Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Dev Dyn ; 253(3): 333-350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698352

RESUMO

BACKGROUND: Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS: During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS: p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.


Assuntos
Blastocisto , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/genética , Blastômeros , Desenvolvimento Embrionário/genética , Ouriços-do-Mar/genética , Mamíferos
2.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572638

RESUMO

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Assuntos
Octopodiformes , Animais , Temperatura , Mudança Climática , Aquecimento Global , Oceanos e Mares
3.
J Exp Biol ; 227(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39051142

RESUMO

Many intertidal invertebrates are freeze tolerant, meaning that they can survive ice formation within their body cavity. Freeze tolerance is a fascinating trait, and understanding its mechanisms is important for predicting the survival of intertidal animals during extreme cold weather events. In this Review, we bring together current research on the ecology, biochemistry and physiology of this group of freeze-tolerant organisms. We first introduce the ecology of the intertidal zone, then highlight the strong geographic and taxonomic biases within the current body of literature on this topic. Next, we detail current knowledge on the mechanisms of freeze tolerance used by intertidal invertebrates. Although the mechanisms of freeze tolerance in terrestrial arthropods have been well-explored, marine invertebrate freeze tolerance is less well understood and does not appear to work similarly because of the osmotic differences that come with living in seawater. Freeze tolerance mechanisms thought to be utilized by intertidal invertebrates include: (1) low molecular weight cryoprotectants, such as compatible osmolytes and anaerobic by-products; (2) high molecular weight cryoprotectants, such as ice-binding proteins; as well as (3) other molecular mechanisms involving heat shock proteins and aquaporins. Lastly, we describe untested hypotheses, methods and approaches that researchers can use to fill current knowledge gaps. Understanding the mechanisms and consequences of freeze tolerance in the intertidal zone has many important ecological implications, but also provides an opportunity to broaden our understanding of the mechanisms of freeze tolerance more generally.


Assuntos
Congelamento , Invertebrados , Animais , Invertebrados/fisiologia , Gelo , Aclimatação , Ecossistema
4.
J Exp Biol ; 227(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235786

RESUMO

As climate change-induced heatwaves become more common, phenotypic plasticity at multiple levels is a key mitigation strategy by which organisms can optimise selective outcomes. In ectotherms, changes to both metabolism and behaviour can help alleviate thermal stress. Nonetheless, no study in any ectotherm has yet empirically investigated how changing temperatures affect among-individual differences in the associations between these traits. Using the beadlet anemone (Actinia equina), an intertidal species from a thermally heterogeneous environment, we investigated how individual metabolic rates, linked to morphotypic differences in A. equina, and boldness were related across changing temperatures. A crossed-over design and a temporal control were used to test the same individuals at a non-stressful temperature, 13°C, and under a simulated heatwave at 21°C. At each temperature, short-term repeated measurements of routine metabolic rate (RMR) and a single measurement of a repeatable boldness-related behaviour, immersion response time (IRT), were made. Individual differences, but not morphotypic differences, were highly predictive of metabolic plasticity, and the plasticity of RMR was associated with IRT. At 13°C, shy animals had the highest metabolic rates, while at 21°C, this relationship was reversed. Individuals that were bold at 13°C also exhibited the highest metabolic rates at 21°C. Additional metabolic challenges during heatwaves could be detrimental to fitness in bold individuals. Equally, lower metabolic rates at non-stressful temperatures could be necessary for optimal survival as heatwaves become more common. These results provide novel insight into the relationship between metabolic and behavioural plasticity, and its adaptive implications in a changing climate.


Assuntos
Anêmonas-do-Mar , Animais , Comportamento Animal/fisiologia , Temperatura
5.
Mol Ecol ; 32(13): 3541-3556, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009965

RESUMO

Marine animals in the wild are often difficult to access, so they are studied in captivity. However, the implicit assumption that physiological processes of animals in artificial environments are not different from those in the wild has rarely been tested. Here, we investigate the extent to which an animal is impacted by captivity by comparing global gene expression in wild and captive crown-of-thorns starfish (COTS). In a preliminary analysis, we compared transcriptomes of three external tissues obtained from multiple wild COTS with a single captive COTS maintained in aquaria for at least 1 week. On average, an astonishingly large 24% of the coding sequences in the genome were differentially expressed. This led us to conduct a replicated experiment to test more comprehensively the impact of captivity on gene expression. Specifically, a comparison of 13 wild with 8 captive COTS coelomocyte transcriptomes revealed significant differences in the expression of 20% of coding sequences. Coelomocyte transcriptomes in captive COTS remain different from those in wild COTS for more than 30 days and show no indication of reverting back to a wild state (i.e. no evidence of acclimation). Genes upregulated in captivity include those involved in oxidative stress and energy metabolism, whereas genes downregulated are involved in cell signalling. These changes in gene expression indicate that being translocated and maintained in captivity has a marked impact on the physiology and health of these echinoderms. This study suggests that caution should be exercised when extrapolating results from captive aquatic invertebrates to their wild counterparts.


Assuntos
Genômica , Estrelas-do-Mar , Animais , Estrelas-do-Mar/genética , Genoma , Transcriptoma/genética
6.
J Evol Biol ; 36(1): 95-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420993

RESUMO

The degree to which individuals inbreed is a fundamental aspect of population biology shaped by both passive and active processes. Yet, the relative influences of random and non-random mating on the overall magnitude of inbreeding are not well characterized for many taxa. We quantified variation in inbreeding among qualitatively accessible and isolated populations of a sessile marine invertebrate (the colonial ascidian Lissoclinum verrilli) in which hermaphroditic colonies cast sperm into the water column for subsequent uptake and internal fertilization. We compared estimates of inbreeding to simulations predicting random mating within sites to evaluate if levels of inbreeding were (1) less than expected because of active attempts to limit inbreeding, (2) as predicted by genetic subdivision and passive inbreeding tolerance, or (3) greater than simulations due to active attempts to promote inbreeding via self-fertilization or a preference for related mates. We found evidence of restricted gene flow and significant differences in the genetic diversity of L. verrilli colonies among sites, indicating that on average colonies were weakly related in accessible locations, but their levels of relatedness matched that of first cousins or half-siblings on isolated substrates. Irrespective of population size, progeny arrays revealed variation in the magnitude of inbreeding across sites that tracked with the mean relatedness of conspecifics. Biparental reproduction was confirmed in most offspring (86%) and estimates of total inbreeding largely overlapped with simulations of random mating, suggesting that interpopulation variation in mother-offspring resemblance was primarily due to genetic subdivision and passive tolerance of related mates. Our results highlight the influence of demographic isolation on the genetic composition of populations, and support theory predicting that tolerance of biparental inbreeding, even when mates are closely related, may be favoured under a broad set of ecological and evolutionary conditions.


Assuntos
Endogamia , Sêmen , Animais , Masculino , Variação Genética , Invertebrados/genética , Reprodução/genética , Autofertilização
7.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37888976

RESUMO

A Gram-stain-negative, facultative anaerobic, non-flagellated and oval-shaped (0.77-0.98 µm wide and 0.74-1.21 µm long) bacterial strain, designated XY-301T, was isolated from a marine invertebrate collected from the South China Sea. Strain XY-301T grew at 15-37 °C (optimum, 30-35 °C) and at pH 7.0-8.5 (optimum, pH 8.0). The strain was slightly halophilic and it only grew in the presence of 0.5-6.5 % (w/v) NaCl (optimum, 2.5-3.5 %). Its predominant fatty acid (>10 %) was C18 : 1 ω7c. The predominant polar lipids of XY-301T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, six unidentified aminolipids, three unidentified phospholipids and two unknown polar lipids. The respiratory quinone was Q-10. The genome of XY-301T was 4 979 779 bp in size, with a DNA G+C content of 61.3 mol%. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between XY-301T and Pseudoprimorskyibacter insulae SSK3-2T were 73.3, 14.5 and 53.5 %, respectively. Based on the results of phylogenetic, phenotypic, chemotaxonomic and genomic analyses, strain XY-301T is considered to represent a novel species and a new genus of the family Roseobacteraceae, for which the name Pacificoceanicola onchidii gen. nov., sp. nov. is proposed. The type strain is XY-301T (=KCTC 72212T=MCCC 1K03614T).


Assuntos
Ácidos Graxos , Ubiquinona , Animais , Ácidos Graxos/química , Filogenia , Ubiquinona/química , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Fosfolipídeos/química , China , Invertebrados
8.
Ecol Appl ; 33(8): e2913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615222

RESUMO

Integrated pest management (IPM) leverages our understanding of ecological interactions to mitigate the impact of pest species on economically and/or ecologically important assets. It has primarily been applied in terrestrial settings (e.g., agriculture), but has rarely been attempted for marine ecosystems. The crown-of-thorns starfish (CoTS), Acanthaster spp., is a voracious coral predator throughout the Indo-Pacific where it undergoes large population increases (irruptions), termed outbreaks. During outbreaks CoTS act as a pest species and can result in substantial coral loss. Contemporary management of CoTS on the Great Barrier Reef (GBR) adopts facets of the IPM paradigm to manage these outbreaks through strategic use of direct manual control (culling) of individuals in response to ecologically based target thresholds. There has, however, been limited quantitative analysis of how to optimize the implementation of such thresholds. Here we use a multispecies modeling approach to assess the performance of alternative CoTS management scenarios for improving coral cover trajectories. The scenarios examined varied in terms of their ecological threshold target, the sensitivity of the threshold, and the level of management resourcing. Our approach illustrates how to quantify multidimensional trade-offs in resourcing constraints, concurrent CoTS and coral population dynamics, the stringency of target thresholds, and the geographical scale of management outcomes (number of sites). We found strategies with low target density thresholds for CoTS (≤0.03 CoTS min-1 ) could act as "Effort Sinks" and limit the number of sites that could be effectively controlled, particularly under CoTS population outbreaks. This was because a handful of sites took longer to control, which meant other sites were not controlled. Higher density thresholds (e.g., 0.04-0.08 CoTS min-1 ), tuned to levels of coral cover, diluted resources among sites but were more robust to resourcing constraints and pest population dynamics. Our study highlights trade-off decisions when using an IPM framework and informs the implementation of threshold-based strategies on the GBR.


Assuntos
Antozoários , Humanos , Animais , Recifes de Corais , Ecossistema , Estrelas-do-Mar/fisiologia , Controle de Pragas
9.
Antonie Van Leeuwenhoek ; 116(8): 801-815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37231142

RESUMO

A novel moderately halophilic bacterial strain, designated Z330T, was isolated from the egg of a marine invertebrate of the genus Onchidium collected in the South China Sea. The 16S rRNA gene sequence of strain Z330T exhibited the highest similarity value to that of the type strain Paracoccus fistulariae KCTC 22803T (97.6%), Paracoccus seriniphilus NBRC 100798T (97.6%) and Paracoccus aestuarii DSM 19484T (97.6%). Phylogenomic and 16S rRNA phylogenetic analysis showed that strain Z330T was most closely related to P. seriniphilus NBRC 100798T and P. fistulariae KCTC 22803T. Strain Z330T grew optimally at 28-30 °C, pH 7.0-8.0 with the presence of 5.0-7.0% (w/v) NaCl. In addition, growth of strain Z330T occurred at 0.5-16% NaCl, indicated strain Z330T was a moderately halophilic and halotolerant bacterium of genus Paracoccus. The predominant respiratory quinone in strain Z330T was identified as ubiquinone-10. The major polar lipids of strain Z330T were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, glycolipid and six unidentified polar lipids. The major fatty acids of strain Z330T was summed feature 8 (C18:1 ω6c and/or C18:1 ω7c). The draft genome sequence of strain Z330T includes 4,084,570 bp in total (N50 = 174,985 bp) with a medium read coverage of 463.6 × and 83 scaffolds. The DNA G + C content of strain Z330T was 60.5%. In silico DNA-DNA hybridization with the four type strains showed 20.5, 22.3, 20.1 and 20.1% relatedness to Paracoccus fistulariae KCTC 22803T, Paracoccus seriniphilus NBRC 100798T, Paracoccus aestuarii DSM 19484T and Paracoccus denitrificans 1A10901T, respectively. And the average nucleotide identity (ANIb) values between strain Z330T and these four type strains were 76.2, 80.0, 75.8 and 73.8%, respectively, lower than the 95-96% threshold value for dividing prokaryotic species. On the basis of the phenotypic, phylogenetic, phylogenomic and chemotaxonomic properties, a novel species of the genus Paracoccus, Paracoccus onchidii sp. nov. is proposed with the type strain Z330T (= KCTC 92727T = MCCC 1K08325T).


Assuntos
Paracoccus , Fosfolipídeos , Animais , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , DNA Bacteriano/genética , Ácidos Graxos/química , Invertebrados , China , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
10.
Mar Drugs ; 22(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276644

RESUMO

The study of bioactive molecules of marine origin has created an important bridge between biological knowledge and its applications in biotechnology and biomedicine. Current studies in different research fields, such as biomedicine, aim to discover marine molecules characterized by biological activities that can be used to produce potential drugs for human use. In recent decades, increasing attention has been paid to a particular group of marine invertebrates, the Ascidians, as they are a source of bioactive products. We describe omics data and computational methods relevant to identifying the mechanisms and processes of innate immunity underlying the biosynthesis of bioactive molecules, focusing on innovative computational approaches based on Artificial Intelligence. Since there is increasing attention on finding new solutions for a sustainable supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of marine invertebrates' innate immunity.


Assuntos
Produtos Biológicos , Urocordados , Animais , Humanos , Inteligência Artificial , Organismos Aquáticos , Descoberta de Drogas/métodos
11.
Mar Drugs ; 21(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827135

RESUMO

Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10-8 mol/L) and porcine CPB (Ki = 8.15·× 10-8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 µmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite's intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite's life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies.


Assuntos
Antimaláricos , Carboxipeptidases , Plasmodium falciparum , Animais , Bovinos , Humanos , Antimaláricos/farmacologia , Carboxipeptidases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas/farmacologia , Caramujos/química , Suínos
12.
Zoo Biol ; 42(5): 675-682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37171149

RESUMO

There are only a few studies that describe the larval development of Echinaster or aspects on culture systems for the genus. For starfishes, the choice of suitable substrates has received special attention since it could influence the acid-base balance of the water, movement capacity and predation rate. The objective of this study was to evaluate the ideal food-related substrate for the rearing of juvenile Echinaster brasiliensis. A batch of fertilized eggs released in spontaneous spawning was collected and kept in a plankton-kreisel until metamorphosis. Data on preference of food-related substrate was recorded for 10 weeks from day 58 post-release. From release to 132 days old, arm length increased from 0.81 mm to 1.31 ± 0.03 mm. Considering the sudden increase in arm length (AL), it was estimated that feeding started around 40 days of age. Regarding food-related substrate preferences, biofilm grown on "rocks" showed a significant difference among other treatments, adding up to 50% of preference (p < .05). For sponge and biofilm from bio media, there was no statistical difference for the whole period. In this study, sponges showed to be the least preferred food-related substrate for post-settlement juveniles. Considering that Echinaster and other starfish are commonly maintained on a diet of collected or cultured sponges, difficulties in sourcing a ready supply throughout the year represent limitations to their sole use within commercial or laboratory-scale production. In this sense, the use of biofilm from biological media for the feeding of juvenile starfish is not yet reported in the literature and showed to be an easy and promising option.


Assuntos
Animais de Zoológico , Estrelas-do-Mar , Animais , Preferências Alimentares , Dieta/veterinária
13.
Dev Growth Differ ; 64(4): 198-209, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441397

RESUMO

Homeobox genes play essential roles in the early development of many animals. Although the repertoire of most homeobox genes, including three amino acid loop extension (TALE)-type homeobox genes, is conserved in animals, spiralian-TALE (SPILE) genes are a notable exception. In this study, SPILE genes were extracted from the genomic data of 22 mollusk species and classified into four clades (-A/C, -B, -D, and -E) to determine which SPILE genes exhibit dynamic repertoire changes. While SPILE-D and -E duplications were rarely observed, SPILE-B duplication was observed in the bivalve lineage and SPILE-A/C duplication was observed in multiple clades. Conversely, most or all SPILE genes were lost in cephalopods and in some gastropod lineages. SPILE gene expression patterns were also analyzed in multiple mollusk species using publicly available RNA-seq data. The majority of SPILE genes examined, particularly those in the A/C- and B-clades, were specifically expressed during early development, suggesting that most SPILE genes exert specific roles in early development. This comprehensive cataloging and characterization revealed a dynamic evolutionary history, including SPILE-A/C and -B gene duplications and the loss of SPILE genes in several lineages. Furthermore, this study provides a useful resource for studying the molecular mechanism of spiralian early development and the evolution of young and lineage-specific transcription factors.


Assuntos
Aminoácidos , Genes Homeobox , Animais , Evolução Molecular , Duplicação Gênica , Genes Homeobox/genética , Moluscos/genética , Filogenia
14.
Zoolog Sci ; 39(1): 157-165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35107003

RESUMO

The dynamics of microscopic marine plankton in coastal areas is a fundamental theme in marine biodiversity research, but studies have been limited because the only available methodology was collection of plankton using plankton-nets and microscopic observation. In recent years, environmental DNA (eDNA) analysis has exhibited potential for conducting comprehensive surveys of marine plankton diversity in water at fixed points and depths in the ocean. However, few studies have examined how eDNA analysis reflects the actual distribution and dynamics of organisms in the field, and further investigation is needed to determine whether it can detect distinct differences in plankton density in the field. To address this, we analyzed eDNA in seawater samples collected at 1 km intervals at three depths over a linear distance of approximately 3.0 km in the Seto Inland Sea. The survey area included a location with a high density of Acoela (Praesagittifera naikaiensis). However, the eDNA signal for this was little to none, and its presence would not have been noticed if we did not have this information beforehand. Meanwhile, eDNA analysis enabled us to confirm the presence of a species of Placozoa that was previously undiscovered in the area. In summary, our results suggest that the number of sequence reads generated from eDNA samples in our project was not sufficient to predict the density of a particular species. However, eDNA can be useful for detecting organisms that have been overlooked using other methods.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Monitoramento Ambiental , Água do Mar
15.
J Hered ; 113(6): 681-688, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35947871

RESUMO

The California ribbed mussel, Mytilus californianus, is an ecosystem engineer crucial for the survival of many marine species inhabiting the intertidal zone of California. Here, we describe the first reference genome for M. californianus and compare it to previously published genomes from three other Mytilus species: M. edulis, M. coruscus, and M. galloprovincialis. The M. californianus reference genome is 1.65 Gb in length, with N50 sequence length of 118 Mb, and an estimated 86.0% complete single copy genes. Compared with the other three Mytilus species, the M. californianus genome assembly is the longest, has the highest N50 value, and the highest percentage complete single copy genes. This high-quality genome assembly provides a foundation for population genetic analyses that will give insight into future conservation work along the coast of California.


Assuntos
Mytilus , Animais , Mytilus/genética , Ecossistema , California
16.
J Hered ; 113(2): 171-183, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575078

RESUMO

Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers.


Assuntos
Copépodes , Animais , Copépodes/genética , DNA Mitocondrial/genética , Genes Mitocondriais , Haplótipos , Mitocôndrias/genética , Filogenia
17.
J Hered ; 113(6): 689-698, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044245

RESUMO

Efforts to protect the ecologically and economically significant California Current Ecosystem from global change will greatly benefit from data about patterns of local adaptation and population connectivity. To facilitate that work, we present a reference-quality genome for the giant pink sea star, Pisaster brevispinus, a species of ecological importance along the Pacific west coast of North America that has been heavily impacted by environmental change and disease. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly of 550 Mb in length. The assembly contains 127 scaffolds with a contig N50 of 4.6 Mb and a scaffold N50 of 21.4 Mb; the BUSCO completeness score is 98.70%. The P. brevispinus genome assembly is comparable to the genome of the congener species P. ochraceus in size and completeness. Both Pisaster assemblies are consistent with previously published karyotyping results showing sea star genomes are organized into 22 autosomes. The reference genome for P. brevispinus is an important first step toward the goal of producing a comprehensive, population genomics view of ecological and evolutionary processes along the California coast. This resource will help scientists, managers, and policy makers in their task of understanding and protecting critical coastal regions from the impacts of global change.


Assuntos
Ecossistema , Estrelas-do-Mar , Animais , Estrelas-do-Mar/genética , Cromossomos/genética , Genoma , América do Norte
18.
J Exp Biol ; 224(Pt 6)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766953

RESUMO

Although many crustaceans produce sounds, their hearing abilities and mechanisms are poorly understood, leaving uncertainties regarding whether or how these animals use sound for acoustic communication. Marine invertebrates lack gas-filled organs required for sound pressure detection, but some of them are known to be sensitive to particle motion. Here, we examined whether the American lobster (Homarus americanus) could detect sound and subsequently sought to discern the auditory mechanisms. Acoustic stimuli responses were measured using auditory evoked potential (AEP) methods. Neurophysiological responses were obtained from the brain using tone pips between 80 and 250 Hz, with best sensitivity at 80-120 Hz. There were no significant differences between the auditory thresholds of males and females. Repeated controls (recordings from deceased lobsters, moving electrodes away from the brain and reducing seawater temperature) indicated the evoked potentials' neuronal origin. In addition, AEP responses were similar before and after antennules (including statocysts) were ablated, demonstrating that the statocysts, a long-proposed auditory structure in crustaceans, are not the sensory organs responsible for lobster sound detection. However, AEPs could be eliminated (or highly reduced) after immobilizing hairfans, which cover much of lobster bodies. These results suggest that these external cuticular hairs are likely to be responsible for sound detection, and imply that hearing is mechanistically possible in a wider array of invertebrates than previously considered. Because the lobsters' hearing range encompasses the fundamental frequency of their buzzing sounds, it is likely that they use sound for intraspecific communication, broadening our understanding of the sensory ecology of this commercially vital species. The lobsters' low-frequency acoustic sensitivity also underscores clear concerns about the potential impacts of anthropogenic noise.


Assuntos
Audição , Nephropidae , Animais , Limiar Auditivo , Potenciais Evocados Auditivos , Feminino , Masculino , Som
19.
Artigo em Inglês | MEDLINE | ID: mdl-34516364

RESUMO

An aerobic, Gram-stain-negative, rod-shaped and non-motile strain (XY-359T) was isolated from the mouth of a marine invertebrate Onchidium species from the South China Sea. It grew at pH 6.0-8.5 (optimum, pH 7.5), at 15-37 °C (optimum, 30 °C) and in the presence of 0.5-4.5 % (w/v) NaCl (optimum, 2.5 %). It could not hydrolyse Tweens 20, 40, 60 or 80 and no flexirubin-type pigments were produced. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid, six unidentified phospholipids and two unidentified polar lipids. The major fatty acids were iso-C17:0 3-OH, iso-C15:1 G and iso-C15:0 3-OH. The respiratory quinone was MK-6. Strain XY-359T showed the greatest degree of 16S rRNA sequence similarity to Flagellimonas algicola AsT0115T (96.54 %), followed by Muricauda flava DSM 22638T (96.27 %). Phylogenetic analysis based on 16S rRNA gene sequences and 31 core genes indicated that strain XY-359T belongs to the genus Muricauda. The genome size of strain XY-359T was 4 207 872 bp, with 39.1 mol% of DNA G+C content. The average nucleotide identity and digital DNA-DNA hybridization values between strain XY-359T and F. algicola AsT0115T were 74.58 % and 18.5 %, respectively, and those between strain XY-359T and M. flava DSM 22638T were 74.2 % and 18.3 %. The combined phenotypic, chemotaxonomic and phylogenetic data suggest that strain XY-359T represents a novel species of the genus Muricauda, for which the name Muricauda onchidii sp. nov. is proposed. The type strain is XY-359T (=MCCC 1K03658T =KCTC 72218T). Moreover, based on the proposal of nesting Spongiibacterium and Flagellimonas within Muricauda by García (Validation List No. 193) and the analyses of phylogenetic trees and average amino acid identities in this study, the transfers of F. algicola, F. pacifica and F. maritima to the genus Muricauda as Muricauda algicola comb. nov., Muricauda parva nom. nov. and M. aurantiaca nom. nov., respectively, are proposed, with an emended description of the genus Muricauda.


Assuntos
Flavobacteriaceae/classificação , Gastrópodes , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Gastrópodes/microbiologia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
BMC Evol Biol ; 20(1): 100, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778052

RESUMO

BACKGROUND: Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS: We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS: As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.


Assuntos
Alveolados/genética , Genética Populacional , Genômica , Adaptação Biológica , Animais , Recifes de Corais , Fluxo Gênico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa