Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.757
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 389-415, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569518

RESUMO

Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.


Assuntos
Escherichia coli/genética , Chaperonas Moleculares/genética , Biossíntese de Proteínas , Proteoma/química , Ribossomos/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteoma/biossíntese , Proteoma/genética , Proteostase/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Ribossomos/metabolismo , Ribossomos/ultraestrutura
2.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445040

RESUMO

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membranas Intracelulares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
3.
Mol Cell ; 84(3): 429-446.e17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215753

RESUMO

Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.


Assuntos
Nucleossomos , Poli ADP Ribosilação , Nucleossomos/genética , Poli ADP Ribosilação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Microscopia Crioeletrônica , Condensados Biomoleculares , Reparo do DNA , Histonas/genética , Histonas/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo
4.
Mol Cell ; 84(5): 839-853.e12, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38242129

RESUMO

RNF168 plays a central role in the DNA damage response (DDR) by ubiquitylating histone H2A at K13 and K15. These modifications direct BRCA1-BARD1 and 53BP1 foci formation in chromatin, essential for cell-cycle-dependent DNA double-strand break (DSB) repair pathway selection. The mechanism by which RNF168 catalyzes the targeted accumulation of H2A ubiquitin conjugates to form repair foci around DSBs remains unclear. Here, using cryoelectron microscopy (cryo-EM), nuclear magnetic resonance (NMR) spectroscopy, and functional assays, we provide a molecular description of the reaction cycle and dynamics of RNF168 as it modifies the nucleosome and recognizes its ubiquitylation products. We demonstrate an interaction of a canonical ubiquitin-binding domain within full-length RNF168, which not only engages ubiquitin but also the nucleosome surface, clarifying how such site-specific ubiquitin recognition propels a signal amplification loop. Beyond offering mechanistic insights into a key DDR protein, our study aids in understanding site specificity in both generating and interpreting chromatin ubiquitylation.


Assuntos
Nucleossomos , Ubiquitina-Proteína Ligases , Nucleossomos/genética , Microscopia Crioeletrônica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Histonas/metabolismo , Cromatina/genética , Reparo do DNA , Ubiquitina/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Dano ao DNA
5.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506698

RESUMO

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Sítios de Splice de RNA/genética , Íntrons/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
6.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063133

RESUMO

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Nucleares/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Células K562 , Cinética , Simulação de Acoplamento Molecular , Proteínas Nucleares/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852892

RESUMO

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , Fator de Iniciação 4E em Eucariotos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Especificidade por Substrato , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Mol Cell ; 75(1): 53-65.e7, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31103421

RESUMO

The M2 muscarinic acetylcholine receptor (M2R) is a prototypical GPCR that plays important roles in regulating heart rate and CNS functions. Crystal structures provide snapshots of the M2R in inactive and active states, but the allosteric link between the ligand binding pocket and cytoplasmic surface remains poorly understood. Here we used solution NMR to examine the structure and dynamics of the M2R labeled with 13CH3-ε-methionine upon binding to various orthosteric and allosteric ligands having a range of efficacy for both G protein activation and arrestin recruitment. We observed ligand-specific changes in the NMR spectra of 13CH3-ε-methionine probes in the M2R extracellular domain, transmembrane core, and cytoplasmic surface, allowing us to correlate ligand structure with changes in receptor structure and dynamics. We show that the M2R has a complex energy landscape in which ligands with different efficacy profiles stabilize distinct receptor conformations.


Assuntos
Acetilcolina/química , Carbacol/química , Isoxazóis/química , Pilocarpina/química , Piridinas/química , Compostos de Amônio Quaternário/química , Receptor Muscarínico M2/química , Tiadiazóis/química , Acetilcolina/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Carbacol/metabolismo , Clonagem Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Isoxazóis/metabolismo , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Pilocarpina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Piridinas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinâmica , Tiadiazóis/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(28): e2403635121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950371

RESUMO

While the intracellular-extracellular distribution of lactate has been suggested to play a critical role in the healthy and diseased brain, tools are lacking to noninvasively probe lactate in intracellular and extracellular spaces. Here, we show that, by measuring the diffusion of lactate with diffusion-weighted magnetic resonance (MR) spectroscopy in vivo and comparing it to the diffusion of purely intracellular metabolites, noninvasive quantification of extracellular and intracellular lactate fractions becomes possible. More specifically, we detect alterations of lactate diffusion in the APP/PS1 mouse model of Alzheimer's disease. Data modeling allows quantifying decreased extracellular lactate fraction in APP/PS1 mice as compared to controls, which is quantitatively confirmed with implanted enzyme-microelectrodes. The capability of diffusion-weighted MR spectroscopy to quantify extracellular-intracellular lactate fractions opens a window into brain metabolism, including in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Encéfalo , Ácido Láctico , Animais , Ácido Láctico/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Imagem de Difusão por Ressonância Magnética/métodos , Espaço Extracelular/metabolismo , Modelos Animais de Doenças , Espectroscopia de Ressonância Magnética/métodos , Masculino , Precursor de Proteína beta-Amiloide/metabolismo
10.
Mol Cell ; 69(6): 965-978.e6, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526694

RESUMO

Under stress, certain eukaryotic proteins and RNA assemble to form membraneless organelles known as stress granules. The most well-studied stress granule components are RNA-binding proteins that undergo liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by intrinsically disordered low-complexity domains (LCDs). Here we show that stress granules include proteasomal shuttle factor UBQLN2, an LCD-containing protein structurally and functionally distinct from RNA-binding proteins. In vitro, UBQLN2 exhibits LLPS at physiological conditions. Deletion studies correlate oligomerization with UBQLN2's ability to phase-separate and form stress-induced cytoplasmic puncta in cells. Using nuclear magnetic resonance (NMR) spectroscopy, we mapped weak, multivalent interactions that promote UBQLN2 oligomerization and LLPS. Ubiquitin or polyubiquitin binding, obligatory for UBQLN2's biological functions, eliminates UBQLN2 LLPS, thus serving as a switch between droplet and disperse phases. We postulate that UBQLN2 LLPS enables its recruitment to stress granules, where its interactions with ubiquitinated substrates reverse LLPS to enable shuttling of clients out of stress granules.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico , Ubiquitinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Feminino , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Relação Estrutura-Atividade , Ubiquitinas/química , Ubiquitinas/genética
11.
Mol Cell ; 72(6): 985-998.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30415949

RESUMO

Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepatócitos/enzimologia , Insulina/metabolismo , Sirtuína 1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Alostérica , Animais , Sítios de Ligação , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HCT116 , Hepatócitos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Sirtuína 1/genética , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética
12.
Mol Cell ; 69(3): 465-479.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358076

RESUMO

hnRNPA2, a component of RNA-processing membraneless organelles, forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone. Here we provide a unified structural view of hnRNPA2 self-assembly, aggregation, and interaction and the distinct effects of small chemical changes-disease mutations and arginine methylation-on these assemblies. The hnRNPA2 low-complexity (LC) domain is compact and intrinsically disordered as a monomer, retaining predominant disorder in a liquid-liquid phase-separated form. Disease mutations D290V and P298L induce aggregation by enhancing and extending, respectively, the aggregation-prone region. Co-aggregating in disease inclusions, hnRNPA2 LC directly interacts with and induces phase separation of TDP-43. Conversely, arginine methylation reduces hnRNPA2 phase separation, disrupting arginine-mediated contacts. These results highlight the mechanistic role of specific LC domain interactions and modifications conserved across many hnRNP family members but altered by aggregation-causing pathological mutations.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Arginina/genética , Arginina/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Imageamento por Ressonância Magnética/métodos , Metilação , Mutação , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional
13.
Proc Natl Acad Sci U S A ; 120(39): e2300527120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725636

RESUMO

As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.


Assuntos
MicroRNAs , MicroRNAs/genética , Oncogenes
14.
Proc Natl Acad Sci U S A ; 120(8): e2213090120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791110

RESUMO

Many types of human cancers are being treated with small molecule ATP-competitive inhibitors targeting the kinase domain of receptor tyrosine kinases. Despite initial successful remission, long-term treatment almost inevitably leads to the emergence of drug resistance mutations at the gatekeeper residue hindering the access of the inhibitor to a hydrophobic pocket at the back of the ATP-binding cleft. In addition to reducing drug efficacy, gatekeeper mutations elevate the intrinsic activity of the tyrosine kinase domain leading to more aggressive types of cancer. However, the mechanism of gain-of-function by gatekeeper mutations is poorly understood. Here, we characterized fibroblast growth factor receptor (FGFR) tyrosine kinases harboring two distinct gatekeeper mutations using kinase activity assays, NMR spectroscopy, bioinformatic analyses, and MD simulations. Our data show that gatekeeper mutations destabilize the autoinhibitory conformation of the DFG motif locally and of the kinase globally, suggesting they impart gain-of-function by facilitating the kinase's ability to populate the active state.


Assuntos
Neoplasias , Receptores Proteína Tirosina Quinases , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Neoplasias/tratamento farmacológico , Mutação , Trifosfato de Adenosina/uso terapêutico , Tirosina , Inibidores de Proteínas Quinases/química
15.
Proc Natl Acad Sci U S A ; 120(51): e2310944120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085782

RESUMO

Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.


Assuntos
Apoptossomas , Caspases , Caspase 9/metabolismo , Apoptossomas/química , Caspases/metabolismo , Apoptose , Espectroscopia de Ressonância Magnética , Caspase 3/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(49): e2305763120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015845

RESUMO

Marine dissolved organic nitrogen (DON) is one of the planet's largest reservoirs of fixed N, which persists even in the N-limited oligotrophic surface ocean. The vast majority of the ocean's total DON reservoir is refractory (RDON), primarily composed of low molecular weight (LMW) compounds in the subsurface and deep sea. However, the composition of this major N pool, as well as the reasons for its accumulation and persistence, are not understood. Past characterization of the analytically more tractable, but quantitatively minor, high molecular weight (HMW) DON fraction revealed a functionally simple amide-dominated composition. While extensive work in the past two decades has revealed enormous complexity and structural diversity in LMW dissolved organic carbon, no efforts have specifically targeted LMW nitrogenous molecules. Here, we report the first coupled isotopic and solid-state NMR structural analysis of LMW DON isolated throughout the water column in two ocean basins. Together these results provide a first view into the composition, potential sources, and cycling of this dominant portion of marine DON. Our data indicate that RDON is dominated by 15N-depleted heterocyclic-N structures, entirely distinct from previously characterized HMW material. This fundamentally new view of marine DON composition suggests an important structural control for RDON accumulation and persistence in the ocean. The mechanisms of production, cycling, and removal of these heterocyclic-N-containing compounds now represents a central challenge in our understanding of the ocean's DON reservoir.

17.
Proc Natl Acad Sci U S A ; 120(15): e2201910120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37027427

RESUMO

α-synuclein (αS) is an intrinsically disordered protein whose functional ambivalence and protein structural plasticity are iconic. Coordinated protein recruitment ensures proper vesicle dynamics at the synaptic cleft, while deregulated oligomerization on cellular membranes contributes to cell damage and Parkinson's disease (PD). Despite the protein's pathophysiological relevance, structural knowledge is limited. Here, we employ NMR spectroscopy and chemical cross-link mass spectrometry on 14N/15N-labeled αS mixtures to provide for the first time high-resolution structural information of the membrane-bound oligomeric state of αS and demonstrate that in this state, αS samples a surprisingly small conformational space. Interestingly, the study locates familial Parkinson's disease mutants at the interface between individual αS monomers and reveals different oligomerization processes depending on whether oligomerization occurs on the same membrane surface (cis) or between αS initially attached to different membrane particles (trans). The explanatory power of the obtained high-resolution structural model is used to help determine the mode-of-actionof UCB0599. Here, it is shown that the ligand changes the ensemble of membrane-bound structures, which helps to explain the success this compound, currently being tested in Parkinson's disease patients in a phase 2 trial, has had in animal models of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Membranas/metabolismo , Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética , Antiparkinsonianos/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(18): e2303149120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094170

RESUMO

With the recent success in calculating protein structures from amino acid sequences using artificial intelligence-based algorithms, an important next step is to decipher how dynamics is encoded by the primary protein sequence so as to better predict function. Such dynamics information is critical for protein design, where strategies could then focus not only on sequences that fold into particular structures that perform a given task, but would also include low-lying excited protein states that could influence the function of the designed protein. Herein, we illustrate the importance of dynamics in modulating the function of C34, a designed α/ß protein that captures ß-strands of target ligands and is a member of a family of proteins designed to sequester ß-strands and ß hairpins of aggregation-prone molecules that lead to a variety of pathologies. Using a strategy to "see" regions of apo C34 that are invisible to NMR spectroscopy as a result of pervasive conformational exchange, as well as a mutagenesis approach whereby C34 molecules are stabilized into a single conformer, we determine the structures of the predominant conformations that are sampled by C34 and show that these attenuate the affinity for cognate peptide. Subsequently, the observed motion is exploited to develop an allosterically regulated peptide binder whose binding affinity can be controlled through the addition of a second molecule. Our study emphasizes the unique role that NMR can play in directing the design process and in the construction of new molecules with more complex functionality.


Assuntos
Inteligência Artificial , Proteínas , Conformação Proteica , Sequência de Aminoácidos , Peptídeos , Ligantes
19.
Proc Natl Acad Sci U S A ; 120(21): e2305823120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186848

RESUMO

The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-ß42 (Aß42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aß42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 µM Aß42 at 20 °C), Aß42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aß42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aß42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Cinética , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(44): e2304302120, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878721

RESUMO

The AlphaFold Protein Structure Database contains predicted structures for millions of proteins. For the majority of human proteins that contain intrinsically disordered regions (IDRs), which do not adopt a stable structure, it is generally assumed that these regions have low AlphaFold2 confidence scores that reflect low-confidence structural predictions. Here, we show that AlphaFold2 assigns confident structures to nearly 15% of human IDRs. By comparison to experimental NMR data for a subset of IDRs that are known to conditionally fold (i.e., upon binding or under other specific conditions), we find that AlphaFold2 often predicts the structure of the conditionally folded state. Based on databases of IDRs that are known to conditionally fold, we estimate that AlphaFold2 can identify conditionally folding IDRs at a precision as high as 88% at a 10% false positive rate, which is remarkable considering that conditionally folded IDR structures were minimally represented in its training data. We find that human disease mutations are nearly fivefold enriched in conditionally folded IDRs over IDRs in general and that up to 80% of IDRs in prokaryotes are predicted to conditionally fold, compared to less than 20% of eukaryotic IDRs. These results indicate that a large majority of IDRs in the proteomes of human and other eukaryotes function in the absence of conditional folding, but the regions that do acquire folds are more sensitive to mutations. We emphasize that the AlphaFold2 predictions do not reveal functionally relevant structural plasticity within IDRs and cannot offer realistic ensemble representations of conditionally folded IDRs.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/química , Eucariotos/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa