Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Genes Dev ; 35(3-4): 180-198, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526585

RESUMO

Oligodendrocyte precursor cells (OPCs) are not merely a transitory progenitor cell type, but rather a distinct and heterogeneous population of glia with various functions in the developing and adult central nervous system. In this review, we discuss the fate and function of OPCs in the brain beyond their contribution to myelination. OPCs are electrically sensitive, form synapses with neurons, support blood-brain barrier integrity, and mediate neuroinflammation. We explore how sex and age may influence OPC activity, and we review how OPC dysfunction may play a primary role in numerous neurological and neuropsychiatric diseases. Finally, we highlight areas of future research.


Assuntos
Encéfalo/citologia , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/imunologia , Fatores Etários , Animais , Encéfalo/embriologia , Encéfalo/imunologia , Encéfalo/metabolismo , Sinapses Elétricas/fisiologia , Humanos , Transtornos Mentais/patologia , Doenças do Sistema Nervoso/patologia , Células Precursoras de Oligodendrócitos/patologia , Células Precursoras de Oligodendrócitos/fisiologia , Fatores Sexuais
2.
Glia ; 72(2): 245-273, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37772368

RESUMO

Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Camundongos , Animais , Astrócitos/metabolismo , Neuroglia/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Isquemia Encefálica/metabolismo , Antígenos/metabolismo
3.
Semin Cell Dev Biol ; 118: 14-23, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33863642

RESUMO

During cortical development and throughout adulthood, oligodendrocytes add myelin internodes to glutamatergic projection neurons and GABAergic inhibitory neurons. In addition to directing node of Ranvier formation, to enable saltatory conduction and influence action potential transit time, oligodendrocytes support axon health by communicating with axons via the periaxonal space and providing metabolic support that is particularly critical for healthy ageing. In this review we outline the timing of oligodendrogenesis in the developing mouse and human cortex and describe the important role that oligodendrocytes play in sustaining and modulating neuronal function. We also provide insight into the known and speculative impact that myelination has on cortical axons and their associated circuits during the developmental critical periods and throughout life, particularly highlighting their life-long role in learning and remembering.


Assuntos
Córtex Cerebelar/crescimento & desenvolvimento , Bainha de Mielina/fisiologia , Plasticidade Neuronal/fisiologia , Oligodendroglia/fisiologia , Animais , Humanos , Camundongos
4.
Glia ; 71(6): 1481-1501, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802096

RESUMO

NG2 glia represents a distinct type of macroglial cells in the CNS and is unique among glia because they receive synaptic input from neurons. They are abundantly present in white and gray matter. While the majority of white matter NG2 glia differentiates into oligodendrocytes, the physiological impact of gray matter NG2 glia and their synaptic input are still ill defined. Here, we asked whether dysfunctional NG2 glia affect neuronal signaling and behavior. We generated mice with inducible deletion of the K+ channel Kir4.1 in NG2 glia and performed comparative electrophysiological, immunohistochemical, molecular and behavioral analyses. Kir4.1 was deleted at postnatal day 23-26 (recombination efficiency about 75%) and mice were investigated 3-8 weeks later. Notably, these mice with dysfunctional NG2 glia demonstrated improved spatial memory as revealed by testing new object location recognition while working and social memory remained unaffected. Focussing on the hippocampus, we found that loss of Kir4.1 potentiated synaptic depolarizations of NG2 glia and stimulated the expression of myelin basic protein while proliferation and differentiation of hippocampal NG2 glia remained largely unaffected. Mice with targeted deletion of the K+ channel in NG2 glia showed impaired long-term potentiation at CA3-CA1 synapses, which could be fully rescued by extracellular application of a TrkB receptor agonist. Our data demonstrate that proper NG2 glia function is important for normal brain function and behavior.


Assuntos
Neuroglia , Proteoglicanas , Camundongos , Animais , Proteoglicanas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Plasticidade Neuronal , Antígenos/metabolismo
5.
Glia ; 71(4): 819-847, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36453615

RESUMO

Receptors for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPARs) are ligand-gated ionotropic receptors for glutamate that is a major excitatory neurotransmitter in the central nervous system. AMPARs are located at postsynaptic sites of neuronal synapses where they mediate fast synaptic signaling and synaptic plasticity. Remarkably, AMPARs are also expressed by glial cells. Their expression by the oligodendrocyte (OL) lineage cells is of special interest because AMPARs mediate fast synaptic communication between neurons and oligodendrocyte progenitor cells (OPCs), modulate proliferation and differentiation of OPCs, and may also be involved in regulation of myelination. On the other hand, during pathological conditions, AMPARs may mediate damage of the OL lineage cells. In the present review, we focus on the technical approaches that have been used to study AMPARs in the OL lineage cells, and discuss future perspectives of AMPAR research in these glial cells.


Assuntos
Neurônios , Receptores de AMPA , Receptores de AMPA/metabolismo , Linhagem da Célula , Neurônios/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
6.
Glia ; 71(5): 1164-1175, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692058

RESUMO

Traumatic brain injury (TBI) is a significant worldwide cause of morbidity and mortality. A chronic neurologic disease bearing the moniker of "the silent epidemic," TBI currently has no targeted therapies to ameliorate cellular loss or enhance functional recovery. Compared with those of astrocytes, microglia, and peripheral immune cells, the functions and mechanisms of NG2-glia following TBI are far less understood, despite NG2-glia comprising the largest population of regenerative cells in the mature cortex. Here, we synthesize the results from multiple rodent models of TBI, with a focus on cortical NG2-glia proliferation and lineage potential, and propose future avenues for glia researchers to address this unique cell type in TBI. As the molecular mechanisms that regulate NG2-glia regenerative potential are uncovered, we posit that future therapeutic strategies may exploit cortical NG2-glia to augment local cellular recovery following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Neuroglia , Humanos , Neuroglia/metabolismo , Microglia , Astrócitos , Lesões Encefálicas Traumáticas/metabolismo , Neurogênese , Antígenos/metabolismo
7.
Neurobiol Dis ; 180: 106076, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921779

RESUMO

The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.


Assuntos
AVC Isquêmico , Substância Branca , Humanos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Neuroglia/patologia
8.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686294

RESUMO

NG2 glia receive synaptic input from neurons, but the functional impact of this glial innervation is not well understood. In the developing cerebellum and somatosensory cortex the GABAergic input might regulate NG2 glia differentiation and myelination, and a switch from synaptic to extrasynaptic neuron-glia signaling was reported in the latter region. Myelination in the hippocampus is sparse, and most NG2 glia retain their phenotype throughout adulthood, raising the question of the properties and function of neuron-NG2 glia synapses in that brain region. Here, we compared spontaneous and evoked GABAA receptor-mediated currents of NG2 glia in juvenile and adult hippocampi of mice of either sex and assessed the mode of interneuron-glial signaling changes during development. With patch-clamp and pharmacological analyses, we found a decrease in innervation of hippocampal NG2 glia between postnatal days 10 and 60. At the adult stage, enhanced activation of extrasynaptic receptors occurred, indicating a spillover of GABA. This switch from synaptic to extrasynaptic receptor activation was accompanied by downregulation of γ2 and upregulation of the α5 subunit. Molecular analyses and high-resolution expansion microscopy revealed mechanisms of glial GABAA receptor trafficking and clustering. We found that gephyrin and radixin are organized in separate clusters along glial processes. Surprisingly, the developmental loss of γ2 and postsynaptic receptors were not accompanied by altered glial expression of scaffolding proteins, auxiliary receptor subunits or postsynaptic interaction proteins. The GABAergic input to NG2 glia might contribute to the release of neurotrophic factors from these cells and influence neuronal synaptic plasticity.


Assuntos
Receptores de GABA-A , Animais , Camundongos , Ácido gama-Aminobutírico , Hipocampo , Interneurônios , Neuroglia
9.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835546

RESUMO

This review discusses the experimental findings of several recent studies which investigated the functional role of AMPA receptors (AMPARs) in oligodendrocyte lineage cells in vivo, in mice and in zebrafish. These studies provided valuable information showing that oligodendroglial AMPARs may be involved in the modulation of proliferation, differentiation, and migration of oligodendroglial progenitors, as well as survival of myelinating oligodendrocytes during physiological conditions in vivo. They also suggested that targeting the subunit composition of AMPARs may be an important strategy for treating diseases. However, at the same time, the experimental findings taken together still do not provide a clear picture on the topic. Hence, new ideas and new experimental designs are required for understanding the functional role of AMPARs in the oligodendrocyte lineage cells in vivo. It is also necessary to consider more closely the temporal and spatial aspects of AMPAR-mediated signalling in the oligodendrocyte lineage cells. These two important aspects are routinely discussed by neuronal physiologists studying glutamatergic synaptic transmission, but are rarely debated and thought about by researchers studying glial cells.


Assuntos
Receptores de AMPA , Peixe-Zebra , Camundongos , Animais , Linhagem da Célula , Oligodendroglia , Neuroglia , Sinapses
10.
Glia ; 70(6): 1052-1067, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35104015

RESUMO

Physical activity (PA) promotes the proliferation of neural stem cells and enhances neurogenesis in the dentate gyrus resulting in hippocampal circuit remodeling and cognitive enhancement. Nonetheless, knowledge of other neural progenitors affected by PA and the mechanisms through which they could contribute to circuit plasticity and cognitive enhancement are still poorly understood. In this work we demonstrated that NG2-glia, also known as oligodendrocyte progenitor cells, show enhanced proliferation and differentiation in response to voluntary PA in a brain region-dependent manner in adult mice. Surprisingly, preventing NG2-glia differentiation during enhanced PA abolishes the exercise-associated cognitive improvement without affecting neurogenesis or baseline learning capacity. Thus, here we provided new evidence highlighting the requirement of oligodendrogenesis for exercise induced-cognition enhancement.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Proliferação de Células/fisiologia , Cognição/fisiologia , Hipocampo , Camundongos , Neurogênese/fisiologia
11.
Glia ; 69(11): 2658-2681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314531

RESUMO

NG2 glia display wide proliferation and differentiation potential under physiological and pathological conditions. Here, we examined these two features following different types of brain disorders such as focal cerebral ischemia (FCI), cortical stab wound (SW), and demyelination (DEMY) in 3-month-old mice, in which NG2 glia are labeled by tdTomato under the Cspg4 promoter. To compare NG2 glia expression profiles following different CNS injuries, we employed single-cell RT-qPCR and self-organizing Kohonen map analysis of tdTomato-positive cells isolated from the uninjured cortex/corpus callosum and those after specific injury. Such approach enabled us to distinguish two main cell populations (NG2 glia, oligodendrocytes), each of them comprising four distinct subpopulations. The gene expression profiling revealed that a subpopulation of NG2 glia expressing GFAP, a marker of reactive astrocytes, is only present transiently after FCI. However, following less severe injuries, namely the SW and DEMY, subpopulations mirroring different stages of oligodendrocyte maturation markedly prevail. Such injury-dependent incidence of distinct subpopulations was also confirmed by immunohistochemistry. To characterize this unique subpopulation of transient astrocyte-like NG2 glia, we used single-cell RNA-sequencing analysis and to disclose their basic membrane properties, the patch-clamp technique was employed. Overall, we have proved that astrocyte-like NG2 glia are a specific subpopulation of NG2 glia emerging transiently only following FCI. These cells, located in the postischemic glial scar, are active in the cell cycle and display a current pattern similar to that identified in cortical astrocytes. Astrocyte-like NG2 glia may represent important players in glial scar formation and repair processes, following ischemia.


Assuntos
Astrócitos , Isquemia Encefálica , Animais , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Gliose/patologia , Camundongos , Neuroglia/metabolismo , Oligodendroglia/patologia
12.
Eur J Neurosci ; 54(5): 5762-5784, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32181929

RESUMO

Myelin and axon losses are associated with cognitive decline in healthy ageing but are worse in people diagnosed with tauopathy. To determine whether tauopathy is also associated with enhanced myelin plasticity, we evaluated the behaviour of OPCs in mice that expressed a human pathological variant of microtubule-associated protein tau (MAPTP301S ). By 6 months of age (P180), MAPTP301S mice overexpressed hyperphosphorylated tau and had developed reactive gliosis in the hippocampus but had not developed overt locomotor or memory impairment. By performing cre-lox lineage tracing of adult OPCs, we determined that the number of newborn oligodendrocytes added to the hippocampus, entorhinal cortex and fimbria was equivalent in control and MAPTP301S mice prior to P150. However, between P150 and P180, significantly more new oligodendrocytes were added to these regions in the MAPTP301S mouse brain. This large increase in new oligodendrocyte number was not the result of increased OPC proliferation, nor did it alter oligodendrocyte density in the hippocampus, entorhinal cortex or fimbria, which was equivalent in P180 wild-type and MAPTP301S mice. Furthermore, the proportion of hippocampal and fimbria axons with myelin was unaffected by tauopathy. However, the proportion of myelinated axons that were ensheathed by immature myelin internodes was significantly increased in the hippocampus and fimbria of P180 MAPTP301S mice, when compared with their wild-type littermates. These data suggest that MAPTP301S transgenic mice experience significant oligodendrocyte turnover, with newborn oligodendrocytes compensating for myelin loss early in the development of tauopathy.


Assuntos
Tauopatias , Substância Branca , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Cell Tissue Res ; 385(3): 539-555, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33864501

RESUMO

Neuron-glia antigen 2 (NG2) proteoglycan and platelet-derived growth factor receptor beta (PDGFR-ß) are widely used markers of pericytes, which are considered cells that form fibrotic scars in response to central nervous system insults. However, the exact phenotypes of NG2- and PDGFR-ß-expressing cells, as well as the origin of the fibrotic scar after central nervous system insults, are still elusive. In the present study, we directly examined the identities and distributions of NG2- and PDGFR-ß-positive cells in the control and lesioned striatum injured by the mitochondrial toxin 3-nitropropionic acid. Immunoelectron microscopy and correlative light and electron microscopy clearly distinguished NG2 and PDGFR-ß expression in the vasculature during the post-injury period. Vascular smooth muscle cells and pericytes expressed NG2, which was prominently increased after the injury. NG2 expression was restricted to these vascular mural cells until 14 days post-lesion. By contrast, PDGFR-ß-positive cells were perivascular fibroblasts located abluminal to smooth muscle cells or pericytes. These PDGFR-ß-expressing cells formed extravascular networks associated with collagen fibrils at 14 days post-lesion. We also found that in the injured striatal parenchyma, PDGFR-ß could be used as a complementary marker of resting and reactive NG2 glia because activated microglia/macrophages shared only the NG2 expression with NG2 glia in the lesioned striatum. These data indicate that NG2 and PDGFR-ß label different vascular mural and parenchymal cells in the healthy and injured brain, suggesting that fibrotic scar-forming cells most likely originate in PDGFR-ß-positive perivascular fibroblasts rather than in NG2-positive pericytes.


Assuntos
Lesões Encefálicas/induzido quimicamente , Encéfalo/fisiopatologia , Fibroblastos/metabolismo , Fibrose/metabolismo , Nitrocompostos/efeitos adversos , Propionatos/efeitos adversos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
14.
Cell Mol Neurobiol ; 41(1): 1-15, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32285247

RESUMO

As the fifth main cell population in the brain, NG2-glia are also known as oligodendrocyte precursor cells. NG2-glia express receptors and ion channels for fast modulation of neuronal activities and signaling with neuronal synapses, which are of functional significance in both physiological and pathological states. NG2-glia also participate in fast signaling with peripheral neurons via direct synaptic contacts in the brain. These distinctive glia have the unique capability of proliferating and differentiating into oligodendrocytes, which are critical for axonal myelination in the early developing brain. In neurodegenerative diseases, NG2-glia play an important role and undergo morphological modification, adapt the expression of their membrane receptors and ion channels, and display gene-modulated cell reprogramming and excitotoxicity-caused cell death. These modifications directly and indirectly influence populations of neurons and other glial cells. NG2-glia regulate their action and dynamics in response to neuronal behavior and disease, indicating a critical function to preserve and remodel myelin in physiological states and to repair it in pathological states. Here, we review in detail the differential modulators of NG2-glia into neurons and astrocytes, as well as interactions of NG2-glia with neurons, astrocytes, and microglia. We will also summarize a future potential exploitation of NG2-glia.


Assuntos
Diferenciação Celular , Neuroglia/citologia , Neurônios/citologia , Animais , Astrócitos/citologia , Células Endoteliais/citologia , Humanos , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo
15.
Glia ; 68(4): 756-767, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596522

RESUMO

Since animal models are inevitable for medical research, information on species differences in glial cell properties is critical for successful translational research. Here, we review current knowledge about morphological and functional properties of human astrocytes and NG2 glial cells and compare these data with those obtained for the comparable cells in rodents. Morphological analyses of astrocytes in the neocortex of rodents versus humans have demonstrated clear differences. In contrast, the functional properties of astrocytes or NG2 glial cells in these species are surprisingly similar. However, these findings should be interpreted with caution, as so far functional analyses of human cells are only available from neocortex and hippocampus, and it is known from rodent studies that the properties of astrocytes in different brain regions may vary considerably. Moreover, technical challenges render astrocyte electrophysiological measurements in situ unreliable, and human cell properties may be affected by medications. Nevertheless, based on the limited data currently available, there is substantial similarity between human and rodent astrocytes with regard to those functional properties studied to date. The unique morphological characteristics of astrocytes in human neocortex call for further physiological analysis. The basic properties for NG2 glia are even less completely evaluated with regard to the question of species differences but no glaring differences have been reported so far. In conclusion, it remains justifiable to employ mouse or rat models to investigate the etiology of human CNS diseases that might involve astrocytes or NG2 glia.


Assuntos
Antígenos/metabolismo , Astrócitos/citologia , Neuroglia/citologia , Proteoglicanas/metabolismo , Astrócitos/metabolismo , Comunicação Celular/fisiologia , Técnicas de Cultura de Células , Forma Celular/fisiologia , Humanos , Neuroglia/metabolismo
16.
Cell Tissue Res ; 381(1): 43-53, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32236697

RESUMO

NG2 immunopositive progenitor cells, also simply termed as NG2 glia and thought mainly to be oligodendrocyte precursor cells (OPCs), form synaptic connections with neurons in gray and white matters of brain. One of the most classical features of oligodendrocyte lineage cells is myelination, which will favor neuronal signaling transmission. Thus, is there a causal link between the specific synapses of neuron-NG2 glia and myelination? Building on this, here, we will discuss several relevant issues. First, in order to understand the synapses, it is necessary to integrate the definite inputs onto NG2 glia. We show that the synaptic activities and myelination are not synchronized, so the synapses are more likely to regulate early development of NG2 glia and prepare for myelination. Furthermore, several studies have suggested that the synapses also play a role in recovery of pathological conditions, such as multiple sclerosis (MS). Therefore, elucidating the activities of neuron-NG2 glia synapses will be beneficial for both physiological and pathological conditions. Graphical abstract The existence of neuron-NG2 glia synapses reveals that the neuronal activities projecting to NG2 glia is an elaborate regulation, and the signaling from neurons to NG2 glia is frequent in early stage. The neuron-NG2 glia synapses indirectly provide a basic condition to support myelination by extrasynaptic communication. The neuron-NG2 glia synapses also promote remyelination, and it occurs similar to physiological conditions.


Assuntos
Diferenciação Celular , Neuroglia , Neurônios , Oligodendroglia , Remielinização , Células-Tronco , Animais , Antígenos/metabolismo , Humanos , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Proteoglicanas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Sinapses/metabolismo
17.
FASEB J ; 33(2): 1681-1694, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30199283

RESUMO

Osteopontin (OPN) is a pleiotropic protein and is abundantly present in milk. Its functions include immune modulation and cellular proliferation and differentiation. OPN is highly expressed in the brain. We investigated the effects of milk-derived OPN on brain development of mouse pups. Wild-type (WT) dams producing OPN+ milk and OPN knockout (KO) dams producing OPN- milk nursed WT pups (OPN+/+), yielding 2 pup treatment groups, OPN+ OPN+/+ and OPN- OPN+/+, for comparison. Preliminary studies supported use of this model by showing high concentrations of OPN in milk of WT dams and no OPN in milk of OPN KO dams, and production of similar amounts of milk by WT and KO dams. The ability of ingested milk OPN to enter the brain was revealed by appearance of orally gavaged [125I]-labeled and antibody-probed milk OPN in brains of pups. Brain OPN mRNA levels were similar in both nursed groups, but the brain OPN protein level was significantly lower in the OPN- OPN+/+ group at postnatal days 6 and 8. Behavior tests showed impaired memory and learning ability in OPN- OPN+/+ pups. In addition, our study revealed increased expression of myelination-related proteins and elevated proliferation and differentiation of NG-2 glia into oligodendrocytes in the brain of OPN+ OPN+/+ pups, accompanied by increased activation of ERK-1/2 and PI3K/Akt signaling. We concluded that milk OPN can play an important role in brain development and behavior in infancy by promoting myelination.-Jiang, R., Prell, C., Lönnerdal, B. Milk osteopontin promotes brain development by up-regulating osteopontin in the brain in early life.


Assuntos
Encéfalo/crescimento & desenvolvimento , Leite/metabolismo , Osteopontina/fisiologia , Regulação para Cima , Animais , Animais Lactentes , Comportamento Animal , Feminino , Aprendizagem , Memória , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Osteopontina/genética , Osteopontina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , Transdução de Sinais
18.
Glia ; 67(6): 1094-1103, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724411

RESUMO

In the central nervous system, the type I transmembrane glycoprotein NG2 (nerve-glia antigen 2) is only expressed by pericytes and oligodendrocyte precursor cells (OPCs). Therefore, OPCs are also termed NG2 glia. Their fate during development has been investigated systematically in several genetically modified mouse models. Consensus exists that postnatal NG2 glia are restricted to the oligodendrocyte (OL) lineage, while, at least in the forebrain, embryonic NG2 glia could also generate astrocytes. In addition, experimental evidence for a neurogenic potential of NG2 glia in the early embryonic brain (before E16.5) has been provided. However, this observation is still controversial. Here, we took advantage of reliable transgene expression in NG2-EYFP and NG2-CreERT2 knock-in mice to study the fate of early embryonic NG2 glia. While pericytes were the main cells with robust NG2 gene activity at E12.5, only a few OPCs expressed NG2 at this early stage of embryogenesis. Subsequently, this proportion of OPCs increased from 3% (E12.5) to 11% and 25% at E14.5 and E17.5, respectively. When Cre DNA recombinase activity was induced at E12.5 and E14.5 and pups were analyzed at postnatal day 0 (P0) and P10, the vast majority of recombined cells, besides pericytes, belonged to the OL lineage cells, with few astrocytes in the ventral forebrain. In other brain regions such as brain stem, cerebellum, and olfactory bulb only OL lineage cells were detected. Therefore, we conclude that NG2 glia from early embryonic brain are restricted to a gliogenic fate and do not differentiate into neurons after birth.


Assuntos
Antígenos/biossíntese , Encéfalo/embriologia , Encéfalo/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteoglicanas/biossíntese , Animais , Química Encefálica/fisiologia , Linhagem da Célula/fisiologia , Desenvolvimento Embrionário/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/química , Neurônios/química
19.
Glia ; 67(11): 2071-2091, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30950542

RESUMO

Fast chemical synaptic transmission is a major form of neuronal communication in the nervous system of mammals. Another important, but very different, form of intercellular communication is volume transmission, which is a slower non-synaptic signaling. The amino acid glutamate is the most abundant excitatory neurotransmitter in the nervous system, which mediates both synaptic and non-synaptic signaling via ionotropic and metabotropic glutamate receptors. Intriguingly, neurons establish glutamatergic synapses also with oligodendrocyte precursor cells (NG2+ -glia). Moreover, neuronal activity and glutamate receptors play an important role in the development and functionality of oligodendrocytes and their precursors in vivo. Yet, molecular characteristics and functional significance of neuron-glia synapses remain poorly understood, and it is unclear how glutamate receptors mediate the effects of neuronal activity on the oligodendrocyte lineage cells. In this review, we discuss what is known with regard to synaptic and non-synaptic glutamatergic signaling between neurons and oligodendrocyte lineage cells, what can be suggested based on the current state of knowledge, and what is fully unknown and requires new research.


Assuntos
Linhagem da Célula , Neurônios/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/citologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Neuroglia/metabolismo
20.
Eur J Neurosci ; 50(2): 1981-1993, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30828870

RESUMO

Nrf2 plays a pivotal role in antioxidant response and anti-inflammation after traumatic brain injury (TBI), and its deletion aggravates TBI-induced brain damage. Previous studies have demonstrated that Nrf2 is activated post TBI, but dynamic changes in expression and cell type-specific characteristics remain unclear. In this study, the Feeney weight-drop contusion model was conducted to mimic TBI, and the ipsilateral cerebral cortex was collected at 1, 3, 7 and 14 days post TBI (dpi). Nrf2 protein levels were observed by western blot. Cell type-specific localization of Nrf2 after TBI was detected at different time intervals by double immunofluorescence staining. NeuN, GFAP, IBA1 and NG2 were used as cell type-specific markers to neurons, astrocytes, microglia and NG2 glia, respectively. After TBI, Nrf2 protein levels peaked at 1 dpi. Robust transient Nrf2 accumulation was co-localized with neurons, which was predominant at 1 dpi. Continuous weak Nrf2 expression was detected in activated astrocytes, and the number of double positive cells peaked at 7 dpi. Inducible widespread immunostaining of Nrf2 was observed in the nucleus of the microglia, and the number of Nrf2+ microglia peaked at 7 dpi. In addition, we also explored colocalization of Nrf2 in NG2 glia, in which the percentage of Nrf2+ in NG2 glia reached a climax at 3 dpi. This study reveals that the accumulation of endogenous Nrf2 might mediate different pathophysical roles in neurons and glias after TBI, the cell-type specific and time-dependent expression provide insights to explain the roles of Nrf2 in different neural cells.


Assuntos
Contusão Encefálica/metabolismo , Córtex Cerebral/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa