Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
RNA ; 29(5): 644-662, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754576

RESUMO

Intron retention is a type of alternative splicing where one or more introns remain unspliced in a polyadenylated transcript. Although many viral systems are known to translate proteins from mRNAs with retained introns, restriction mechanisms generally prevent export and translation of incompletely spliced mRNAs. Here, we provide evidence that the human nuclear poly(A)-binding protein, PABPN1, functions in such restrictions. Using a reporter construct in which nuclear export of an incompletely spliced mRNA is enhanced by a viral constitutive transport element (CTE), we show that PABPN1 depletion results in a significant increase in export and translation from the unspliced CTE-containing transcript. Unexpectedly, we find that inactivation of poly(A)-tail exosome targeting by depletion of PAXT components had no effect on export and translation of the unspliced reporter mRNA, suggesting a mechanism largely independent of nuclear RNA decay. Interestingly, a PABPN1 mutant selectively defective in stimulating poly(A) polymerase elongation strongly enhanced the expression of the unspliced, but not of intronless, reporter transcripts. Analysis of RNA-seq data also revealed that PABPN1 controls the expression of many human genes via intron retention. Notably, PABPN1-dependent intron retention events mostly affected 3'-terminal introns and were insensitive to PAXT and NEXT deficiencies. Our findings thus disclose a role for PABPN1 in restricting nuclear export of intron-retained transcripts and reinforce the interdependence between terminal intron splicing, 3' end processing, and polyadenylation.


Assuntos
Núcleo Celular , Splicing de RNA , Humanos , Íntrons/genética , Transporte Ativo do Núcleo Celular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Viral/genética , Expressão Gênica , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo
2.
J Virol ; 98(5): e0190123, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38629840

RESUMO

Many viruses inhibit general host gene expression to limit innate immune responses and gain preferential access to the cellular translational apparatus for their protein synthesis. This process is known as host shutoff. Influenza A viruses (IAVs) encode two host shutoff proteins: nonstructural protein 1 (NS1) and polymerase acidic X (PA-X). NS1 inhibits host nuclear pre-messenger RNA maturation and export, and PA-X is an endoribonuclease that preferentially cleaves host spliced nuclear and cytoplasmic messenger RNAs. Emerging evidence suggests that in circulating human IAVs NS1 and PA-X co-evolve to ensure optimal magnitude of general host shutoff without compromising viral replication that relies on host cell metabolism. However, the functional interplay between PA-X and NS1 remains unexplored. In this study, we sought to determine whether NS1 function has a direct effect on PA-X activity by analyzing host shutoff in A549 cells infected with wild-type or mutant IAVs with NS1 effector domain deletion. This was done using conventional quantitative reverse transcription polymerase chain reaction techniques and direct RNA sequencing using nanopore technology. Our previous research on the molecular mechanisms of PA-X function identified two prominent features of IAV-infected cells: nuclear accumulation of cytoplasmic poly(A) binding protein (PABPC1) and increase in nuclear poly(A) RNA abundance relative to the cytoplasm. Here we demonstrate that NS1 effector domain function augments PA-X host shutoff and is necessary for nuclear PABPC1 accumulation. By contrast, nuclear poly(A) RNA accumulation is not dependent on either NS1 or PA-X-mediated host shutoff and is accompanied by nuclear retention of viral transcripts. Our study demonstrates for the first time that NS1 and PA-X may functionally interact in mediating host shutoff.IMPORTANCERespiratory viruses including the influenza A virus continue to cause annual epidemics with high morbidity and mortality due to the limited effectiveness of vaccines and antiviral drugs. Among the strategies evolved by viruses to evade immune responses is host shutoff-a general blockade of host messenger RNA and protein synthesis. Disabling influenza A virus host shutoff is being explored in live attenuated vaccine development as an attractive strategy for increasing their effectiveness by boosting antiviral responses. Influenza A virus encodes two proteins that function in host shutoff: the nonstructural protein 1 (NS1) and the polymerase acidic X (PA-X). We and others have characterized some of the NS1 and PA-X mechanisms of action and the additive effects that these viral proteins may have in ensuring the blockade of host gene expression. In this work, we examined whether NS1 and PA-X functionally interact and discovered that NS1 is required for PA-X to function effectively. This work significantly advances our understanding of influenza A virus host shutoff and identifies new potential targets for therapeutic interventions against influenza and further informs the development of improved live attenuated vaccines.


Assuntos
Vírus da Influenza A , Proteínas não Estruturais Virais , Humanos , Células A549 , Interações Hospedeiro-Patógeno , Vírus da Influenza A/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral , Interações Hospedeiro-Parasita
3.
EMBO Rep ; 24(10): e57128, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37661812

RESUMO

The polyA tail of mRNAs is important for many aspects of RNA metabolism. However, whether and how it regulates pre-mRNA splicing is still unknown. Here, we report that the polyA tail acts as a splicing enhancer for the last intron via the nuclear polyA binding protein PABPN1 in HeLa cells. PABPN1-depletion induces the retention of a group of introns with a weaker 3' splice site, and they show a strong 3'-end bias and mainly locate in nuclear speckles. The polyA tail is essential for PABPN1-enhanced last intron splicing and functions in a length-dependent manner. Tethering PABPN1 to nonpolyadenylated transcripts also promotes splicing, suggesting a direct role for PABPN1 in splicing regulation. Using TurboID-MS, we construct the PABPN1 interactome, including many spliceosomal and RNA-binding proteins. Specifically, PABPN1 can recruit RBM26&27 to promote splicing by interacting with the coiled-coil and RRM domain of RBM27. PABPN1-regulated terminal intron splicing is conserved in mice. Together, our study establishes a novel mode of post-transcriptional splicing regulation via the polyA tail and PABPN1.

4.
J Biol Chem ; 299(8): 105019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422193

RESUMO

Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.


Assuntos
Distrofia Muscular Oculofaríngea , Poliadenilação , Humanos , Alanina/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA/metabolismo
5.
J Biol Chem ; 299(8): 104959, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356722

RESUMO

Nuclear mRNA metabolism is regulated by multiple proteins, which either directly bind to RNA or form multiprotein complexes. The RNA-binding protein ZC3H11A is involved in nuclear mRNA export, NF-κB signaling, and is essential during mouse embryo development. Furthermore, previous studies have shown that ZC3H11A is important for nuclear-replicating viruses. However, detailed biochemical characterization of the ZC3H11A protein has been lacking. In this study, we established the ZC3H11A protein interactome in human and mouse cells. We demonstrate that the nuclear poly(A)-binding protein PABPN1 interacts specifically with the ZC3H11A protein and controls ZC3H11A localization into nuclear speckles. We report that ZC3H11A specifically interacts with the human adenovirus type 5 (HAdV-5) capsid mRNA in a PABPN1-dependent manner. Notably, ZC3H11A uses the same zinc finger motifs to interact with PABPN1 and viral mRNA. Further, we demonstrate that the lack of ZC3H11A alters the polyadenylation of HAdV-5 capsid mRNA. Taken together, our results suggest that the ZC3H11A protein may act as a novel regulator of polyadenylation of nuclear mRNA.


Assuntos
Proteína I de Ligação a Poli(A) , Poliadenilação , Animais , Humanos , Camundongos , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
J Reprod Dev ; 70(1): 10-17, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38057116

RESUMO

Poly(A)-binding proteins (PABPs) play roles in mRNA maturation, translational activity, and decay. The functions of PABPs, especially PABPN1 and PABPC1, in somatic cells have been well-studied. However, little is known about the roles of PABPs in oocytes because of the unique mechanisms of mRNA metabolism in oocytes. This study focused on PABPN1L and generated Pabpn1l knockout (KO) mice using the CRISPR/Cas9 system. After mating tests, we found that Pabpn1l KO females were infertile due to the failure of the embryos to develop to the 4-cell stage. RNA-seq analysis revealed aberrant mRNA persistence in Pabpn1l KO-MII oocytes, which indicates impaired mRNA degradation during the germinal vesicle (GV) to MII transition. We also revealed that the exogenous expression of Pabpn1l mRNA in KO-GV oocytes recovered defects of embryonic development. PABPN1L is partly indispensable for female fertility in mice, owing to its necessity for embryonic development, which is supported by mRNA degradation during GV to MII maturation.


Assuntos
Oócitos , RNA Mensageiro Estocado , Gravidez , Feminino , Animais , Camundongos , RNA Mensageiro Estocado/metabolismo , Oócitos/metabolismo , Meiose , RNA Mensageiro/metabolismo , Estabilidade de RNA
7.
Mol Biol Rep ; 51(1): 40, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158471

RESUMO

PURPOSE: PABPN1 acts as a modulator of poly(A) tail length and alternative polyadenylation. This research was aimed to explore the role of PABPN1 in colorectal cancer (CRC). METHODS: Public databases were performed to analyze expression, location, roles of prognosis and tumor immunity and interaction with RNAs and proteins of PABPN1. To investigate PABPN1 expression in tissues, 78 CRC specimens were collected to conduct IHC, and 30 pairs of frozen CRC and corresponding adjacent normal tissues were used to conduct qRT-PCR and WB. In addition, in vitro experiments were then carried out to identify the role of PABPN1 in CRC. RESULTS: Compared with normal tissues, PABPN1 expression was significant higher in CRC. Its high level predicted poor outcome of CRC. Th1 and Treg had significant negative relationships not only with PABPN1 expression, but also with six molecules interacting with PABPN1, including IFT172, KIAA0895L, RECQL4, WDR6, PABPC1 and NCBP1. In addition, PABPN1 had negative relationships with quite a few immune markers, such as CSF1R, IL-10, CCL2 and so on. In cellular experiments, silencing PABPN1 inhibited proliferation and promoted apoptosis in HCT-116 CRC cells. CONCLUSION: In summary, PABPN1 might become a novel biomarker and correlate with tumor immunity in CRC.


Assuntos
Neoplasias Colorretais , RNA , Humanos , RNA Mensageiro , Células HCT116 , Biomarcadores , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteína I de Ligação a Poli(A) , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
J Cell Mol Med ; 26(17): 4686-4697, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894779

RESUMO

Read-through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read-through fusion transcripts between neighbouring genes in glioblastoma remain unexplored. We performed paired-end RNA-seq of rat C6 glioma cells and normal cells and discovered a read-through fusion transcript Bcl2l2-Pabpn1 in which exon 3 of Bcl-2-like protein 2 (Bcl2l2) fused to exon 2 of Polyadenylate-binding protein 1 (Pabpn1). This fusion transcript was found in both human glioblastoma and normal cells. Unlike other fusions reported in glioblastoma, Bcl2l2-Pabpn1 appeared to result from RNA processing rather than genomic rearrangement. Bcl2l2-Pabpn1 fusion transcript encoded a fusion protein with BH4, BCL and RRM domains. Functionally, Bcl2l2-Pabpn1 knockdown by targeting its fusion junction decreased its expression, and suppressed cell proliferation, migration and invasion in vitro. Mechanistically, Bcl2l2-Pabpn1 blocked Bax activity and activated PI3K/AKT pathway to promote glioblastoma progression. Together, our work characterized a glioblastoma-associated Bcl2l2-Pabpn1 fusion transcript shared by humans and rats.


Assuntos
Glioblastoma , Glioma , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/genética , Glioblastoma/patologia , Glioma/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Processamento Pós-Transcricional do RNA , Ratos
9.
Biol Reprod ; 106(1): 83-94, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34726234

RESUMO

Infertility affects 10-15% of families worldwide. However, the pathogenesis of female infertility caused by abnormal early embryonic development is not clear. A recent study showed that poly(A)binding protein nuclear 1-like (PABPN1L) recruited BTG anti-proliferation factor 4 (BTG4) to mRNA 3'-poly(A) tails and was essential for maternal mRNA degradation. Here, we generated a PABPN1L-antibody and found "ring-like" PABPN1L aggregates in the cytoplasm of MII oocytes. PABPN1L-EGFP proteins spontaneously formed "ring-like" aggregates in vitro. This phenomenon is similar with CCR4-NOT catalytic subunit, CCR4-NOT transcription complex subunit 7 (CNOT7), when it starts deadenylation process in vitro. We constructed two mouse model (Pabpn1l-/- and Pabpn1l  tm1a/tm1a) simulating the intron 1-exon 2 abnormality of human PABPN1L and found that the female was sterile and the male was fertile. Using RNA-Seq, we observed a large-scale up-regulation of RNA in zygotes derived from Pabpn1l-/- MII oocytes. We found that 9222 genes were up-regulated instead of being degraded in the Pabpn1l-♀/+♂zygote. Both the Btg4 and CCR4-NOT transcription complex subunit 6 like (Cnot6l) genes are necessary for the deadenylation process and Pabpn1l-/- resembled both the Btg4 and Cnot6l knockouts, where 71.2% genes stabilized in the Btg4-♀/+♂ zygote and 84.2% genes stabilized in the Cnot6l-♀/+♂zygote were also stabilized in Pabpn1l-♀/+♂ zygote. BTG4/CNOT7/CNOT6L was partially co-located with PABPN1L in MII oocytes. The above results suggest that PABPN1L is widely associated with CCR4-NOT-mediated maternal mRNA degradation and PABPN1L variants on intron 1-exon 2 could be a genetic marker of female infertility.


Assuntos
Citoplasma/química , Oócitos/ultraestrutura , Proteína I de Ligação a Poli(A)/química , Proteína I de Ligação a Poli(A)/fisiologia , Agregados Proteicos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/química , Humanos , Infertilidade Feminina , Masculino , Camundongos , Camundongos Knockout , Proteína I de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , RNA Mensageiro/metabolismo , Receptores CCR4/genética , Receptores CCR4/fisiologia , Zigoto/metabolismo
10.
Acta Neuropathol ; 144(6): 1157-1170, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197469

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.


Assuntos
Distrofia Muscular Oculofaríngea , Humanos , Camundongos , Animais , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Xenoenxertos , Modelos Animais de Doenças , Chaperonas Moleculares/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
11.
Anal Biochem ; 631: 114354, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453920

RESUMO

BACKGROUND: Propofol has recently been attracted increasing attention for its anti-tumor property in cancers, including colorectal cancer (CRC). However, the anti-tumor molecular determinants of propofol largely remain to be elucidated. METHODS: The levels of circRNA poly(A) binding protein nuclear 1 (circ-PABPN1, hsa_circ_0031288), microRNA (miRNA)-638 and serine and arginine-rich factor 1 (SRSF1) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, colony formation, apoptosis, invasion, and migration were detected by the Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell, and wound-healing assays, respectively. Animal studies were used to evaluate the biological action of circ-PABPN1 in the propofol-mediated anti-CRC effect. Targeted relationships among circ-PABPN1, miR-638 and SRSF1 were validated by dual-luciferase reporter assays. RESULTS: Our data showed the anti-tumor activity of propofol in CRC, as evidenced by the repression in cell viability, colony formation, invasion, migration and the promotion in cell apoptosis in vitro, as well as the suppression in tumor growth in vivo. Circ-PABPN1 was overexpressed in CRC tissues and cells, and propofol down-regulated circ-PABPN1 in a dose-dependent manner. Moreover, circ-PABPN1 was a functional effector of propofol in suppressing CRC development in vitro and in vivo. Circ-PABPN1 directly targeted miR-638, and SRSF1 was a direct target of miR-638. Propofol repressed CRC development in vitro by up-regulating miR-638 or down-regulating SRSF1. Furthermore, propofol regulated SRSF1 expression by the circ-PABPN1/miR-638 axis in CRC cells. CONCLUSION: Our current findings identified the circ-PABPN1/miR-638/SRSF1 axis as a novel anti-tumor mechanism of propofol in CRC, providing a new rationale for developing propofol as a promising therapeutic agent for CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Propofol/farmacologia , RNA Circular/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Proteína I de Ligação a Poli(A)/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
BMC Neurol ; 21(1): 265, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225694

RESUMO

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscular dystrophy characterised by slowly progressive ptosis, dysphagia, and proximal limb muscle weakness. A common cause of OPMD is the short expansion of a GCG or GCA trinucleotide repeat in PABPN1 gene. CASE PRESENTATION: A 78-year-old woman presented with ptosis and gradually progressive dysphagia. Her son had the same symptoms. A physical examination and muscle imaging (MRI and ultrasound) showed impairment of the tongue, proximal muscles of the upper limbs, and flexor muscles of the lower limbs. Needle-electromyography (EMG) of bulbar and facial muscles revealed a myopathic pattern. Based on the characteristic muscle involvement pattern and needle-EMG findings, we suspected that the patient had OPMD. Gene analysis revealed PABPN1 c.35G > C point mutation, which mimicked the effect of a common causative repeat expansion mutation of OPMD. CONCLUSION: We herein describe the first reported Japanese case of OPMD with PABPN1 point mutation, suggesting that this mutation is causative in Asians as well as in Europeans, in whom it was originally reported.


Assuntos
Distrofia Muscular Oculofaríngea , Proteína I de Ligação a Poli(A)/genética , Idoso , Feminino , Humanos , Masculino , Distrofia Muscular Oculofaríngea/diagnóstico , Distrofia Muscular Oculofaríngea/genética , Mutação Puntual
13.
J Biol Chem ; 294(18): 7360-7376, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837270

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, primarily autosomal dominant disease caused by a short GCN expansion in the PABPN1 (polyadenylate-binding protein nuclear 1) gene that results in an alanine expansion at the N terminus of the PABPN1 protein. Expression of alanine-expanded PABPN1 is linked to the formation of nuclear aggregates in tissues from individuals with OPMD. However, as with other nuclear aggregate-associated diseases, controversy exists over whether these aggregates are the direct cause of pathology. An emerging hypothesis is that a loss of PABPN1 function and/or aberrant protein interactions contribute to pathology in OPMD. Here, we present the first global proteomic analysis of the protein interactions of WT and alanine-expanded PABPN1 in skeletal muscle tissue. These data provide both insight into the function of PABPN1 in muscle and evidence that the alanine expansion alters the protein-protein interactions of PABPN1. We extended this analysis to demonstrate altered complex formation with and loss of function of TDP-43 (TAR DNA-binding protein 43), which we show interacts with alanine-expanded but not WT PABPN1. The results from our study support a model where altered protein interactions with alanine-expanded PABPN1 that lead to loss or gain of function could contribute to pathology in OPMD.


Assuntos
Alanina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Oculofaríngea/metabolismo , Proteínas Nucleares/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Proteômica , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroporação , Feminino , Masculino , Camundongos , Peso Molecular , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , Estudo de Prova de Conceito , Ligação Proteica
14.
Eur J Neurol ; 27(4): 709-715, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31769567

RESUMO

BACKGROUND AND PURPOSE: The aim was to assess the value of insoluble PABPN1 muscle fibre nuclei accumulation in the diagnosis of atypical cases of oculopharyngeal muscular dystrophy (OPMD). METHODS: Muscle biopsies from a selected cohort of 423 adult patients from several Italian neuromuscular centres were analysed by immunofluorescence: 30 muscle biopsies of genetically proven OPMD, 30 biopsies from patients not affected by neuromuscular disorders, 220 from genetically undiagnosed patients presenting ptosis or swallowing disturbances, progressive lower proximal weakness and/or isolated rimmed vacuoles at muscle biopsy and 143 muscle biopsies of patients affected by other neuromuscular diseases. RESULTS: The detection of insoluble nuclear PABPN1 accumulation is rapid, sensitive (100%) and specific (96%). The revision of our cohort allowed us to discover 23 new OPMD cases out of 220 patients affected with nonspecific muscle diseases. CONCLUSIONS: Oculopharyngeal muscular dystrophy is often misdiagnosed leading to diagnosis delay, causing waste of time and resources. A great number of these cases present symptoms and histological findings frequently overlapping with other muscle diseases, i.e. inclusion body myositis and progressive external ophthalmoplegia. PABPN1 nuclear accumulation is a reliable method for diagnostic purposes and it is safe and useful in helping pathologists and clinicians to direct genetic analysis in the case of suspected OPMD, even when clinical and histological clues are deceptive.


Assuntos
Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Oculofaríngea/diagnóstico , Proteína I de Ligação a Poli(A)/metabolismo , Núcleo Celular/patologia , Imunofluorescência , Humanos , Músculo Esquelético/patologia , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia
15.
Curr Genet ; 65(2): 473-476, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30515529

RESUMO

In this perspective, we discuss the regulatory impact of nuclear RNA export and decay on messenger RNA (mRNA) functionality. It is well established that control of protein-coding gene expression in eukaryotes employs the regulated production of mRNA, its intra-cellular transfer to cytoplasmic ribosomes and final transcript degradation. Despite a rich body of literature on these events, an involvement of nuclear RNA decay systems remains largely unexplored. Instead, nuclear RNA degradation is often considered a quality control precaution engaged primarily in ridding cells of aberrantly processed transcripts and spurious non-coding RNA. Recent research from human and budding yeast cells, however, demonstrates that even protein-coding transcripts fall prey to nuclear decay and that this is countered by their nuclear export. Here, we outline the potential of nuclear polyA-binding proteins in tuning levels of cellular mRNA to maintain transcript homeostasis.


Assuntos
Núcleo Celular/genética , Estabilidade de RNA , RNA Mensageiro/genética , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Homeostase , Humanos , Cinética , Proteínas de Ligação a Poli(A)/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo
16.
RNA Biol ; 14(3): 361-369, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28080204

RESUMO

HuR influences gene expression programs and hence cellular phenotypes by binding to hundreds of coding and noncoding linear RNAs. However, whether HuR binds to circular RNAs (circRNAs) and impacts on their function is unknown. Here, we have identified en masse circRNAs binding HuR in human cervical carcinoma HeLa cells. One of the most prominent HuR target circRNAs was hsa_circ_0031288, renamed CircPABPN1 as it arises from the PABPN1 pre-mRNA. Further analysis revealed that HuR did not influence CircPABPN1 abundance; interestingly, however, high levels of CircPABPN1 suppressed HuR binding to PABPN1 mRNA. Evaluation of PABPN1 mRNA polysomes indicated that PABPN1 translation was modulated positively by HuR and hence negatively by CircPABPN1. We propose that the extensive binding of CircPABPN1 to HuR prevents HuR binding to PABPN1 mRNA and lowers PABPN1 translation, providing the first example of competition between a circRNA and its cognate mRNA for an RBP that affects translation.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Proteína I de Ligação a Poli(A)/genética , Biossíntese de Proteínas , RNA/genética , RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Modelos Biológicos , Ligação Proteica , RNA Circular , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Cancer Sci ; 105(9): 1135-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975429

RESUMO

Alternative polyadenylation (APA), which induces shortening of the 3'UTR, is emerging as an important phenomenon in gene regulation. APA is involved in development, cancer and cell proliferation. APA may lead to disruption of microRNA-mediated gene silencing in cancer cells via detachment of microRNA binding sites. We studied the correlation between the APA profile and the tumor aggressiveness in cases of lung cancer. We selected the top 10 genes showing significant 3'UTR shortening in lung cancer, using the package of the Bioconductor for probe-level analyses of expression microarrays. We established and evaluated the APA score by quantitative RT-PCR in 147 clinical specimens of non-small cell lung cancer and compared the results with the clinical outcomes and expression levels of APA-related genes, including PABPN1, CPEB1, E2F1 and proliferation markers (MKI67, TOP2A and MCM2). High APA scores were correlated with an advanced tumor stage and a poor prognosis (P < 0.001). Multivariate analysis identified the APA score as an independent prognostic factor (hazard ratio, 3.0; P = 0.03). Both lower expression of PABPN1 and higher expression of the proliferation markers were correlated with high APA scores and a poor prognosis, with suppression of PABPN1 exerting its influence independent of gain of the proliferation markers. Moreover, the APA score was correlated with the maximum standardized uptake value of the tumors on positron emission tomography (r = 0.53; P < 0.001). Our results indicate that the loss of PABPN1, a suppressor of APA, might promote tumor aggressiveness by releasing the cancer cells from microRNA-mediated gene regulation.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteína I de Ligação a Poli(A)/genética , Poliadenilação , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/fisiologia , Proteína I de Ligação a Poli(A)/metabolismo , Prognóstico , Interferência de RNA
18.
Cancer Lett ; 584: 216604, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244911

RESUMO

Novel biomarkers and therapeutic strategies for prostate-cancer (PCa) are required to overcome its lethal progression. The dysregulation/implication of the RNA-Exosome-complex (REC; cellular machinery controlling the 3'-5'processing/degradation of most RNAs) in different cancer-types, including PCa, is poorly known. Herein, different cellular/molecular/preclinical approaches with human PCa-samples (tissues and/or plasma of 7 independent cohorts), and in-vitro/in-vivo PCa-models were used to comprehensively characterize the REC-profile and explore its role in PCa. Moreover, isoginkgetin (REC-inhibitor) effects were evaluated on PCa-cells. We demonstrated a specific dysregulation of the REC-components in PCa-tissues, identifying the Poly(A)-Binding-Protein-Nuclear 1 (PABPN1) factor as a critical regulator of major cancer hallmarks. PABPN1 is consistently overexpressed in different human PCa-cohorts and associated with poor-progression, invasion and metastasis. PABPN1 silencing decreased relevant cancer hallmarks in multiple PCa-models (proliferation/migration/tumourspheres/colonies, etc.) through the modulation of key cancer-related lncRNAs (PCA3/FALEC/DLEU2) and mRNAs (CDK2/CDK6/CDKN1A). Plasma PABPN1 levels were altered in patients with metastatic and tumour-relapse. Finally, pharmacological inhibition of REC-activity drastically inhibited PCa-cell aggressiveness. Altogether, the REC is drastically dysregulated in PCa, wherein this novel molecular event/mechanism, especially PABPN1 alteration, may be potentially exploited as a novel prognostic and therapeutic tool for PCa.


Assuntos
Exossomos , Neoplasias da Próstata , Masculino , Humanos , Complexo Multienzimático de Ribonucleases do Exossomo , Exossomos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia , Neoplasias da Próstata/patologia , RNA Mensageiro , Proteína I de Ligação a Poli(A)/metabolismo
19.
Anim Biosci ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39210800

RESUMO

Objective: This study was designed to reveal the role of nuclear poly(A) binding protein 1 (PABPN1) in the proliferation of preadipocytes, and to reveal the relationship between PABPN1 and cAMP response element (CRE)-binding protein (CREB) in the regulation of preadipocyte proliferation. Methods: Vectors overexpressing and siRNAs against PABPN1/CREB were transiently transfected into both porcine preadipocytes and mouse 3T3-L1 cells. Preadipocyte proliferation was measured with CCK-8, EdU, real-time quantitative PCR, Western blotting, and flow cytometry analyses. Additionally, the transcriptional regulation of CREB on PABPN1 were analyzed with dual-luciferase reporter gene and EMSA assays. Results: Overexpression of PABPN1 inhibits, and knockdown of PABPN1 promotes, the proliferation of both porcine preadipocytes and 3T3-L1 cell lines. PABPN1 overexpression increased, while knockdown decreased, the cell population in the G0/G1 phase. These indicates that PABPN1 repressed preadipocyte proliferation by inhibiting cell cycle progress. Additionally, it was revealed that CREB regulated the expression of PABPN1 through binding to the promoter and that CREB inhibited preadipocyte proliferation by repressed cell cycle progress. Furthermore, we showed that PABPN1 functions as a downstream gene of CREB to regulate the proliferation of preadipocytes. Conclusion: PABPN1 inhibits preadipocyte proliferation by suppressing the cell cycle. We also found that CREB could promote PABPN1 expression by binding to a motif in the promoter. Further analysis confirmed that PABPN1 functions as a downstream gene of CREB to regulate the proliferation of preadipocytes. These results suggest that the CREB/PABPN1 axis plays a role in the regulation of preadipocyte proliferation, which will contribute to further revealing the mechanism of fat accumulation.

20.
HGG Adv ; 5(2): 100269, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38213032

RESUMO

Alternative polyadenylation (APA) at the 3' UTR of transcripts contributes to the cell transcriptome. APA is suppressed by the nuclear RNA-binding protein PABPN1. Aging-associated reduced PABPN1 levels in skeletal muscles lead to muscle wasting. Muscle weakness in oculopharyngeal muscular dystrophy (OPMD) is caused by short alanine expansion in PABPN1 exon1. The expanded PABPN1 forms nuclear aggregates, an OPMD hallmark. Whether the expanded PABPN1 affects APA and how it contributes to muscle pathology is unresolved. To investigate these questions, we developed a procedure including RNA library preparation and a simple pipeline calculating the APA-shift ratio as a readout for PABPN1 activity. Comparing APA-shift results to previously published PAS utilization and APA-shift results, we validated this procedure. The procedure was then applied on the OPMD cell model and on RNA from OPMD muscles. APA-shift was genome-wide in the mouse OPMD model, primarily affecting muscle transcripts. In OPMD individuals, APA-shift was enriched with muscle transcripts. In an OPMD cell model APA-shift was not significant. APA-shift correlated with reduced expression levels of a subset of PABPN1 isoforms, whereas the expression of the expanded PABPN1 did not correlate with APA-shift. PABPN1 activity is not affected by the expression of expanded PABPN1, but rather by reduced PABPN1 expression levels. In muscles, PABPN1 activity initially affects muscle transcripts. We suggest that muscle weakness in OPMD is caused by PABPN1 loss-of-function leading to APA-shift that primarily affects in muscle transcripts.


Assuntos
Distrofia Muscular Oculofaríngea , Animais , Camundongos , Modelos Animais de Doenças , Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Oculofaríngea/genética , Poliadenilação/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa