Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Rep Pract Oncol Radiother ; 25(3): 422-427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372882

RESUMO

Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.

2.
Biosci Biotechnol Biochem ; 82(4): 689-697, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29165050

RESUMO

The genus Bifidobacterium is well known to have beneficial health effects. We discovered that quercetin and related polyphenols enhanced the secretion of anti-inflammatory substances by Bifidobacterium adolescentis. This study investigated characteristics of the anti-inflammatory substances secreted by B. adolescentis. The culture supernatant of B. adolescentis with quercetin reduced the levels of inflammatory mediators in activated macrophages. Spontaneous quercetin degradant failed to increase anti-inflammatory activity, while the enhancement of anti-inflammatory activity by quercetin was sustained after washout of quercetin. Physicochemical treatment of the culture supernatant indicated that its bioactive substances may be heat-stable, non-phenolic, and acidic biomolecules with molecular weights less than 3 kDa. Acetate and lactate have little or no effect on nitric oxide production. Taken together, the anti-inflammatory substances secreted by B. adolescentis may be small molecules but not short chain fatty acids. In agreement with these findings, stearic acid was tentatively identified as a bioactive candidate compound.


Assuntos
Anti-Inflamatórios/farmacologia , Bifidobacterium adolescentis/efeitos dos fármacos , Alimento Funcional , Quercetina/farmacologia , Acetatos/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Bifidobacterium adolescentis/metabolismo , Western Blotting , Linhagem Celular , Cromatografia Líquida , Meios de Cultura , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lactatos/metabolismo , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Camundongos , Peso Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Ácidos Esteáricos/farmacologia
3.
Metab Brain Dis ; 33(4): 1141-1153, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29569150

RESUMO

Autism spectrum disorder (ASD) is a multifactorial disorder caused by an interaction between environmental risk factors and a genetic background. It is characterized by impairment in communication, social interaction, repetitive behavior, and sensory processing. The etiology of ASD is still not fully understood, and the role of neuroinflammation in autism behaviors needs to be further investigated. The aim of the present study was to test the possible association between prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), prostaglandin PGE2 EP2 receptors and nuclear kappa B (NF-κB) and the severity of cognitive disorders, social impairment, and sensory dysfunction. PGE2, COX-2, mPGES-1, PGE2-EP2 receptors and NF-κB as biochemical parameters related to neuroinflammation were determined in the plasma of 47 Saudi male patients with ASD, categorized as mild to moderate and severe as indicated by the Childhood Autism Rating Scale (CARS) or the Social Responsiveness Scale (SRS) or the Short Sensory Profile (SSP) and compared to 46 neurotypical controls. The data indicated that ASD patients have remarkably higher levels of the measured parameters compared to neurotypical controls, except for EP2 receptors that showed an opposite trend. While the measured parameter did not correlate with the severity of social and cognitive dysfunction, PGE2, COX-2, and mPGES-1 were remarkably associated with the dysfunction in sensory processing. NF-κB was significantly increased in relation to age. Based on the discussed data, the positive correlation between PGE2, COX-2, and mPGES-1 confirm the role of PGE2 pathway and neuroinflammation in the etiology of ASD, and the possibility of using PGE2, COX-2 and mPGES-1 as biomarkers of autism severity. NF-κB as inflammatory inducer showed an elevated level in plasma of ASD individuals. Receiver operating characteristic analysis together with predictiveness diagrams proved that the measured parameters could be used as predictive biomarkers of biochemical correlates to ASD.


Assuntos
Transtorno do Espectro Autista/complicações , Cognição/fisiologia , Encefalite/diagnóstico , Metabolismo dos Lipídeos/fisiologia , Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/diagnóstico , Biomarcadores/sangue , Criança , Pré-Escolar , Ciclo-Oxigenase 2/sangue , Dinoprostona/sangue , Encefalite/sangue , Encefalite/complicações , Humanos , Masculino , NF-kappa B/sangue , Prostaglandina-E Sintases/sangue , Índice de Gravidade de Doença
4.
Dis Esophagus ; 30(5): 1-5, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375445

RESUMO

Saliva is known to be protective for esophageal mucosa. Increased chewing strokes result in a quantitative and qualitative enhancement of saliva. Reduction in the amount of saliva produced results in an increased incidence of gastroesophageal reflux disease (GERD), which can be objectively measured by the DeMeester score. The impact of increased chewing strokes on the DeMeester score remains largely unknown, thus this study aimed to find out their impact on the value of the DeMeester score and its individual components.The effect of increased chewing strokes on the DeMeester score was investigated in 12 subjects (5 male and 7 female) who were diagnosed with GERD. All subjects underwent a 48-hour pH monitoring using the Bravo® pH capsule. All the patients chewed their food 20 times more on Day 2 as compared to Day 1. The data were analyzed for change in the DeMeester score and its individual components in 2 days.In patients with GERD (DeMeester score > 14.72 on Day 1), the number of long refluxes (>5 minutes) on Day 2 (mean = 3.2, SD = 2.3) was significantly lower than on Day 1 (mean = 6.4, SD = 2.7); Z = -2.032, p = 0.04. Though, the DeMeester score and its other individual parameters decreased on Day 2, they were not statistically significant.In patients with GERD, increased chewing strokes lead to a decrease in the number of long reflux episodes. Though there is a decrease in the DeMeester score and its other individual components, larger randomized controlled studies are required to reach statistical significance.


Assuntos
Refluxo Gastroesofágico/diagnóstico , Mastigação/fisiologia , Saliva/metabolismo , Índice de Gravidade de Doença , Adulto , Monitoramento do pH Esofágico , Feminino , Refluxo Gastroesofágico/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Br J Nutr ; 114(5): 734-45, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26234346

RESUMO

The aim of this study was to investigate the effects of the administration of oral arachidonic acid (AA) in rats with or without dextran sulphate sodium (DSS)-induced inflammatory bowel disease. Male Wistar rats were administered AA at 0, 5, 35 or 240 mg/kg daily by gavage for 8 weeks. Inflammatory bowel disease was induced by replacing drinking water with 3 % DSS solution during the last 7 d of the AA dosing period. These animals passed loose stools, diarrhoea and red-stained faeces. Cyclo-oxygenase-2 concentration and myeloperoxidase activity in the colonic tissue were significantly increased in the animals given AA at 240 mg/kg compared with the animals given AA at 0 mg/kg. Thromboxane B2 concentration in the medium of cultured colonic mucosae isolated from these groups was found to be dose-dependently increased by AA, and the increase was significant at 35 and 240 mg/kg. Leukotriene B4 concentration was also significantly increased and saturated at 5 mg/kg. In addition, AA at 240 mg/kg promoted DSS-induced colonic mucosal oedema with macrophage infiltration. In contrast, administration of AA for 8 weeks, even at 240 mg/kg, showed no effects on the normal rats. These results suggest that in rats with bowel disease AA metabolism is affected by oral AA, even at 5 mg/kg per d, and that excessive AA may aggravate inflammation, whereas AA shows no effects in rats without inflammatory bowel disease.


Assuntos
Ácido Araquidônico/efeitos adversos , Colite/metabolismo , Colo/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Peroxidase/metabolismo , Animais , Ácido Araquidônico/metabolismo , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Dieta , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Leucotrieno B4/metabolismo , Macrófagos/metabolismo , Masculino , Ratos Wistar , Tromboxano B2/metabolismo
6.
JID Innov ; 3(2): 100177, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36876220

RESUMO

Psoriasis is characterized by intense pruritus, with a subset of individuals with psoriasis experiencing thermal hypersensitivity. However, the pathophysiology of thermal hypersensitivity in psoriasis and other skin conditions remains enigmatic. Linoleic acid is an omega-6 fatty acid that is concentrated in the skin, and oxidation of linoleic acid into metabolites with multiple hydroxyl and epoxide functional groups has been shown to play a role in skin barrier function. Previously, we identified several linoleic acid‒derived mediators that were more concentrated in psoriatic lesions, but the role of these lipids in psoriasis remains unknown. In this study, we report that two such compounds-9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate-are present as free fatty acids and induce nociceptive behavior in mice but not in rats. By chemically stabilizing 9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate through the addition of methyl groups, we observed pain and hypersensitization in mice. The nociceptive responses suggest an involvement of the TRPA1 channel, whereas hypersensitive responses induced by these mediators may require both TRPA1 and TRPV1 channels. Furthermore, we showed that 9,10,13-trihydroxy-octadecenoate‒induced calcium transients in sensory neurons are mediated through the Gßγ subunit of an unidentified G-protein coupled receptor (GPCR). Overall, mechanistic insights from this study will guide the development of potential therapeutic targets for the treatment of pain and hypersensitivity.

7.
J Med Life ; 16(10): 1503-1507, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38313170

RESUMO

The endometrium produces MUCIN-1 (MUC-1) and cyclooxygenase-2 (COX-2), which are essential for implantation. MUC-1 is required for adhesion, while COX-2 is necessary for decidualization. Variations or polymorphisms in MUC-1 and COX-2 can lead to changes in endometrial receptivity. This study investigated the relationship between MUC-1 and COX-2 polymorphisms and endometrial receptivity in endometriosis patients. Blood DNA samples were collected from 35 patients with endometriosis and 32 healthy patients between days 19 to 24 of their menstrual cycle (secretory phase). MUC-1 polymorphism was determined using the Amplification Refractory Mutation System (ARMS), and COX-2 gene polymorphism was assessed using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). The frequency distribution of gene polymorphisms between the two groups was compared using bivariate analysis. There were seven genotypic combinations of MUC-1 and COX-2: AAGC; AAGG; GACC; GAGC; GAGG; GGGC; GGGG. The AAGC genotype combination test was significant, with an OR=6.43 (95% CI:1.09-7.62) and p=0.01. In conclusion, combining MUC-1 and COX-2 (AAGC) genotypes results in endometrial receptivity defects in endometriosis.


Assuntos
Ciclo-Oxigenase 2 , Endometriose , Mucina-1 , Feminino , Humanos , Ciclo-Oxigenase 2/genética , Endometriose/genética , Endométrio , Mucina-1/genética , Polimorfismo Genético
8.
Saudi J Biol Sci ; 29(10): 103425, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36060109

RESUMO

The current work clarifies the negative effects of excess exposure to boric acid (H3BO3) as a boron-containing compound on rats and the possible ameliorative effect of melatonin (MEL). Forty rats were equally divided into 5 groups as follows: group 1 was treated as control while groups 2, 3, 4 and 5 were orally administered corn oil (0.5 ml), H3BO3 (1330 mg/kg BW), MEL (10 mg/kg BW) and H3BO3 + MEL for 28 consecutive days, respectively. At the end of the experiment, blood was sampled for biochemical and hematological analysis and tissues were collected for histopathological examination. The obtained results demonstrated that the exposure to H3BO3 induced hepatorenal dysfunctions, alterations in bone-related minerals and hormones levels, prostaglandin E2 as inflammatory mediator and hematological indices. H3BO3 induced histological alterations in the liver, kidneys, bone and skin. The co-administration of MEL with H3BO3 resulted in a significant improvement in most of the measured parameters and restoration of morpho-functional state of different organs compared to the H3BO3 group. In conclusion, the study clearly demonstrated that H3BO3- induced various adverse effects and that melatonin may be beneficial in a partial mitigating the H3BO3 and may represent a novel approach in the counteracting its toxicity.

9.
Mult Scler Relat Disord ; 59: 103557, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35092946

RESUMO

Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.


Assuntos
COVID-19 , Esclerose Múltipla , Doenças do Sistema Nervoso , Exercício Físico , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , SARS-CoV-2
10.
Acta Pharm Sin B ; 12(3): 1163-1185, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530162

RESUMO

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

11.
Regen Ther ; 17: 13-19, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33598510

RESUMO

Although common cancer therapies, such as chemotherapy and radiation therapy, have recently improved and yielded good results, evaluated as tumor shrinkage, disease recurrence is still a common event for most cancer patients. This is termed refractory cancer. This tumor regrowth following therapy is generally thought to be caused by a small, specific population of tumor cells called cancer stem cells (CSCs). Similar to other stem cells, CSCs have the capacity for self-renewal and multipotent differentiation, and they have been identified in many tumor types based on cell surface protein expression. This specific cell population has stemness characteristics as examined by serial transplantation in animal models. Previous studies have developed a specific signature of cell surface markers and biological functions that can identify CSCs in many solid tumors. In this review, we summarize the characterization of CSCs using new techniques for identifying and quantifying them in situ. These techniques and concepts could be valuable for evaluating the effects of therapies on this cell population. Finally, we conclude by discussing several unique preclinical treatment strategies to targets CSCs, such as reprogramming CSCs or inducing attack by immune cells. Therapeutic and diagnostic methodologies that can target and quantify CSCs will be valuable tools for eradicating refractory cancer.

12.
Biochem Biophys Rep ; 27: 101085, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34381880

RESUMO

BACKGROUND: Peripheral neuropathy (PN) is the damage and dysfunction of neurons of the peripheral nervous system. The present study was conducted to estimate the effectiveness of low-power laser therapy (LPLT) in the management of PN in a rats' model. METHODS: PN was induced by giving dichloroacetate (DCA) (250 mg/kg/day) for up to 12 weeks. Four groups of rats were used: control group, PN group, PN group treated with gabapentin and PN group treated with LPLT. The study was conducted for 8 weeks. The management of PN was estimated by behavioral tests which included hot plate and Morris water maze tests. Blood biochemical analysis were carried out. RESULTS: Using of hot plate test indicated thermal hypoalgesia and using Morris water maze test showed cognitive decline in PN rats. Treatment with LPLT or gabapentin improved both the pain sensations and deteriorated memory that occurred in the PN rats. Biochemical analysis showed that LPLT significantly decreased the elevated beta-endorphin level in PN rats, while gabapentin could not reduce it. Treatment PN rats with LPLT or gabapentin shifted the high levels of TNF-α, IL-1ß and IL-10 cytokines back to their normal values. Serum nitric oxide and MDA significantly increased in the PN group together with significant reduction in the rGSH level, these values were significantly improved by LPLT application while this was not the case with gabapentin treatment. Furthermore, treatment with gabapentin or LPLT significantly reduced serum ALAT and ASAT activities which are otherwise increased in the PN group. S100B, PGE2, total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol, urea and creatinine showed insignificant changes among all groups. CONCLUSIONS: Our results showed that treatment with LPLT is more efficient than gabapentin in ameliorating the peripheral neuropathy induced by xenobiotics.

13.
JACC Basic Transl Sci ; 6(4): 311-327, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997519

RESUMO

There are no data evaluating the microbiome in congenital heart disease following cardiopulmonary bypass. The authors evaluated patients with congenital heart disease undergoing cardiopulmonary bypass and noncardiac patients undergoing surgery without bypass. Patients with congenital heart disease had differences in baseline microbiome compared with control subjects, and this was exacerbated following surgery with bypass. Markers of barrier dysfunction were similar for both groups at baseline, and surgery with bypass induced significant intestinal barrier dysfunction compared with control subjects. This study offers novel evidence of alterations of the microbiome in congenital heart disease and exacerbation along with intestinal barrier dysfunction following cardiopulmonary bypass.

14.
JHEP Rep ; 3(6): 100332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34825153

RESUMO

BACKGROUND & AIMS: Infection is a major problem in advanced liver disease secondary to monocyte dysfunction. Elevated prostaglandin (PG)E2 is a mediator of monocyte dysfunction in cirrhosis; thus, we examined PGE2 signalling in outpatients with ascites and in patients hospitalised with acute decompensation to identify potential therapeutic targets aimed at improving monocyte dysfunction. METHODS: Using samples from 11 outpatients with ascites and 28 patients hospitalised with decompensated cirrhosis, we assayed plasma levels of PGE2 and lipopolysaccharide (LPS); performed quantitative real-time PCR on monocytes; and examined peripheral blood monocyte function. We performed western blotting and immunohistochemistry for PG biosynthetic machinery expression in liver tissue. Finally, we investigated the effect of PGE2 antagonists in whole blood using polychromatic flow cytometry and cytokine production. RESULTS: We show that hepatic production of PGE2 via the cyclo-oxygenase 1-microsomal PGE synthase 1 pathway, and circulating monocytes contributes to increased plasma PGE2 in decompensated cirrhosis. Transjugular intrahepatic sampling did not reveal whether hepatic or monocytic production was larger. Blood monocyte numbers increased, whereas individual monocyte function decreased as patients progressed from outpatients with ascites to patients hospitalised with acute decompensation, as assessed by Human Leukocyte Antigen (HLA)-DR isotype expression and tumour necrosis factor alpha and IL6 production. PGE2 mediated this dysfunction via its EP4 receptor. CONCLUSIONS: PGE2 mediates monocyte dysfunction in decompensated cirrhosis via its EP4 receptor and dysfunction was worse in hospitalised patients compared with outpatients with ascites. Our study identifies a potential drug target and therapeutic opportunity in these outpatients with ascites to reverse this process to prevent infection and hospital admission. LAY SUMMARY: Patients with decompensated cirrhosis (jaundice, fluid build-up, confusion, and vomiting blood) have high infection rates that lead to high mortality rates. A white blood cell subset, monocytes, function poorly in these patients, which is a key factor underlying their sensitivity to infection. We show that monocyte dysfunction in decompensated cirrhosis is mediated by a lipid hormone in the blood, prostaglandin E2, which is present at elevated levels, via its EP4 pathway. This dysfunction worsens when patients are hospitalised with complications of cirrhosis compared with those in the outpatients setting, which supports the EP4 pathway as a potential therapeutic target for patients to prevent infection and hospitalisation.

15.
Saudi J Biol Sci ; 28(12): 6957-6962, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866995

RESUMO

Asthma is a complicated lung disease, which has increased morbidity and mortality rates in worldwide. There is an overlap between asthma pathophysiology and mitochondrial dysfunction and MSCs may have regulatory effect on mitochondrial dysfunction and treats asthma. Therefore, immune-modulatory effect of MSCs and mitochondrial signaling pathways in asthma was studied. After culturing of MSCs and producing asthma animal model, the mice were treated with MSCs via IV via IT. BALf's eosinophil Counting, The levels of IL-4, -5, -13, -25, -33, INF-γ, Cys-LT, LTB4, LTC4, mitochondria genes expression of COX-1, COX-2, ND1, Nrf2, Cytb were measured and lung histopathological study were done. BALf's eosinophils, the levels of IL-4, -5, -13, -25, -33, LTB4, LTC4, Cys-LT, the mitochondria genes expression (COX-1, COX-2, Cytb and ND-1), perivascular and peribronchial inflammation, mucus hyper-production and hyperplasia of the goblet cell in pathological study were significantly decreased in MSCs-treated asthma mice and reverse trend was found about Nrf-2 gene expression, IFN-γ level and ratio of the INF-γ/IL-4. MSC therapy can control inflammation, immune-inflammatory factors in asthma and mitochondrial related genes, and prevent asthma immune-pathology.

16.
J Bone Oncol ; 30: 100387, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34504741

RESUMO

Bone is one of the preferential target organs of cancer metastasis. Bone metastasis is associated with various complications, of which bone pain is most common and debilitating. The cancer-associated bone pain (CABP) is induced as a consequence of increased neurogenesis, reprogramming and axonogenesis of sensory nerves (SNs) in harmony with sensitization and excitation of SNs in response to the tumor microenvironment created in bone. Importantly, CABP is associated with increased mortality, of which precise cellular and molecular mechanism remains poorly understood. Bone is densely innervated by autonomic nerves (ANs) (sympathetic and parasympathetic nerves) and SNs. Recent studies have shown that the nerves innervating the tumor microenvironment establish intimate communications with tumors, producing various stimuli for tumors to progress and disseminate. In this review, our current understanding of the role of SNs innervating bone in the pathophysiology of CABP will be overviewed. Then the hypothesis that SNs facilitate cancer progression in bone will be discussed in conjunction with our recent findings that SNs play an important role not only in the induction of CABP but also the progression of bone metastasis using a preclinical model of CABP. It is suggested that SNs are a critical component of the bone microenvironment that drives the vicious cycle between bone and cancer to progress bone metastasis. Suppression of the activity of bone-innervating SNs may have potential therapeutic effects on the progression of bone metastasis and induction of CABP.

17.
Acta Pharm Sin B ; 11(9): 2749-2767, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589395

RESUMO

Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.

18.
Neurobiol Pain ; 7: 100046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478201

RESUMO

Endogenous lipid mediators are proposed to contribute to headache and facial pain by activating trigeminal neurons (TN). We recently identified 11-hydroxy-epoxide- and 11-keto-epoxide derivatives of linoleic acid (LA) that are present in human skin and plasma and potentially contribute to nociception. Here we expand upon initial findings by examining the effects of 11-hydroxy- and 11-keto-epoxide-LA derivatives on TN activation in comparison to LA, the LA derivative [9-hydroxy-octadecadienoic acid (9-HODE)] and prostaglandin E2 (PGE2). 11-hydroxy- and 11-keto-epoxide-LA derivatives elicited Ca2+ transients in TN subpopulations. The proportion of neurons responding to test compounds (5 µM, 5 min) ranged from 16.2 ± 3.8 cells (11 K-9,10E-LA) to 34.1 ± 2.4 cells (11H-12,13E-LA). LA and 9-HODE (5 µM, 5 min) elicited responses in 11.6 ± 3.1% and 9.7 ± 3.4% of neurons, respectively. 11H-12,13E-LA, 11K-12,13E-LA, and 11H-9,10E-LA produced Ca2+ responses in significantly higher proportions of neurons compared to either LA or 9-HODE (F (6, 36) = 5.12, P = 0.0007). 11H-12,13E-LA and 11H-9,10E-LA increased proportions of responsive neurons in a concentration-dependent fashion, similar to PGE2. Most sensitive neurons responded to additional algesic agents (32.9% to capsaicin, 40.1% to PGE2, 58.0% to AITC), however 20.6% did not respond to any other agent. In summary, 11-hydroxy-epoxide derivatives of LA increase trigeminal neuron excitability, suggesting a potential role in headache or facial pain.

19.
Curr Res Toxicol ; 1: 34-41, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34345835

RESUMO

During the course of a toxic challenge, changes in gene expression can manifest such as induction of metabolizing enzymes as a compensatory detoxification response. We currently report that a single 400 mg/kg acetaminophen (APAP) dose to C57BL/6J mice led to an increase in multidrug resistance-associated (Mrp) 4 (Abcc4) mRNA 12 h after administration. Alanine aminotransferase, as a marker of liver injury, was also elevated indicating hepatotoxicity had occurred. Therefore, induction of Mrp4 mRNA was likely attributable to APAP-induced liver injury. Mrp4 has been shown to be upregulated during oxidative stress, and it is well-established that APAP overdose causes oxidative stress due to depletion of glutathione. Given the importance of Mrp4 upregulation as an adaptive response during cholestatic and oxidative liver injury, we next investigated the extent by which human MRP4 can be inhibited by the analgesics, APAP, diclofenac (DCF), and their metabolites. Using an in vitro assay with inside out human MRP4 vesicles, we determined that APAP-cysteine inhibited MRP4-mediated transport of leukotriene C4 with an apparent IC50 of 125 µM. APAP-glutathione also attenuated MRP4 activity though it achieved only 28% inhibition at 300 µM. Diclofenac acyl glucuronide (DCF-AG) inhibited MRP4 transport by 34% at 300 µM. The MRP4 in vitro inhibition occurs at APAP-cysteine and DCF-AG concentrations seen in vivo after toxic doses of APAP or DCF in mice, hence the findings are important given the role that Mrp4 serves as a compensatory response during oxidative stress following toxic challenge.

20.
J Ginseng Res ; 44(3): 373-385, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372859

RESUMO

Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa