Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.377
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 46: 1-15, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36750409

RESUMO

A holy grail of regenerative medicine is to replenish the cells that are lost due to disease. The adult mammalian central nervous system (CNS) has, however, largely lost such a regenerative ability. An emerging strategy for the generation of new neurons is through glia-to-neuron (GtN) conversion in vivo, mainly accomplished by the regulation of fate-determining factors. When inhibited, PTBP1, a factor involved in RNA biology, was reported to induce rapid and efficient GtN conversion in multiple regions of the adult CNS. Remarkably, PTBP1 inhibition was also claimed to greatly improve behaviors of mice with neurological diseases or aging. These phenomenal claims, if confirmed, would constitute a significant advancement in regenerative medicine. Unfortunately, neither GtN conversion nor therapeutic potential via PTBP1 inhibition was validated by the results of multiple subsequent replication studies with stringent methods. Here we review these controversial studies and conclude with recommendations for examining GtN conversion in vivo and future investigations of PTBP1.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Sistema Nervoso Central , Retina , Mamíferos
2.
Development ; 151(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174987

RESUMO

To clarify our understanding of glial phagocytosis in retinal development, we used real-time imaging of larval zebrafish to provide cell-type specific resolution of this process. We show that radial Müller glia frequently participate in microglial phagocytosis while also completing a subset of phagocytic events. Müller glia actively engage with dying cells through initial target cell contact and phagocytic cup formation, after which an exchange of the dying cell from Müller glia to microglia often takes place. In addition, we find evidence that Müller glia cellular material, possibly from the initial Müller cell phagocytic cup, is internalized into microglial compartments. Previously undescribed Müller cell behaviors were seen, including cargo splitting, wrestling for targets and lateral passing of cargo to neighbors. Collectively, our work provides new insight into glial functions and intercellular interactions, which will allow future work to understand these behaviors on a molecular level.


Assuntos
Eferocitose , Microglia , Animais , Peixe-Zebra , Neuroglia , Fagocitose , Retina
3.
Proc Natl Acad Sci U S A ; 121(16): e2313820121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598343

RESUMO

In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.


Assuntos
Callithrix , Retina , Humanos , Animais , Recém-Nascido , Callithrix/anatomia & histologia , Retina/metabolismo , Fóvea Central/fisiologia , Células Fotorreceptoras Retinianas Cones , Macaca , Mamíferos
4.
Proc Natl Acad Sci U S A ; 121(4): e2312845121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241432

RESUMO

Natural selection makes evolutionary adaptation possible even if the overwhelming majority of new mutations are deleterious. However, in rapidly evolving populations where numerous linked mutations occur and segregate simultaneously, clonal interference and genetic hitchhiking can limit the efficiency of selection, allowing deleterious mutations to accumulate over time. This can in principle overwhelm the fitness increases provided by beneficial mutations, leading to an overall fitness decline. Here, we analyze the conditions under which evolution will tend to drive populations to higher versus lower fitness. Our analysis focuses on quantifying the boundary between these two regimes, as a function of parameters such as population size, mutation rates, and selection pressures. This boundary represents a state in which adaptation is precisely balanced by Muller's ratchet, and we show that it can be characterized by rapid molecular evolution without any net fitness change. Finally, we consider the implications of global fitness-mediated epistasis and find that under some circumstances, this can drive populations toward the boundary state, which can thus represent a long-term evolutionary attractor.


Assuntos
Taxa de Mutação , Seleção Genética , Mutação , Evolução Molecular , Densidade Demográfica , Modelos Genéticos
5.
J Cell Sci ; 137(7)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477343

RESUMO

Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.


Assuntos
Actinas , Peixe-Zebra , Animais , Actinas/metabolismo , Células Fotorreceptoras/metabolismo , Retina , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras de Vertebrados
6.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971210

RESUMO

Recent studies have demonstrated the impact of pro-inflammatory signaling and reactive microglia/macrophages on the formation of Müller glial-derived progenitor cells (MGPCs) in the retina. In chick retina, ablation of microglia/macrophages prevents the formation of MGPCs. Analyses of single-cell RNA-sequencing chick retinal libraries revealed that quiescent and activated microglia/macrophages have a significant impact upon the transcriptomic profile of Müller glia (MG). In damaged monocyte-depleted retinas, MG fail to upregulate genes related to different cell signaling pathways, including those related to Wnt, heparin-binding epidermal growth factor (HBEGF), fibroblast growth factor (FGF) and retinoic acid receptors. Inhibition of GSK3ß, to simulate Wnt signaling, failed to rescue the deficit in MGPC formation, whereas application of HBEGF or FGF2 completely rescued the formation of MGPCs in monocyte-depleted retinas. Inhibition of Smad3 or activation of retinoic acid receptors partially rescued the formation of MGPCs in monocyte-depleted retinas. We conclude that signals produced by reactive microglia/macrophages in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFß/Smad3 to promote the reprogramming of MG into proliferating MGPCs.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Microglia , Animais , Microglia/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neuroglia/metabolismo , Células Ependimogliais/metabolismo , Células-Tronco , Galinhas , Retina/metabolismo , Macrófagos , Via de Sinalização Wnt , Receptores do Ácido Retinoico/metabolismo , Família de Proteínas EGF/metabolismo , Heparina/farmacologia , Heparina/metabolismo , Proliferação de Células/genética
7.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36625162

RESUMO

Cell morphology is crucial for all cell functions. This is particularly true for glial cells as they rely on complex shape to contact and support neurons. However, methods to quantify complex glial cell shape accurately and reproducibly are lacking. To address this, we developed the image analysis pipeline 'GliaMorph'. GliaMorph is a modular analysis toolkit developed to perform (1) image pre-processing, (2) semi-automatic region-of-interest selection, (3) apicobasal texture analysis, (4) glia segmentation, and (5) cell feature quantification. Müller glia (MG) have a stereotypic shape linked to their maturation and physiological status. Here, we characterized MG on three levels: (1) global image-level, (2) apicobasal texture, and (3) regional apicobasal vertical-to-horizontal alignment. Using GliaMorph, we quantified MG development on a global and single-cell level, showing increased feature elaboration and subcellular morphological rearrangement in the zebrafish retina. As proof of principle, we analysed expression changes in a mouse glaucoma model, identifying subcellular protein localization changes in MG. Together, these data demonstrate that GliaMorph enables an in-depth understanding of MG morphology in the developing and diseased retina.


Assuntos
Células Ependimogliais , Peixe-Zebra , Animais , Camundongos , Retina/metabolismo , Neuroglia/metabolismo , Neurônios
8.
Dev Biol ; 508: 24-37, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224933

RESUMO

Cephalochordates occupy a key phylogenetic position for deciphering the origin and evolution of chordates, since they diverged earlier than urochordates and vertebrates. The notochord is the most prominent feature of chordates. The amphioxus notochord features coin-shaped cells bearing myofibrils. Notochord-derived hedgehog signaling contributes to patterning of the dorsal nerve cord, as in vertebrates. However, properties of constituent notochord cells remain unknown at the single-cell level. We examined these properties using Iso-seq analysis, single-cell RNA-seq analysis, and in situ hybridization (ISH). Gene expression profiles broadly categorize notochordal cells into myofibrillar cells and non-myofibrillar cells. Myofibrillar cells occupy most of the central portion of the notochord, and some cells extend the notochordal horn to both sides of the ventral nerve cord. Some notochord myofibrillar genes are not expressed in myotomes, suggesting an occurrence of myofibrillar genes that are preferentially expressed in notochord. On the other hand, non-myofibrillar cells contain dorsal, lateral, and ventral Müller cells, and all three express both hedgehog and Brachyury. This was confirmed by ISH, although expression of hedgehog in ventral Müller cells was minimal. In addition, dorsal Müller cells express neural transmission-related genes, suggesting an interaction with nerve cord. Lateral Müller cells express hedgehog and other signaling-related genes, suggesting an interaction with myotomes positioned lateral to the notochord. Ventral Müller cells also expressed genes for FGF- and EGF-related signaling, which may be associated with development of endoderm, ventral to the notochord. Lateral Müller cells were intermediate between dorsal/ventral Müller cells. Since vertebrate notochord contributes to patterning and differentiation of ectoderm (nerve cord), mesoderm (somite), and endoderm, this investigation provides evidence that an ancestral or original form of vertebrate notochord is present in extant cephalochordates.


Assuntos
Anfioxos , Animais , Filogenia , Notocorda , Análise da Expressão Gênica de Célula Única , Proteínas Hedgehog/genética , Vertebrados , Regulação da Expressão Gênica no Desenvolvimento/genética
9.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38950035

RESUMO

Natural selection is less efficient in the absence of recombination. As a result, nonrecombining sequences, such as sex chromosomes, tend to degenerate over time. Although the outcomes of recombination arrest are typically observed after many millions of generations, recent neo-sex chromosomes can give insight into the early stages of this process. Here, we investigate the evolution of neo-sex chromosomes in the Spanish marbled white butterfly, Melanargia ines, where a Z-autosome fusion has turned the homologous autosome into a nonrecombining neo-W chromosome. We show that these neo-sex chromosomes are likely limited to the Iberian population of M. ines, and that they arose around the time when this population split from North-African populations, around 1.5 million years ago. Recombination arrest of the neo-W chromosome has led to an excess of premature stop-codons and frame-shift mutations, and reduced gene expression compared to the neo-Z chromosome. Surprisingly, we identified two regions of ∼1 Mb at one end of the neo-W that are both less diverged from the neo-Z and less degraded than the rest of the chromosome, suggesting a history of rare but repeated genetic exchange between the two neo-sex chromosomes. These plateaus of neo-sex chromosome divergence suggest that neo-W degradation can be locally reversed by rare recombination between neo-W and neo-Z chromosomes.


Assuntos
Borboletas , Recombinação Genética , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Masculino , Borboletas/genética , Feminino , Evolução Molecular , Seleção Genética
10.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132991

RESUMO

A recent comparative transcriptomic study of Müller glia (MG) in vertebrate retinas revealed that fatty acid binding proteins (FABPs) are among the most highly expressed genes in chick ( Hoang et al., 2020). Here, we investigate how FABPs and fatty acid synthase (FASN) influence glial cells in the chick retina. During development, FABP7 is highly expressed by retinal progenitor cells and maturing MG, whereas FABP5 is upregulated in maturing MG. PMP2 (FABP8) is expressed by oligodendrocytes and FABP5 is expressed by non-astrocytic inner retinal glial cells, and both of these FABPs are upregulated by activated MG. In addition to suppressing the formation of Müller glia-derived progenitor cells (MGPCs), we find that FABP-inhibition suppresses the proliferation of microglia. FABP-inhibition induces distinct changes in single cell transcriptomic profiles, indicating transitions of MG from resting to reactive states and suppressed MGPC formation, with upregulation of gene modules for gliogenesis and decreases in neurogenesis. FASN-inhibition increases the proliferation of microglia and suppresses the formation of MGPCs. We conclude that fatty acid metabolism and cell signaling involving fatty acids are important in regulating the reactivity and dedifferentiation of MG, and the proliferation of microglia and MGPCs.


Assuntos
Galinhas/metabolismo , Células Ependimogliais/metabolismo , Ácido Graxo Sintases/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Retina/metabolismo , Células-Tronco/metabolismo , Animais , Proliferação de Células/fisiologia , Microglia/metabolismo , Neurogênese/fisiologia , Transdução de Sinais/fisiologia
11.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502778

RESUMO

In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Sistema Nervoso Central/fisiologia , Mamíferos , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Peixe-Zebra/fisiologia
12.
FASEB J ; 38(10): e23671, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752538

RESUMO

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Assuntos
Apoptose , Autofagia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Fotorreceptoras de Vertebrados , Sulfonamidas , Animais , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Óxidos S-Cíclicos/farmacologia , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Furanos/farmacologia , Hipóxia/metabolismo , Indenos/farmacologia , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonas/farmacologia
13.
Exp Cell Res ; 439(1): 114087, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735619

RESUMO

Diabetic retinopathy (DR) is a common microvascular complication that causes visual impairment or loss. Aquaporin 4 (AQP4) is a regulatory protein involved in water transport and metabolism. In previous studies, we found that AQP4 is related to hypoxia injury in Muller cells. Transient receptor potential cation channel subfamily V member 4 (TRPV4) is a non-selective cation channel protein involved in the regulation of a variety of ophthalmic diseases. However, the effects of AQP4 and TRPV4 on ferroptosis and oxidative stress in high glucose (HG)-treated Muller cells are unclear. In this study, we investigated the functions of AQP4 and TRPV4 in DR. HG was used to treat mouse Muller cells. Reverse transcription quantitative polymerase chain reaction was used to measure AQP4 mRNA expression. Western blotting was used to detect the protein levels of AQP4, PTGS2, GPX4, and TRPV4. Cell count kit-8, flow cytometry, 5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide staining, and glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) kits were used to evaluate the function of the Muller cells. Streptozotocin was used to induce DR in rats. Haematoxylin and eosin staining was performed to stain the retina of rats. GSH, SOD, and MDA detection kits, immunofluorescence, and flow cytometry assays were performed to study the function of AQP4 and TRPV4 in DR rats. Results found that AQP4 and TRPV4 were overexpressed in HG-induced Muller cells and streptozotocin-induced DR rats. AQP4 inhibition promoted proliferation and cell cycle progression, repressed cell apoptosis, ferroptosis, and oxidative stress, and alleviated retinal injury in DR rats. Mechanistically, AQP4 positively regulated TRPV4 expression. Overexpression of TRPV4 enhanced ferroptosis and oxidative stress in HG-treated Muller cells, and inhibition of TRPV4 had a protective effect on DR-induced retinal injury in rats. In conclusion, inhibition of AQP4 inhibits the ferroptosis and oxidative stress in Muller cells by downregulating TRPV4, which may be a potential target for DR therapy.


Assuntos
Aquaporina 4 , Retinopatia Diabética , Células Ependimogliais , Ferroptose , Estresse Oxidativo , Canais de Cátion TRPV , Animais , Masculino , Camundongos , Ratos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/genética , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Glucose/metabolismo , Glucose/farmacologia , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética
14.
Cell Mol Life Sci ; 81(1): 47, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236305

RESUMO

Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Doenças do Sistema Nervoso Periférico , Animais , Humanos , Doenças Neuroinflamatórias , Neuroglia , Inflamação
15.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197297

RESUMO

Muller glia (MG) play a central role in reactive gliosis, a stress response associated with rare and common retinal degenerative diseases, including age-related macular degeneration (AMD). The posttranslational modification citrullination​ targeting glial fibrillary acidic protein (GFAP) in MG was initially discovered in a panocular chemical injury model. Here, we report in the paradigms of retinal laser injury, a genetic model of spontaneous retinal degeneration (JR5558 mice) and human wet-AMD tissues that MG citrullination is broadly conserved. After laser injury, GFAP polymers that accumulate in reactive MG are citrullinated in MG endfeet and glial cell processes. The enzyme responsible for citrullination, peptidyl arginine deiminase-4 (PAD4), localizes to endfeet and associates with GFAP polymers. Glial cell-specific PAD4 deficiency attenuates retinal hypercitrullination in injured retinas, indicating PAD4 requirement for MG citrullination. In retinas of 1-mo-old JR5558 mice, hypercitrullinated GFAP and PAD4 accumulate in MG endfeet/cell processes in a lesion-specific manner. Finally, we show that human donor maculae from patients with wet-AMD also feature the canonical endfeet localization of hypercitrullinated GFAP. Thus, we propose that endfeet are a "citrullination bunker" that initiates and sustains citrullination in retinal degeneration.


Assuntos
Citrulinação , Gliose/metabolismo , Neuroglia/metabolismo , Degeneração Retiniana/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Macular Exsudativa/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(35): e2205041119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994648

RESUMO

The transition from prokaryotic lateral gene transfer to eukaryotic meiotic sex is poorly understood. Phylogenetic evidence suggests that it was tightly linked to eukaryogenesis, which involved an unprecedented rise in both genome size and the density of genetic repeats. Expansion of genome size raised the severity of Muller's ratchet, while limiting the effectiveness of lateral gene transfer (LGT) at purging deleterious mutations. In principle, an increase in recombination length combined with higher rates of LGT could solve this problem. Here, we show using a computational model that this solution fails in the presence of genetic repeats prevalent in early eukaryotes. The model demonstrates that dispersed repeat sequences allow ectopic recombination, which leads to the loss of genetic information and curtails the capacity of LGT to prevent mutation accumulation. Increasing recombination length in the presence of repeat sequences exacerbates the problem. Mutational decay can only be resisted with homology along extended sequences of DNA. We conclude that the transition to homologous pairing along linear chromosomes was a key innovation in meiotic sex, which was instrumental in the expansion of eukaryotic genomes and morphological complexity.


Assuntos
Expansão das Repetições de DNA , Eucariotos , Evolução Molecular , Transferência Genética Horizontal , Meiose , Simulação por Computador , Expansão das Repetições de DNA/genética , Eucariotos/genética , Transferência Genética Horizontal/genética , Genoma/genética , Meiose/genética , Mutação , Acúmulo de Mutações , Filogenia , Células Procarióticas
17.
J Biol Chem ; 299(12): 105461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977220

RESUMO

Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.


Assuntos
Células Ependimogliais , Proteínas do Olho , Proteínas de Homeodomínio , Homeostase , Retina , Fatores de Transcrição , Animais , Camundongos , Células Ependimogliais/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase/genética , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Retina/patologia , RNA-Seq , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
18.
Glia ; 72(7): 1236-1258, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38515287

RESUMO

The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.


Assuntos
Proliferação de Células , Células Ependimogliais , Proteínas Inibidoras de Diferenciação , Retina , Animais , Proliferação de Células/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Retina/metabolismo , Retina/citologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Neurogênese/fisiologia , Neurogênese/efeitos dos fármacos , Embrião de Galinha , Células-Tronco Neurais/metabolismo , Galinhas , Neuroglia/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
19.
Glia ; 72(6): 1067-1081, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497356

RESUMO

Alzheimer's Disease (AD) pathogenesis is thought to begin up to 20 years before cognitive symptoms appear, suggesting the need for more sensitive diagnostic biomarkers of AD. In this report, we demonstrated pathological changes in retinal Müller glia significantly earlier than amyloid pathology in AD mouse models. By utilizing the knock-in NLGF mouse model, we surprisingly discovered an increase in reticulon 3 (RTN3) protein levels in the NLGF retina as early as postnatal day 30 (P30). Despite RTN3 being a canonically neuronal protein, this increase was noted in the retinal Müller glia, confirmed by immunohistochemical characterization. Further unbiased transcriptomic assays of the P30 NLGF retina revealed that retinal Müller glia were the most sensitive responding cells in this mouse retina, compared with other cell types including photoreceptor cells and ganglion neurons. Pathway analyses of differentially expressed genes in glia cells showed activation of ER stress response via the upregulation of unfolded protein response (UPR) proteins such as ATF4 and CHOP. Early elevation of RTN3 in response to challenges by toxic Aß likely facilitated UPR. Altogether, these findings suggest that Müller glia act as a sentinel for AD pathology in the retina and should aid for both intervention and diagnosis.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/patologia , Retina , Neurônios/metabolismo , Modelos Animais de Doenças , Proteínas Amiloidogênicas/metabolismo , Neuroglia/metabolismo , Encéfalo/metabolismo , Células Ependimogliais/metabolismo
20.
Glia ; 72(4): 759-776, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38225726

RESUMO

Regenerative abilities are not evenly distributed across the animal kingdom. The underlying modalities are also highly variable. Retinal repair can involve the mobilization of different cellular sources, including ciliary marginal zone (CMZ) stem cells, the retinal pigmented epithelium (RPE), or Müller glia. To investigate whether the magnitude of retinal damage influences the regeneration modality of the Xenopus retina, we developed a model based on cobalt chloride (CoCl2 ) intraocular injection, allowing for a dose-dependent control of cell death extent. Analyses in Xenopus laevis revealed that limited CoCl2 -mediated neurotoxicity only triggers cone loss and results in a few Müller cells reentering the cell cycle. Severe CoCl2 -induced retinal degeneration not only potentializes Müller cell proliferation but also enhances CMZ activity and unexpectedly triggers RPE reprogramming. Surprisingly, reprogrammed RPE self-organizes into an ectopic mini-retina-like structure laid on top of the original retina. It is thus likely that the injury paradigm determines the awakening of different stem-like cell populations. We further show that these cellular sources exhibit distinct neurogenic capacities without any bias towards lost cells. This is particularly striking for Müller glia, which regenerates several types of neurons, but not cones, the most affected cell type. Finally, we found that X. tropicalis also has the ability to recruit Müller cells and reprogram its RPE following CoCl2 -induced damage, whereas only CMZ involvement was reported in previously examined degenerative models. Altogether, these findings highlight the critical role of the injury paradigm and reveal that three cellular sources can be reactivated in the very same degenerative model.


Assuntos
Cobalto , Degeneração Retiniana , Animais , Xenopus laevis/fisiologia , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Retina , Regeneração/fisiologia , Proliferação de Células , Neuroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa