 380(2): 305-311, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32130478

RESUMO

Animal models are a significant component of biomedical research and play an important role in translational studies. Traditionally, rodent models have been the mainstay and principal choice of researchers but in recent years, there have been significant changes in the landscape of animal modeling. For example, newer techniques have greatly expanded the use and successful application of large animal models such as pigs for translational studies. The evolving types and species of animal models can influence the research landscape in terms of facilities, expertise, reproducibility and funding streams, which creates new challenges for research studies. It is also important that investigators are prepared to address the necessity of their animal model research and capable to educate the public regarding its value.


Assuntos
Pesquisa Translacional Biomédica/métodos , Animais , Modelos Animais de Doenças , Humanos
13.
Transpl Int ; 33(1): 98-107, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31523849

RESUMO

Anti-CD2 treatment provides targeted immunomodulatory properties that have demonstrated clinical usefulness to condition the immune system and to treat transplant rejection. The treatment is species-specific due to structural CD2 antigen differences between nonhuman primates and humans. Herein, we report the safety profile and efficacy of two modifications of the same anti-CD2 monoclonal antibody in cynomolgus macaques. Twelve subjects received one i.v. anti-CD2 (of rat or rhesus type) dose each, range 1-4 mg/kg, and were followed for 1-7 days. Treatment effects were evaluated with flow cytometry on peripheral blood and histopathological evaluation of secondary lymphoid organs. In vitro inhibitory activity on primary MHC disparate mixed lymphocyte reactions (MLRs) was determined. Upon anti-CD2 treatment, CD4+ , CD8+ memory subsets were substantially depleted. Naïve T cells and Tregs were relatively spared and exhibited lower CD2 expression than memory T cells. Early immune reconstitution was noted for naïve cells, while memory counts had not recovered after one week. Both antibodies displayed a concentration-dependent MLR inhibition. Lymph node examination revealed no significant lymphocyte depletion. None of the animals experienced any significant study drug-related adverse events. This study outlines the safety and pharmacodynamic profile of primate-specific anti-CD2 treatment, relevant for translation of anti-CD2-based animal models into clinical trials.


Assuntos
Anticorpos Monoclonais , Antígenos CD2/antagonistas & inibidores , Linfócitos T , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Depleção Linfocítica , Macaca , Masculino
14.
Am J Physiol Regul Integr Comp Physiol ; 315(2): R165-R190, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537289

RESUMO

Acute central nervous system injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide. Studies in animal models have greatly enhanced our understanding of the complex pathophysiology that underlies TBI and stroke and enabled the preclinical screening of over 1,000 novel therapeutic agents. Despite this, the translation of novel therapeutics from experimental models to clinical therapies has been extremely poor. One potential explanation for this poor clinical translation is the choice of experimental model, given that the majority of preclinical TBI and ischemic stroke studies have been conducted in small animals, such as rodents, which have small lissencephalic brains. However, the use of large animal species such as nonhuman primates, sheep, and pigs, which have large gyrencephalic human-like brains, may provide an avenue to improve clinical translation due to similarities in neuroanatomical structure when compared with widely adopted rodent models. This purpose of this review is to provide an overview of large animal models of TBI and ischemic stroke, including the surgical considerations, key benefits, and limitations of each approach.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Pesquisa Translacional Biomédica/métodos , Animais , Encéfalo/patologia , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Humanos , Especificidade da Espécie , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia
15.
Curr Osteoporos Rep ; 16(2): 182-197, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29460175

RESUMO

PURPOSE OF THE REVIEW: This review summarizes research on the use of sheep and goats as large animal models of human osteoporosis for preclinical and translational studies. RECENT FINDINGS: The most frequent osteoporotic sheep model used is the ovariectomized sheep with 12 months post-operatively or more and the combined treatment of ovariectomized sheep associated to calcium/vitamin D-deficient diet and glucocorticoid applications for 6 months, but other methods are also described, like pinealectomy or hypothalamic-pituitary disconnection in ovariectomized sheep. The goat model for osteoporosis research has been used in a very limited number of studies in osteoporosis research relative to sheep. These osteoporotic small ruminant models are applied for biomaterial research, bone augmentation, efficacy of implant fixation, fragility fracture-healing process improvement, or bone-defect repair studies in the osteopenic or osteoporotic bone. Sheep are a recognized large animal model for preclinical and translational studies in osteoporosis research and the goat to a lesser extent. Recently, the pathophysiological mechanism underlying induction of osteoporosis in glucocorticoid-treated ovariectomized aged sheep was clarified, being similar to what occurs in postmenopausal women with glucocorticoid-induced osteoporosis. It was also concluded that the receptor activator of NF-κB ligand was stimulated in the late progressive phase of the osteoporosis induced by steroids in sheep. The knowledge of the pathophysiological mechanisms at the cellular and molecular levels of the induction of osteoporosis in small ruminants, if identical to humans, will allow in the future, the use of these animal models with greater confidence in the preclinical and translational studies for osteoporosis research.


Assuntos
Modelos Animais de Doenças , Cabras , Osteoporose , Ovinos , Animais , Materiais Biocompatíveis , Interface Osso-Implante , Consolidação da Fratura , Glucocorticoides , Sistema Hipotálamo-Hipofisário , Fraturas por Osteoporose , Ovariectomia , Pesquisa Translacional Biomédica
16.
Adv Exp Med Biol ; 1059: 441-501, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736586

RESUMO

Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.


Assuntos
Doenças Ósseas/cirurgia , Doenças das Cartilagens/cirurgia , Cães , Cabras , Cavalos , Teste de Materiais/métodos , Modelos Animais , Ovinos , Suínos , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/uso terapêutico , Doenças Ósseas/terapia , Doenças das Cartilagens/terapia , Condrócitos/transplante , Humanos , Implantes Experimentais , Especificidade da Espécie , Transplante de Células-Tronco , Porco Miniatura , Alicerces Teciduais
17.
Int J Neurosci ; 128(3): 243-254, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28918695

RESUMO

Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. MATERIALS AND METHODS: Mixed published articles and books associated with large animal models of TBI were researched and summarized. RESULTS: We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. CONCLUSIONS: Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Animais , Humanos
18.
Int J Mol Sci ; 19(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642550

RESUMO

Articular cartilage is a structure lack of vascular distribution. Once the cartilage is injured or diseased, it is unable to regenerate by itself. Surgical treatments do not effectively heal defects in articular cartilage. Tissue engineering is the most potential solution to this problem. In this study, methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and hydroxyapatite at a weight ratio of 2:1 were mixed via fused deposition modeling (FDM) layer by layer to form a solid scaffold. The scaffolds were further infiltrated with glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of Transforming Growth Factor-ß1 and photo cross-linked on top of the scaffolds. An in vivo test was performed on the knees of Lanyu miniature pigs for a period of 12 months. The healing process of the osteochondral defects was followed by computer tomography (CT). The defect was fully covered with regenerated tissues in the control pig, while different tissues were grown in the defect of knee of the experimental pig. In the gross anatomy of the cross section, the scaffold remained in the subchondral location, while surface cartilage was regenerated. The cross section of the knees of both the control and experimental pigs were subjected to hematoxylin and eosin staining. The cartilage of the knee in the experimental pig was partially matured, e.g., few chondrocyte cells were enclosed in the lacunae. In the knee of the control pig, the defect was fully grown with fibrocartilage. In another in vivo experiment in a rabbit and a pig, the composite of the TGF-ß1-loaded hydrogel and scaffolds was found to regenerate hyaline cartilage. However, scaffolds that remain in the subchondral lesion potentially delay the healing process. Therefore, the structural design of the scaffold should be reconsidered to match the regeneration process of both cartilage and subchondral bone.


Assuntos
Materiais Biomiméticos/farmacologia , Cartilagem Articular/lesões , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Durapatita/química , Poliésteres/química , Suínos , Porco Miniatura , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/química
19.
Heart Lung Circ ; 27(11): 1285-1300, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29703647

RESUMO

Despite advances in treatment over the past decade, heart failure remains a significant public health burden and a leading cause of death in the developed world. Gene therapy provides a promising approach for preventing and reversing cardiac abnormalities, however, clinical application has shown limited success to date. A substantial effort is being invested into the development of recombinant adeno-associated viruses (AAVs) for cardiac gene therapy as AAV gene therapy offers a high safety profile and provides sustained and efficient transgene expression following a once-off administration. Due to the physiological, anatomical and genetic similarities between large animals and humans, preclinical studies using large animal models for AAV gene therapy are crucial stepping stones between the laboratory and the clinic. Many molecular targets selected to treat heart failure using AAV gene therapy have been chosen because of their potential to regulate and restore cardiac contractility. Other genes targeted with AAV are involved with regulating angiogenesis, beta-adrenergic sensitivity, inflammation, physiological signalling and metabolism. While significant progress continues to be made in the field of AAV cardiac gene therapy, challenges remain in overcoming host neutralising antibodies, improving AAV vector cardiac-transduction efficiency and selectivity, and optimising the dose, route and method of delivery.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Insuficiência Cardíaca/terapia , Animais , Humanos , Modelos Animais
20.
Yale J Biol Med ; 90(3): 417-431, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28955181

RESUMO

For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.


Assuntos
Doenças Genéticas Inatas , Doenças Raras , Animais , Gatos , Modelos Animais de Doenças , Cães , Humanos , Ovinos , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa