Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Biol Chem ; 300(7): 107486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897570

RESUMO

Aberrant regulation of signal transduction pathways can adversely derail biological processes for tissue development. One such process is the embryonic eyelid closure that is dependent on the mitogen-activated protein kinase kinase kinase 1 (MAP3K1). Map3k1 KO in mice results in defective eyelid closure and an autosomal recessive eye-open at birth phenotype. We have shown that in utero exposure to dioxin, a persistent environmental toxicant, induces the same eye defect in Map3k1+/- heterozygous but not WT pups. Here, we explore the mechanisms of the Map3k1 (gene) and dioxin (environment) interactions (GxE) underlying defective eyelid closure. We show that, acting through the aryl hydrocarbon receptor, dioxin activates epidermal growth factor receptor signaling, which in turn depresses MAP3K1-dependent Jun N-terminal kinase (JNK) activity. The dioxin-mediated JNK repression is moderate but is exacerbated by Map3k1 heterozygosity. Therefore, dioxin exposed Map3k1+/- embryonic eyelids have a marked reduction of JNK activity, accelerated differentiation and impeded polarization in the epithelial cells. Knocking out Ahr or Egfr in eyelid epithelium attenuates the open-eye defects in dioxin-treated Map3k1+/- pups, whereas knockout of Jnk1 and S1pr that encodes the sphigosin-1-phosphate (S1P) receptors upstream of the MAP3K1-JNK pathway potentiates the dioxin toxicity. Our novel findings show that the crosstalk of aryl hydrocarbon receptor, epidermal growth factor receptor, and S1P-MAP3K1-JNK pathways determines the outcome of dioxin exposure. Thus, gene mutations targeting these pathways are potential risk factors for the toxicity of environmental chemicals.


Assuntos
Dioxinas , Receptores ErbB , MAP Quinase Quinase Quinase 1 , Receptores de Hidrocarboneto Arílico , Animais , Feminino , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Dioxinas/toxicidade , Receptores ErbB/metabolismo , Receptores ErbB/genética , Pálpebras/metabolismo , Pálpebras/anormalidades , Interação Gene-Ambiente , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Knockout , Receptor Cross-Talk , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476515

RESUMO

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Pancreáticas , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas
3.
J Cell Mol Med ; 28(20): e70173, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39443331

RESUMO

Mitogen-Activated Protein Kinase Kinase Kinase 1 (MAP3K1) is overexpressed in gliomas; however, its clinical significance, biological functions, and underlying molecular mechanisms remain unclear. Abnormal overexpression of MAP3K1 in glioma is strongly associated with unfavourable clinicopathological characteristics and disease progression. MAP3K1 could potentially serve as a reliable diagnostic and prognostic biomarker for glioma. MAP3K1 silencing suppressed the migration but had no effect on the proliferation and cell death of Glioblastoma Multiforme (GBM) cells. MAP3K1 knockdown exacerbated the temozolomide (TMZ) induced inhibition of glioma cell proliferation and death of GBM cells. In addition, MAP3K1 knockdown combined with TMZ treatment significantly inhibited the growth and increased cell death in organoids derived from GBM patients. MAP3K1 knockdown reversed TMZ resistance of GBM in intracranial glioma model. In terms of molecular mechanisms, the phosphorylation level of ERK was significantly decreased by MAP3K1 silencing. No significant change in the JNK pathway was found in MAP3K1-silenced GBM cells. Inhibition of ERK phosphorylation suppressed the migration and enhanced the TMZ sensibility of GBM cells. MAP3K1 was correlated with the immune infiltration in glioma. MAP3K1 could facilitate the migration and TMZ resistance of GBM cells through MEK/ERK signalling.


Assuntos
Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Sistema de Sinalização das MAP Quinases , Temozolomida , Temozolomida/farmacologia , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Feminino , Masculino , Camundongos Nus , MAP Quinase Quinase Quinase 1
4.
Anim Biotechnol ; 34(3): 686-697, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37014133

RESUMO

MAP3K1 is a significant member of the MAPK family, and its expressed MEKK1 protein has a wide range of biological activities and is an essential node in the MAPK signaling pathway. A significant number of studies have revealed that MAP3K1 plays a complicated function in the control of cell proliferation, apoptosis, invasion and movement, participates in the regulation of the immune system, and plays an important role in wound healing, tumorigenesis and other processes. In this study, we looked at the involvement of MAP3K1 in the control of hair follicle stem cells (HFSCs). Overexpression of MAP3K1 significantly promoted the proliferation of HFSCs by inhibiting apoptosis and promoting the transition from S phase to G2 phase. The transcriptome identified 189 (MAP3K1_OE) and 414 (MAP3K1_sh) differential genes. The two pathways with the most significant enrichment of differentially expressed genes were the IL-17 signaling pathway and TNF signaling pathway, and the significantly enriched terms in the GO enrichment analysis involved regulation of response of external stimulus, inflammatory and cytokine. Indicate that MAP3K1 can function as a promoting factor in HFSCs through the induction of cell cycle transition from S phase to G2 phase can inhibition apoptosis by mediating crosstalk among several pathways and cytokines.HIGHLIGHTSAbnormal MAP3K1 expression in hair follicle stem cells (HFSCs) can impair HFSC proliferation and apoptosis.MAP3K1 controls hair follicle stem cell proliferation via modulating cell apoptosis and the ratio of cells in S phase/G2 phase.The differential genes shared by MAP3K1_sh and MAP3K1_OE are enriched in GO terms such as inflammation, adipocyte differentiation, acute inflammation, and so on.


Assuntos
Folículo Piloso , MAP Quinase Quinase Quinase 1 , Animais , Folículo Piloso/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Células-Tronco/metabolismo , Perfilação da Expressão Gênica , Citocinas/genética , Citocinas/metabolismo , Inflamação/metabolismo
5.
J Gene Med ; 24(8): e3376, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34191363

RESUMO

INTRODUCTION: Circular RNAs (circRNAs) are crucial regulators of tumor occurrence and progression, and circRNAs are enriched and stable in exosomes. The present study aimed to explore the role and potential mechanism of cancer-derived exosomal circ_0081234 in prostate cancer (PCa). METHODS: Exosomes were extracted using the ExoQuick Precipitation Kit (System Biosciences, Mountain View, CA, USA). The levels of circ_0081234, miR-1 and mitogen-activated protein kinase kinase kinase 1 (MAP 3 K1) were examined using a quantitative real-time polymerase chain reaction or western blotting. Cell migration and invasion were evaluated via a transwell assay. The protein levels of N-cadherin, vimentin and E-cadherin were detected by western blotting. The interaction between miR-1 and circ_0081234 or MAP 3 K1 was verified via a dual-luciferase reporter assay and an RNA pull-down assay. RESULTS: The circ_0081234 level was increased in PCa tissues with spinal metastasis in comparison to primary PCa tissues without spinal metastasis. Exosomal circ_0081234 promoted the migration, invasion and epithelial-mesenchymal transition of PCa cells. Knockdown of circ_0081234 blocked PCa cell progression by regulating miR-1. In addition, miR-1 overexpression suppressed PCa cell progression by repressing MAP 3 K1. Moreover, circ_0081234 increased MAP 3 K1 level via sponging miR-1. Depletion of circ_0081234 inhibited tumor growth in vivo. CONCLUSIONS: Exosomal circ_0081234 promoted migration, invasion and epithelial-mesenchymal transition of PCa cells by regulating the miR-1/MAP 3 K1 axis.


Assuntos
MicroRNAs , Neoplasias da Próstata , Neoplasias da Coluna Vertebral , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Masculino , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , RNA Circular/genética
6.
Biochem Biophys Res Commun ; 612: 188-195, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567901

RESUMO

Glioblastoma (GBM) stem cells (GSCs) are responsible for GBM initiation, progression, infiltration, standard therapy resistance, and recurrence. However, the mechanisms underlying GSC invasion remain incompletely understood. Using public single-cell RNA-Seq data, we identified MAP3K1 as a master regulator of infiltrative GSCs through c-JUN signaling regulation. MAP3K1 knockdown significantly decreased GSC invasion capacity, proliferation, and stemness in vitro. Moreover, in an orthotopic xenograft model, knockdown of MAP3K1 prominently suppressed GSC infiltration along the corpus callosum and tumor progression and prolonged mouse survival. Mechanistically, MAP3K1 regulates GSC invasion through phosphorylation of downstream c-JUN at serine 63 and 73, as confirmed using the CPTAC phosphoproteome dataset. Furthermore, the c-JUN inhibitor JNK-IN-8 significantly decreased GSC invasion, proliferation, and stemness. Taken together, our study demonstrates that MAP3K1 regulates GSC invasion and tumor progression via activation of c-JUN signaling and indicates that the MAP3K1/c-JUN signaling axis is a therapeutic target for infiltrative GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MAP Quinase Quinase Quinase 1 , Animais , Benzamidas , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Piridinas , Pirimidinas
7.
BMC Gastroenterol ; 22(1): 513, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510163

RESUMO

BACKGROUND/OBJECTIVES: The hormone-dependent effect of MAP3K1 gene polymorphisms may explain sex-specific differences in gastric cancer (GC) risk. Phytoestrogens have been shown to interact with this genetic factor. Here, we investigated the association between MAP3K1 gene polymorphisms and GC risk by sex and whether these associations differ depending on soy products intake. METHODS: Participants aged 20-79 years were recruited from two hospitals between December 2002 and September 2006. In all, 440 cases and 485 controls were recruited, among, 246 pairs of cases and controls, matched by sex, age (± 5 years), study admission period (± 1 years), and hospital, were included for the analysis. RESULTS: In dominant model, men with the A allele of rs252902 showed significantly increased GC risk (odd ratio; OR=2.19, 95% confidence interval; CI=1.31-3.64) compared to GG homozygotes. When stratified by intake of soy products, men with the A allele of rs252902 and low intake of soy products showed significantly higher GC risk (OR=3.29, 95% CI=1.55-6.78) than that in GG homozygotes. CONCLUSIONS: Men with the risk allele of MAP3K1 had a significantly increased GC risk compared to GG homozygotes; this trend was more pronounced in those with low intake of soy products.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Gástricas , Masculino , Feminino , Humanos , Neoplasias Gástricas/genética , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Alelos , Razão de Chances , Fatores de Risco , Predisposição Genética para Doença , MAP Quinase Quinase Quinase 1/genética
8.
Exp Cell Res ; 398(2): 112441, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338478

RESUMO

The Yangtze River Delta white goat is a sole goat species that can naturally produce superior-quality brush hair. It's worth to mention that study the developmental mechanism of goat hair follicle stem cells is vital for future breed preservation and molecular breeding. In this study, we successfully isolated hair follicle stem cells from the skin tissue of fetal sheep neck spine, and harvested superior-quality and normal-quality brush hair goat tissue. The expression of miR-31-5p in goat hair follicle stem cells was verified by qPCR and Western blot. The effects of overexpression or inhibition of miR-31-5p on the proliferation and apoptosis of hair follicle stem cells were detected by EdU, CCK-8, flow cytometry, etc. miR-31-5p can significantly improve cell proliferation and inhibit cell apoptosis by targeting RASA1 and upregulating MAP3K1 level, whereas miR-31-5p knockdown led to an opposite effect. These results reveal a miR-31-5p-associated regulatory network between miR-31-5p and RASA1/MAP3K1 during the progression of superiorquality brush hair traits.


Assuntos
Apoptose , Folículo Piloso/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Cabras
9.
J Clin Lab Anal ; 36(6): e24470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35524422

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) grows slowly but has a great risk of metastasis. MicroRNAs are well known as vital tumor-related gene regulators. In PTC, the role of miR-203a-3p and the underlying mechanisms remain not completely understood. METHODS: We conducted CCK8 assay, wound healing assay, transwell experiment and flow cytometry analyses to investigate the function of miRNA-203a-3p. The interaction of miRNA-203a-3p with its gene MAP3K1 was characterized by quantitative real-time polymerase chain reaction, western blotting and luciferase assay. RESULTS: We found that the levels of miRNA-203a-3p were statistically decreased in PTC tissues. When mimics were delivered to TPC-1 and KTC-1 cells to upregulate miR-203a-3p, it was observed that cell proliferation, metastatic abilities and cell cycle process were prevented but cell apoptosis was enhanced. Furthermore, we proved the interaction between MAP3K1 and miR-203a-3p. Intriguingly, similar to miR-203a-3p mimics, siMAP3K1 showed a tumor-suppressive effect, and this effect could be reversed when miR-203a-3p was simultaneously inhibited. Finally, selected autophagy-linked proteins such as LC3 Beclin-1 were detected and found to be increased when miR-203a-3p was upregulated or MAP3K1 was inhibited. CONCLUSION: Overall, miR-203a-3p inhibits the oncogenic characteristics of TPC-1 and KTC-1 cells via suppressing MAP3K1 and activating autophagy. Our findings might enrich the understanding and the therapeutic strategies of PTC.


Assuntos
Carcinoma Papilar , MAP Quinase Quinase Quinase 1 , MicroRNAs , Neoplasias da Glândula Tireoide , Autofagia/genética , Carcinoma Papilar/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
10.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576208

RESUMO

Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate ß-catenin-a factor essential for ovarian development. We show that oestrogen can activate ß-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to ß-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.


Assuntos
MAP Quinase Quinase Quinase 1/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Estrogênios/farmacologia , Humanos , MAP Quinase Quinase Quinase 1/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
11.
Int J Cancer ; 146(6): 1606-1617, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31310010

RESUMO

Using a method optimized in hepatocellular carcinoma (HCC), we established patient-derived xenograft (PDX) models with an increased take rate (42.2%) and demonstrated that FBS +10% dimethyl sulfoxide exhibited the highest tumor take rate efficacy. Among 254 HCC patients, 103 stably transplantable xenograft lines that could be serially passaged, cryopreserved and revived were established. These lines maintained the diversity of HCC and the essential features of the original specimens at the histological, transcriptome, proteomic and genomic levels. Tumor engraftment was associated with lack of encapsulation, poor tumor differentiation, large size and overexpression of cancer stem cell biomarkers, and was an independent predictor for overall survival and tumor recurrence after resection. To confirm the preclinical value of the PDX model in HCC treatment, several antitumor agents were tested in 16 selected PDX models. The results revealed a high degree of pharmacologic heterogeneity in the cohort, as well as heterogeneity to different agents in the same individual. The sorafenib responses observed between HCC patients and the corresponding PDXs were also consistent. After molecular characterization of the PDX models, we explored the predictive markers for sorafenib response and found that mitogen-activated protein kinase kinase kinase 1 (MAP3K1) might play an important role in sorafenib resistance and sorafenib response is impaired in patients with MAP3K1 downexpression. Our results indicated that PDX models could accurately reproduce patient tumors biology and could aid in the discovery of new treatments to advance in precision medicine.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimiorradioterapia Adjuvante/métodos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Feminino , Seguimentos , Perfilação da Expressão Gênica , Genômica , Hepatectomia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Estudos Prospectivos , Inibidores de Proteínas Quinases/administração & dosagem , Sorafenibe/administração & dosagem , Resultado do Tratamento
12.
Dev Biol ; 440(2): 129-136, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29787744

RESUMO

Morphogenesis is a complex and highly coordinated process orchestrated by temporal spatial activity of developmental pathways. How the different pathways interact to guide the developmental program remains an intriguing and open question. MAP3K1-JNK and Wnt are signaling pathways crucial for embryonic eyelid closure, an epithelial morphogenetic event conserved in mammals. Here we used a mouse model of eyelid development and genetic and biochemistry tools to investigate the relationships between the two pathways. We found that Wnt activation repressed MAP3K1 expression. Using Axin-LacZ reporter mice, spatial Wnt activity was detected in the leading edge of the developing eyelid. Conditional knockout of Wntless (Wls) in ocular surface ectoderm blocked eyelid formation, and significantly increased MAP3K1 expression in eyelid cells at the nasal canthus region. Conversely, knockout of Dkk2, encoding a canonical Wnt antagonist, resulted in an increase of Wnt activity in cells at the upper eyelid margin near the nasal canthus. Up-regulation of Wnt signaling in the Dkk2-knockout embryos corresponded to down-regulation of MAP3K1 expression. In vitro data showed that Wnt3a treatment decreased MAP3K1 promoter activity, whereas activation of Wnt by lithium chloride inhibited MAP3K1 expression, and attenuated MAP3K1-mediated JNK activity. Our data identify a unique signal crosstalk between Wnt signaling and the MAP3K1-JNK pathway in epithelial morphogenesis.


Assuntos
Pálpebras/embriologia , MAP Quinase Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Via de Sinalização Wnt , Animais , Ectoderma/metabolismo , Pálpebras/enzimologia , Pálpebras/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MAP Quinase Quinase Quinase 1/genética , Camundongos , Morfogênese/genética , Transdução de Sinais
13.
Am J Med Genet C Semin Med Genet ; 175(2): 253-259, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28504475

RESUMO

Investigation of disorders of sex development (DSD) has resulted in the discovery of multiple sex-determining genes. MAP3K1 encodes a signal transduction regulator in the sex determination pathway and is emerging as one of the more common genes responsible for 46,XY DSD presenting as complete or partial gonadal dysgenesis. Clinical assessment, endocrine evaluation, and genetic analysis were performed in six individuals from four unrelated families with 46,XY DSD. All six individuals were found to have likely pathogenic MAP3K1 variants. Three of these individuals presented with complete gonadal dysgenesis, characterized by bilateral streak gonads with typical internal and external female genitalia, while the other three presented with partial gonadal dysgenesis, characterized by incomplete testicular development, resulting in clitoral hypertrophy with otherwise typical female external genitalia. Testing for MAP3K1 variants should be considered in patients with 46,XY complete or partial gonadal dysgenesis, particularly in families with multiple members affected with 46,XY DSD. Identification of a MAP3K1 variant should prompt an evaluation for DSD in female siblings of the proband.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Disgenesia Gonadal/genética , MAP Quinase Quinase Quinase 1/genética , Diferenciação Sexual/genética , Adolescente , Criança , Pré-Escolar , Transtorno 46,XY do Desenvolvimento Sexual/fisiopatologia , Feminino , Disgenesia Gonadal/fisiopatologia , Humanos , Masculino , Mutação , Linhagem
14.
J Biol Chem ; 290(32): 19770-9, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26109068

RESUMO

Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1(+/-) embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure.


Assuntos
Dioxinas/toxicidade , Poluentes Ambientais/toxicidade , Pálpebras/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 1/genética , Receptores de Hidrocarboneto Arílico/genética , Animais , Embrião de Mamíferos , Epitélio/anormalidades , Epitélio/efeitos dos fármacos , Epitélio/embriologia , Epitélio/metabolismo , Pálpebras/anormalidades , Pálpebras/efeitos dos fármacos , Pálpebras/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Interação Gene-Ambiente , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Fosforilação , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais
15.
Dev Biol ; 395(1): 29-37, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25224220

RESUMO

Epithelial sheet movement is an essential morphogenetic process during mouse embryonic eyelid closure in which Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) and c-Jun play a critical role. Here we show that MAP3K1 associates with the cytoskeleton, activates Jun N-terminal kinase (JNK) and actin polymerization, and promotes the eyelid inferior epithelial cell elongation and epithelium protrusion. Following epithelium protrusion, c-Jun begins to express and acts to promote ERK phosphorylation and migration of the protruding epithelial cells. Homozygous deletion of either gene causes defective eyelid closure, but non-allelic non-complementation does not occur between Map3k1 and c-Jun and the double heterozygotes have normal eyelid closure. Results from this study suggest that MAP3K1 and c-Jun signal through distinct temporal-spatial pathways and that productive epithelium movement for eyelid closure requires the consecutive action of MAP3K1-dependent cytoskeleton reorganization followed by c-Jun-mediated migration.


Assuntos
Epitélio/embriologia , Pálpebras/embriologia , MAP Quinase Quinase Quinase 1/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Western Blotting , Linhagem Celular , Movimento Celular/genética , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células HEK293 , Células HeLa , Humanos , MAP Quinase Quinase Quinase 1/genética , Células MCF-7 , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese/genética , Fosforilação , Proteínas Proto-Oncogênicas c-jun/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Genes (Basel) ; 15(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062623

RESUMO

Deafness in vertebrates is associated with variants of hundreds of genes. Yet, many mutant genes causing rare forms of deafness remain to be discovered. A consanguineous Pakistani family segregating nonsyndromic deafness in two sibships were studied using microarrays and exome sequencing. A 1.2 Mb locus (DFNB128) on chromosome 5q11.2 encompassing six genes was identified. In one of the two sibships of this family, a novel homozygous recessive variant NM_005921.2:c.4460G>A p.(Arg1487His) in the kinase domain of MAP3K1 co-segregated with nonsyndromic deafness. There are two previously reported Map3k1-kinase-deficient mouse models that are associated with recessively inherited syndromic deafness. MAP3K1 phosphorylates serine and threonine and functions in a signaling pathway where pathogenic variants of HGF, MET, and GAB1 were previously reported to be associated with human deafness DFNB39, DFNB97, and DFNB26, respectively. Our single-cell transcriptome data of mouse cochlea mRNA show expression of Map3k1 and its signaling partners in several inner ear cell types suggesting a requirement of wild-type MAP3K1 for normal hearing. In contrast to dominant variants of MAP3K1 associated with Disorders of Sex Development 46,XY sex-reversal, our computational modeling of the recessive substitution p.(Arg1487His) predicts a subtle structural alteration in MAP3K1, consistent with the limited phenotype of nonsyndromic deafness.


Assuntos
Surdez , Genes Recessivos , MAP Quinase Quinase Quinase 1 , Linhagem , Animais , Camundongos , Humanos , Feminino , Masculino , Surdez/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Modelos Animais de Doenças , Perda Auditiva/genética , Sequenciamento do Exoma , Consanguinidade
17.
Cells ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273029

RESUMO

Meat quality in goats is partly determined by the intramuscular fat (IMF) content, which is associated with the proliferation and differentiation of intramuscular preadipocytes. Emerging studies have suggested that miRNA plays a crucial role in adipocyte proliferation and differentiation. In our recent study, we observed the expression variations in miR-196a in the longissimus dorsi muscle of Jianzhou goats at different ages. However, the specific function and underlying mechanism of miR-196a in IMF deposition are still unclear. This study demonstrated that miR-196a significantly enhanced adipogenesis and apoptosis and reduced the proliferation of preadipocytes. Subsequently, RNA-seq was employed to determine genes regulated by miR-196a, and 677 differentially expressed genes were detected after miR-196a overexpression. The PI3K-Akt pathway was identified as activated in miR-196a regulating intramuscular adipogenesis via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and further verified via Western blot and rescue assays. Lastly, using RT-qPCR, Western blot, dual-luciferase, and rescue assays, we found that miR-196a promoted adipogenesis and suppressed the proliferation of intramuscular preadipocytes by the downregulation of MAP3K1. In summary, these results suggest that miR-196a regulates IMF deposition by targeting MAP3K1 and activating the PI3K-Akt pathway and provide a theoretical foundation for improving goat meat quality through molecular breeding.


Assuntos
Adipócitos , Cabras , MicroRNAs , Transdução de Sinais , Animais , Adipócitos/metabolismo , Adipócitos/citologia , Adipogenia , Apoptose , Diferenciação Celular , Proliferação de Células , Cabras/genética , Cabras/metabolismo , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501211

RESUMO

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Assuntos
Células Epiteliais , MAP Quinase Quinase Quinase 1 , Vagina , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Epitélio/metabolismo , Vagina/metabolismo , Via de Sinalização Wnt , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo
19.
Clin Respir J ; 18(10): e70018, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39384216

RESUMO

We report a case of 59-year-old female with solitary bilateral renal metastases after surgery of stage IA primary lung adenocarcinoma who underwent next-generation sequencing (NGS) of both lesions. The patient received right upper lobectomy and lymph node dissection, which revealed primary invasive lung adenocarcinoma (pT1cN0M0, stage IA3). Two years following this, positron emission tomography-computed tomography (PET/CT) revealed multiple masses in both kidneys without other distant metastases, and ultrasonography-guided puncture biopsy indicated the presence of metastatic lung adenocarcinoma. The NGS of both the primary and metastatic lesions revealed the co-alteration of epidermal growth factor receptor (EGFR), RB transcriptional corepressor 1 (RB1), and mitogen-activated protein kinase kinase 1 (MAP3K1), which is potentially associated with the risk of renal metastasis in early postoperative non-small cell lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Receptores ErbB , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Renais/patologia , Neoplasias Renais/genética , Adenocarcinoma de Pulmão/secundário , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Estadiamento de Neoplasias , Sequenciamento de Nucleotídeos em Larga Escala , Pneumonectomia/métodos
20.
Cancer Rep (Hoboken) ; 6(1): e1773, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36560873

RESUMO

BACKGROUND: Accumulating studies have evaluated the association between MAP3K1 polymorphisms and cancer prognosis. However, the results of these studies are conflicting. Given the potential impact of MAP3K1 rs889312 SNP on the prognosis of various cancers, this meta-analysis was performed to obtain solid and credible evidence. METHODS AND MATERIALS: This study was performed according to the PRISMA 2020 statement. A comprehensive article search was conducted to find and select articles from multiple databases, including PubMed, Google Scholar, Web of Science, EMBASE and the Cochrane Library, published up to 15th September 2022. The data analysis was performed with Review Manager v5.2. Pooled HR with its 95% CI and p-value was calculated where HR >1 suggests worse/poor survival and HR <1 suggests better survival of cancer patients. RESULTS: A total of five articles comprising 24 439 patients were included for both qualitative and quantitative data synthesis. It was found that only the dominant genetic model (AC + CC vs. AA) showed a statistically significant poor overall survival for MAP3K1 rs889312 polymorphism (HR = 1.25, 95% CI = 1.06-1.47, p = .01). In addition, publication bias analysis by the Egger's test and the Begg-Mazumdar test reported no significant bias in the analysis of overall survival (p > .05). CONCLUSIONS: The present study concludes that MAP3K1 gene rs889312 polymorphism plays a prognostic role in the survival of cancer patients. However, future research is recommended that will analyze more MAP3K SNPs along with rs889312, which may reveal more credible outcomes in terms of cancer prognosis.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Prognóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa