Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 8(5): 767-771, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30245963

RESUMO

The serum and glucocorticoid inducible protein kinase (SGK) family members share similar structure, substrate specificity and function with AKT and signal downstream of the phosphatidylinositol 3-kinase (PI3K) signalling pathway. They regulate a range of fundamental cellular processes such as cell proliferation and survival, thereby playing an important role in cancer development. This perspective intends to give an overview on the involvement of SGKs (particularly SGK3) in cancer progression, and compares the actions of SGK3 and AKT in cell cycle regulation, oncogenic signalling, and the potential as a therapeutic target for cancer.

2.
Cancer Biol Ther ; 16(4): 589-601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25729885

RESUMO

Natural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Mechanistically, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, an intracellular vesicular trafficking system, resulting in the induction of endoplasmic reticulum stress and the suppression of both lipid raft-mediated PI3K activation and mTOR/RheB complex formation, which collectively led to an effective inhibition of mTOR/AKT signaling. The trans-Golgi-network traffic arresting effect of schweinfurthins was associated with their in vitro binding activity to oxysterol-binding proteins that are known to regulate intracellular vesicular trafficking. Moreover, schweinfurthins were found to be highly toxic toward PTEN-deficient B cell lymphoma cells, and displayed 2 orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in regulating trans-Golgi-network trafficking, and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest the schweinfurthin class of compounds as a novel approach to modulate oncogenic mTOR/AKT signaling for cancer treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Estilbenos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Linfoma de Células B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa