Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 298(3): 101728, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167877

RESUMO

µ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a 'native' CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, µ-conotoxin KIIIA, the smallest and most studied µ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native µ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native µ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three µ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of µ-conotoxins targeting therapeutically relevant NaV subtypes.


Assuntos
Conotoxinas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Conotoxinas/química , Conotoxinas/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
2.
Bioorg Med Chem ; 86: 117290, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137269

RESUMO

Chronic pain, as an unmet medical need, severely impacts the quality of life. The voltage-gated sodium channel NaV1.7 preferentially expressed in sensory neurons of dorsal root ganglia (DRG) serves a promising target for pain therapy. Here, we report the design, synthesis, and evaluation of a series of acyl sulfonamide derivatives targeting Nav1.7 for their antinociceptive activities. Among the derivatives tested, the compound 36c was identified as a selective and potent NaV1.7 inhibitor in vitro and exhibited antinociceptive effects in vivo. The identification of 36c not only provides a new insight into the discovery of selective NaV1.7 inhibitors, but also may hold premise for pain therapy.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Bloqueadores dos Canais de Sódio , Ratos , Animais , Bloqueadores dos Canais de Sódio/farmacologia , Ratos Sprague-Dawley , Qualidade de Vida , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico
3.
Neurobiol Dis ; 142: 104961, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531343

RESUMO

Effective analgesic treatment for neuropathic pain remains an unmet need, so previous evidence that epidermal growth factor receptor inhibitors (EGFRIs) provide unexpected rapid pain relief in a clinical setting points to a novel therapeutic opportunity. The present study utilises rodent models to address the cellular and molecular basis for the findings, focusing on primary sensory neurons because clinical pain relief is provided not only by small molecule EGFRIs, but also by the anti-EGFR antibodies cetuximab and panitumumab, which are unlikely to access the central nervous system in therapeutic concentrations. We report robust, rapid and dose-dependent analgesic effects of EGFRIs in two neuropathic pain models, matched by evidence with highly selective antibodies that expression of the EGFR (ErbB1 protein) is limited to small nociceptive afferent neurons. As other ErbB family members can heterodimerise with ErbB1, we investigated their distribution, showing consistent co-expression of ErbB2 but not ErbB3 or ErbB4, with ErbB1 in cell bodies of nociceptors, as well as providing evidence for direct molecular interaction of ErbB1 with ErbB2 in situ. Co-administration of selective ErbB1 and ErbB2 inhibitors produced clear evidence of greater-than-additive, synergistic analgesia; highlighting the prospect of a unique new combination therapy in which enhanced efficacy could be accompanied by minimisation of side-effects. Peripheral (intraplantar) administration of EGF elicited hypersensitivity only following nerve injury and this was reversed by local co-administration of selective inhibitors of either ErbB1 or ErbB2. Investigating how ErbB1 is activated in neuropathic pain, we found evidence for a role of Src tyrosine kinase, which can be activated by signals from inflammatory mediators, chemokines and cytokines during neuroinflammation. Considering downstream consequences of ErbB1 activation in neuropathic pain, we found direct recruitment to ErbB1 of an adapter for PI 3-kinase and Akt signalling together with clear Akt activation and robust analgesia from selective Akt inhibitors. The known Akt target and regulator of vesicular trafficking, AS160 was strongly phosphorylated at a perinuclear location during neuropathic pain in an ErbB1-, ErbB2- and Akt-dependent manner, corresponding to clustering and translocation of an AS160-partner, the vesicular chaperone, LRP1. Exploring whether neuronal ion channels that could contribute to hyperexcitability might be transported by this vesicular trafficking pathway we were able to identify Nav1.9, (Nav1.8) and Cav1.2 moving towards the plasma membrane or into proximal axonal locations - a process prevented by ErbB1 or Akt inhibitors. Overall these findings newly reveal both upstream and downstream signals to explain how ErbB1 can act as a signalling hub in neuropathic pain models and identify the trafficking of key ion channels to neuronal subcellular locations likely to contribute to hyperexcitability. The new concept of combined treatment with ErbB1 plus ErbB2 blockers is mechanistically validated as a promising strategy for the relief of neuropathic pain.


Assuntos
Receptores ErbB/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Animais , Camundongos , Neuralgia/induzido quimicamente , Oxaliplatina , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
4.
Bioorg Med Chem Lett ; 29(4): 659-663, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30638874

RESUMO

Screening of 100 acylsulfonamides from the Bristol-Myers Squibb compound collection identified the C3-cyclohexyl indole 6 as a potent Nav1.7 inhibitor. Replacement of the C2 furanyl ring of 6 with a heteroaryl moiety or truncation of this group led to the identification of 4 analogs with hNav1.7 IC50 values under 50 nM. Fluorine substitution of the truncated compound 12 led to 34 with improved potency and isoform selectivity. The inverted indole 36 also maintained good activity. Both 34 and 36 exhibited favorable CYP inhibition profiles, good membrane permeability and a low efflux ratio and, therefore, represent new leads in the search for potent and selective Nav1.7 inhibitors to treat pain.


Assuntos
Descoberta de Drogas , Indóis/química , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Sulfonamidas/farmacologia , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade , Sulfonamidas/química
5.
Bioorg Med Chem Lett ; 28(5): 958-962, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29439904

RESUMO

Replacement of the piperidine ring in the lead benzenesulfonamide Nav1.7 inhibitor 1 with a weakly basic morpholine core resulted in a significant reduction in Nav1.7 inhibitory activity, but the activity was restored by shortening the linkage from methyleneoxy to oxygen. These efforts led to a series of morpholine-based aryl sulfonamides as isoform-selective Nav1.7 inhibitors. This report describes the synthesis and SAR of these analogs.


Assuntos
Morfolinas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sulfonamidas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Morfolinas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
6.
Bioorg Med Chem Lett ; 28(19): 3141-3149, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30139550

RESUMO

The voltage gated sodium channel Nav1.7 plays an essential role in the transmission of pain signals. Strong human genetic validation has motivated extensive efforts to discover potent, selective, and efficacious Nav1.7 inhibitors for the treatment of chronic pain. This digest will introduce the structure and function of Nav1.7 and highlight the wealth of recent developments on a diverse array of Nav1.7 inhibitors, including optimization of their potency, selectivity, and PK/PD relationships.


Assuntos
Analgésicos/farmacologia , Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Analgésicos/química , Analgésicos/farmacocinética , Humanos , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética
7.
Bioorg Med Chem Lett ; 28(11): 2103-2108, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29709252

RESUMO

Recently, the identification of several classes of aryl sulfonamides and acyl sulfonamides that potently inhibit NaV1.7 and demonstrate high levels of selectivity over other NaV isoforms have been reported. The fully ionizable nature of these inhibitors has been shown to be an important part of the pharmacophore for the observed potency and isoform selectivity. The requirement of this functionality, however, has presented challenges associated with optimization toward inhibitors with drug-like properties and minimal off-target activity. In an effort to obviate these challenges, we set out to develop an orally bioavailable, selective NaV1.7 inhibitor, lacking these acidic functional groups. Herein, we report the discovery of a novel series of inhibitors wherein a triazolesulfone has been designed to serve as a bioisostere for the acyl sulfonamide. This work culminated in the delivery of a potent series of inhibitors which demonstrated good levels of selectivity over NaV1.5 and favorable pharmacokinetics in rodents.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sulfonamidas/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Sulfonamidas/química
8.
Bioorg Med Chem Lett ; 27(10): 2087-2093, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389149

RESUMO

The voltage-gated sodium channel Nav1.7 is a genetically validated target for the treatment of pain with gain-of-function mutations in man eliciting a variety of painful disorders and loss-of-function mutations affording insensitivity to pain. Unfortunately, drugs thought to garner efficacy via Nav1 inhibition have undesirable side effect profiles due to their lack of selectivity over channel isoforms. Herein we report the discovery of a novel series of orally bioavailable arylsulfonamide Nav1.7 inhibitors with high levels of selectivity over Nav1.5, the Nav isoform responsible for cardiovascular side effects, through judicious use of parallel medicinal chemistry and physicochemical property optimization. This effort produced inhibitors such as compound 5 with excellent potency, selectivity, behavioral efficacy in a rodent pain model, and efficacy in a mouse itch model suggestive of target modulation.


Assuntos
Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Administração Oral , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Concentração Inibidora 50 , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nitrogênio/química , Dor/tratamento farmacológico , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
9.
Bioorg Med Chem Lett ; 27(16): 3817-3824, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684121

RESUMO

The NaV1.7 ion channel has garnered considerable attention as a target for the treatment of pain. Herein we detail the discovery and structure-activity relationships of a novel series of biaryl amides. Optimization led to the identification of several state-dependent, potent and metabolically stable inhibitors which demonstrated promising levels of selectivity over NaV1.5 and good rat pharmacokinetics. Compound 18, which demonstrated preferential inhibition of a slow inactivated state of NaV1.7, was advanced into a rat formalin study where upon reaching unbound drug levels several fold over the rat NaV1.7 IC50 it failed to demonstrate a robust reduction in nociceptive behavior.


Assuntos
Amidas/farmacologia , Descoberta de Drogas , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 27(12): 2683-2688, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465103

RESUMO

Studies on human genetics have suggested that inhibitors of the Nav1.7 voltage-gated sodium channel hold considerable promise as therapies for the treatment of chronic pain syndromes. Herein, we report novel, peripherally-restricted benzoxazolinone aryl sulfonamides as potent Nav1.7 inhibitors with excellent selectivity against the Nav1.5 isoform, which is expressed in the heart muscle. Elaboration of initial lead compound 3d afforded exemplar 13, which featured attractive physicochemical properties, outstanding lipophilic ligand efficiency and pharmacological selectivity against Nav1.5 exceeding 1000-fold. Key structure-activity relationships associated with oral bioavailability were leveraged to discover compound 17, which exhibited a comparable potency/selectivity profile as well as full efficacy following oral administration in a preclinical model indicative of antinociceptive behavior.


Assuntos
Analgésicos/farmacologia , Benzoxazóis/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Sulfonamidas/farmacologia , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Benzoxazóis/administração & dosagem , Benzoxazóis/química , Disponibilidade Biológica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Formaldeído/administração & dosagem , Humanos , Camundongos , Estrutura Molecular , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Dor/induzido quimicamente , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/química
11.
Bioorg Med Chem ; 25(20): 5490-5505, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28818462

RESUMO

Since zwitterionic benzenesulfonamide Nav1.7 inhibitors suffer from poor membrane permeability, we sought to eliminate this characteristic by replacing the basic moiety with non-basic bicyclic acetals and monocyclic ethers. These efforts led to the discovery of the non-zwitterionic aryl sulfonamide 49 as a selective Nav1.7 inhibitor with improved membrane permeability. Despite its moderate cellular activity, 49 exhibited robust efficacy in mouse models of neuropathic and inflammatory pain and modulated translational electromyogram measures associated with activation of nociceptive neurons.


Assuntos
Descoberta de Drogas , Modelos Biológicos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Sulfonamidas/farmacologia , Administração Oral , Animais , Dor Crônica/induzido quimicamente , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Adjuvante de Freund , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos , Estrutura Molecular , Neurônios/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/química
12.
Bioorg Med Chem Lett ; 25(1): 48-52, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25435147

RESUMO

We have identified a new series of N-aryl azacycles as sodium channel blockers, which showed good potency on Nav1.7 in FLIPR-based and electrophysiological functional assays. Analogs from this series possessed selectivity over hERG, reasonable oral exposure in rat PK studies and are predicted to have limited CNS penetration.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Bloqueadores dos Canais de Sódio/síntese química , Sequência de Aminoácidos , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Cães , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Ratos , Bloqueadores dos Canais de Sódio/farmacologia
13.
Bioorg Med Chem Lett ; 25(21): 4866-4871, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26112439

RESUMO

Many efforts are underway to develop selective inhibitors of the voltage-gated sodium channel NaV1.7 as new analgesics. Thus far, however, in vitro selectivity has proved difficult for small molecules, and peptides generally lack appropriate pharmacokinetic properties. We previously identified the NaV1.7 inhibitory peptide GpTx-1 from tarantula venom and optimized its potency and selectivity via structure-guided analoging. To further understand GpTx-1 binding to NaV1.7, we have mapped the binding site to transmembrane segments 1-4 of the second pseudosubunit internal repeat (commonly referred to as Site 4) using NaV1.5/NaV1.7 chimeric protein constructs. We also report that select GpTx-1 amino acid residues apparently not contacting NaV1.7 can be derivatized with a hydrophilic polymer without adversely affecting peptide potency. Homodimerization of GpTx-1 with a bifunctional polyethylene glycol (PEG) linker resulted in a compound with increased potency and a significantly reduced off-rate, demonstrating the ability to modulate the function and properties of GpTx-1 by linking to additional molecules.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Engenharia de Proteínas , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Dimerização , Relação Dose-Resposta a Droga , Humanos , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
14.
Bioorg Med Chem Lett ; 24(18): 4397-4401, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25176194

RESUMO

The voltage gated sodium channel Nav1.7 represents an interesting target for the treatment of pain. Human genetic studies have identified the crucial role of Nav1.7 in pain signaling. Herein, we report the design and synthesis of a novel series of benzenesulfonamide-based Nav1.7 inhibitors. Structural-activity relationship (SAR) studies were undertaken towards improving Nav1.7 activity and minimizing CYP inhibition. These efforts resulted in the identification of compound 12k, a highly potent Nav1.7 inhibitor with a thousand-fold selectivity over Nav1.5 and negligible CYP inhibition.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sulfonamidas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Benzenossulfonamidas
15.
Bioorg Med Chem Lett ; 24(21): 4958-62, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288187

RESUMO

A series of pyrrolo-benzo-1,4-diazine analogs have been synthesized to improve the profile of the previous lead compound 1. The syntheses, structure-activity relationships, and selected pharmacokinetic data of these analogs are described. The optimization efforts allowed the identification of 33, a quinoline amide exhibiting potent Na(v)1.7 inhibitory activity and moderate selectivity over Na(v)1.5. Compound 33 displayed anti-nociceptive oral efficacy in a rat CFA inflammatory pain model at 100 mpk and in a rat spinal nerve ligation neuropathic pain model with an EC50 75 µM.


Assuntos
Analgésicos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/química , Neuralgia/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Nervos Espinhais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Analgésicos/química , Animais , Estrutura Molecular , Técnicas de Patch-Clamp , Quinoxalinas/química , Ratos , Bloqueadores dos Canais de Sódio/química , Compostos de Espiro/química , Relação Estrutura-Atividade
16.
Cell Rep ; 43(2): 113685, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38261513

RESUMO

Tumor necrosis factor α (TNF-α) is a major pro-inflammatory cytokine, important in many diseases, that sensitizes nociceptors through its action on a variety of ion channels, including voltage-gated sodium (NaV) channels. We show here that TNF-α acutely upregulates sensory neuron excitability and current density of threshold channel NaV1.7. Using electrophysiological recordings and live imaging, we demonstrate that this effect on NaV1.7 is mediated by p38 MAPK and identify serine 110 in the channel's N terminus as the phospho-acceptor site, which triggers NaV1.7 channel insertion into the somatic membrane. We also show that the N terminus of NaV1.7 is sufficient to mediate this effect. Although acute TNF-α treatment increases NaV1.7-carrying vesicle accumulation at axonal endings, we did not observe increased channel insertion into the axonal membrane. These results identify molecular determinants of TNF-α-mediated regulation of NaV1.7 in sensory neurons and demonstrate compartment-specific effects of TNF-α on channel insertion in the neuronal plasma membrane.


Assuntos
Células Receptoras Sensoriais , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Receptoras Sensoriais/metabolismo , Axônios/metabolismo , Nociceptores/metabolismo , Membrana Celular/metabolismo
17.
Respir Physiol Neurobiol ; 311: 104034, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792043

RESUMO

NaV channels expression have been reported in upper airways and tracheal smooth muscle cells controlling the generation and propagation of action potentials in the respiratory tract sensory neurons, but information about the presence of these proteins in the bronchioalveolar structures in human lungs was missing. The main objective covered in this work was to determine whether the NaV1.7 channels are expressed in lower airways, and to identify the cellular identities expressing these proteins. We detected high levels of the mRNA coding for NaV1.7 channels in isolated lung fibroblasts obtained from both normal lungs, and fibrotic lungs of patients with respiratory diseases. The protein was detected with two different antibodies in the bronchioalveolar tissue, alveolar endothelium, and capillary endothelium, in normal and pathologic lungs. These evidences are useful in the dissection of molecular mechanisms of pulmonary pathologies, and lead to consider the NaV1.7 channels as potential therapeutic targets for the treatment of pulmonary diseases.


Assuntos
Pulmão , Células Receptoras Sensoriais , Humanos , Potenciais de Ação/fisiologia , Traqueia
18.
J Pain ; 24(5): 840-859, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586660

RESUMO

Venom-derived NaV1.7 channel blockers have promising prospects in pain management. The 34-residue tarantula peptide GpTx-1 is a potent NaV1.7 channel blocker. Its powerful analog [Ala5, Phe6, Leu26, Arg28]GpTx-1 (GpTx-1-71) displayed excellent NaV1.7 selectivity and analgesic properties in mice. The current study aimed to elucidate the anti-hyperalgesic activities of GpTx-1-71 in inflammatory pain and reveal the underlying mechanisms. Our results demonstrated that intrathecal and intraplantar injections of GpTx-1-71 dose-dependently attenuated CFA-induced inflammatory hypersensitivity in rats. Moreover, GpTx-1-71-induced anti-hyperalgesia was significantly reduced by opioid receptor antagonists and the enkephalin antibody and diminished in proenkephalin (Penk) gene knockout animals. Consistently, GpTx-1-71 treatment increased the enkephalin level in the spinal dorsal horn and promoted the Penk transcription and enkephalin release in primary dorsal root ganglion (DRG) neurons, wherein sodium played a crucial role in these processes. Mass spectrometry analysis revealed that GpTx-1-71 mainly promoted the secretion of Met-enkephalin but not Leu-enkephalin from DRG neurons. In addition, the combination of subtherapeutic Met-enkephalin and GpTx-1-71 produced synergistic anti-hyperalgesia in CFA-induced inflammatory hypersensitivity. These findings suggest that the endogenous enkephalin pathway is essential for GpTx-1-71-induced spinal and peripheral analgesia in inflammatory pain. PERSPECTIVE: This article presents a possible pharmacological mechanism underlying NaV1.7 blocker-induced analgesia in inflammatory pain, which helps us to better understand and develop venom-based painkillers for incurable pain.


Assuntos
Hiperalgesia , Dor , Ratos , Camundongos , Animais , Dor/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Encefalinas/metabolismo , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacologia , Encefalina Metionina/uso terapêutico , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
19.
Respir Physiol Neurobiol ; 312: 104043, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871863

RESUMO

Pathological excessive cough is a serious clinical problem in many patients. It is no doubt that an increased activation and sensitization of airway vagal C-fibres in disease stems from dysregulation of the neural pathways that control cough. Due to the limited efficacy and unwanted side effects of current antitussives, there is a continual demand for the development of a novel more effective antitussive. Since voltage-gated sodium channels (NaVs) are absolutely required for action potentials initiation and conduction irrespective of the stimulus, NaVs became a promising and attractive neural target. Current studies establish that NaV1.7 and NaV1.8 inhibitors have the potential to suppress cough. In this study, we demonstrated that inhaled aerosol of NaV1.7 inhibitor PF-05089771 (10 µM) and NaV1.8 inhibitor A-803467 (1 mM) mixture inhibited the capsaicin-induced cough by ≈ 60 % and citric acid-induced cough by ≈ 65 % at doses that did not modify respiratory rate. Our previous and present studies indicate that NaV1.7 and NaV1.8 may present promising therapeutic targets for antitussive therapy.


Assuntos
Antitussígenos , Canais de Sódio Disparados por Voltagem , Cobaias , Animais , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Tosse/metabolismo , Antitussígenos/uso terapêutico , Canais de Sódio Disparados por Voltagem/metabolismo , Nervo Vago/fisiologia , Bloqueadores dos Canais de Sódio/efeitos adversos
20.
Eur J Pharmacol ; 925: 175013, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537491

RESUMO

QX-314 is a quaternary permanently charged lidocaine derivative that inhibits voltage-gated sodium channels (NaV). As it is membrane impermeable, it is generally considered that QX-314 applied externally is inactive, unless it can gain access to the internal local anesthetic binding site via another entry pathway. Here, we characterized the electrophysiological effects of QX-314 on NaV1.7 heterologously expressed in HEK293 cells, and found that at high concentrations, external QX-314 inhibited NaV1.7 current (IC50 2.0 ± 0.3 mM) and shifted the voltage-dependence to more depolarized potentials (ΔV50 +10.6 mV). Unlike lidocaine, the activity of external QX-314 was not state- or use-dependent. The effect of externally applied QX-314 on NaV1.7 channel biophysics differed to that of internally applied QX-314, suggesting QX-314 has an additional externally accessible site of action. In line with this hypothesis, disruption of the local anesthetic binding site in a [F1748A]NaV1.7 mutant reduced the potency of lidocaine by 40-fold, but had no effect on the potency or activity of externally applied QX-314. Therefore, we conclude, using an expression system where QX-314 was unable to cross the membrane, that externally applied QX-314 is able to inhibit NaV1.7 peak current at low millimolar concentrations.


Assuntos
Anestésicos Locais , Lidocaína , Anestésicos Locais/farmacologia , Células HEK293 , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacologia , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa