Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Saudi Pharm J ; 29(9): 1061-1069, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34588851

RESUMO

The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.

2.
Saudi Pharm J ; 28(8): 951-962, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32792840

RESUMO

In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.

3.
Biochim Biophys Acta ; 1842(2): 175-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24215713

RESUMO

BACKGROUND: Loss of quadriceps muscle oxidative phenotype (OXPHEN) is an evident and debilitating feature of chronic obstructive pulmonary disease (COPD). We recently demonstrated involvement of the inflammatory classical NF-κB pathway in inflammation-induced impairments in muscle OXPHEN. The exact underlying mechanisms however are unclear. Interestingly, IκB kinase α (IKK-α: a key kinase in the alternative NF-κB pathway) was recently identified as a novel positive regulator of skeletal muscle OXPHEN. We hypothesised that inflammation-induced classical NF-κB activation contributes to loss of muscle OXPHEN in COPD by reducing IKK-α expression. METHODS: Classical NF-κB signalling was activated (molecularly or by tumour necrosis factor α: TNF-α) in cultured myotubes and the impact on muscle OXPHEN and IKK-α levels was investigated. Moreover, the alternative NF-κB pathway was modulated to investigate the impact on muscle OXPHEN in absence or presence of an inflammatory stimulus. As a proof of concept, quadriceps muscle biopsies of COPD patients and healthy controls were analysed for expression levels of IKK-α, OXPHEN markers and TNF-α. RESULTS: IKK-α knock-down in cultured myotubes decreased expression of OXPHEN markers and key OXPHEN regulators. Moreover, classical NF-κB activation (both by TNF-α and IKK-ß over-expression) reduced IKK-α levels and IKK-α over-expression prevented TNF-α-induced impairments in muscle OXPHEN. Importantly, muscle IKK-α protein abundance and OXPHEN was reduced in COPD patients compared to controls, which was more pronounced in patients with increased muscle TNF-α mRNA levels. CONCLUSION: Classical NF-κB activation impairs skeletal muscle OXPHEN by reducing IKK-α expression. TNF-α-induced reductions in muscle IKK-α may accelerate muscle OXPHEN deterioration in COPD.


Assuntos
Quinase I-kappa B/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Idoso , Animais , Western Blotting , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , NF-kappa B/genética , Oxirredução/efeitos dos fármacos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiopatologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
J Transl Autoimmun ; 6: 100188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684809

RESUMO

Introduction: Primary biliary cholangitis (PBC) is an autoimmune liver disease involving the small intrahepatic bile ducts; when untreated or undertreated, it may evolve to liver fibrosis and cirrhosis. Ursodeoxycholic Acid (UDCA) is the standard of care treatment, Obeticholic Acid (OCA) has been approved as second-line therapy for those non responder or intolerant to UDCA. However, due to moderate rate of UDCA-non responders and to warnings recently issued against OCA use in patients with cirrhosis, further therapies are needed.Areas covered. Deep investigations into the pathogenesis of PBC is leading to proposal of new therapeutic agents, among which peroxisome proliferator-activated receptor (PPAR) ligands seem to be highly promising given the preliminary, positive results in Phase 2 and 3 trials. Bezafibrate, the most evaluated, is currently used in clinical practice in combination with UDCA in referral centers. We herein describe completed and ongoing trials involving PPAR agonists use in PBC, analyzing pits and falls. Expert opinion: Testing new therapeutic opportunities in PBC is challenging due to its low prevalence and slow progression. However, new drugs including PPAR agonists, are currently under investigation and should be considered for at-risk PBC patients.

5.
J Clin Exp Hepatol ; 13(2): 273-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950481

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease globally and in India. The already high burden of NAFLD in India is expected to further increase in the future in parallel with the ongoing epidemics of obesity and type 2 diabetes mellitus. Given the high prevalence of NAFLD in the community, it is crucial to identify those at risk of progressive liver disease to streamline referral and guide proper management. Existing guidelines on NAFLD by various international societies fail to capture the entire landscape of NAFLD in India and are often difficult to incorporate in clinical practice due to fundamental differences in sociocultural aspects and health infrastructure available in India. A lot of progress has been made in the field of NAFLD in the 7 years since the initial position paper by the Indian National Association for the Study of Liver on NAFLD in 2015. Further, the ongoing debate on the nomenclature of NAFLD is creating undue confusion among clinical practitioners. The ensuing comprehensive review provides consensus-based, guidance statements on the nomenclature, diagnosis, and treatment of NAFLD that are practically implementable in the Indian setting.

6.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36582744

RESUMO

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

7.
J Clin Exp Hepatol ; 12(2): 435-439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535066

RESUMO

Background: Saroglitazar is a novel, dual peroxisome proliferator-activated receptors-α/γ agonist and is being investigated for the treatment of nonalcoholic fatty liver disease (NAFLD). Patients and methods: Consecutive overweight (body mass index [BMI] >23 kg/m2) patients of NAFLD, diagnosed based on controlled attenuation parameter (CAP) >248 dB/m, and attending the outpatient department of a tertiary care centre in New Delhi, were enrolled. Patients with cirrhosis (liver stiffness measurement [LSM] >13.5 kPa) and those with concomitant liver disease due to other aetiologies (alcohol, viral, etc.) were excluded. All patients received saroglitazar 4 mg/day; in addition, they were advised to reduce weight and were counselled regarding diet and exercise. At 3-month follow-up, patients were categorized into those who were able to reduce ≥5% body weight and those who could n'ot, and both these groups were compared. Results: A total of 91 patients (median age 45 years [range 18-66 years]; 81% men) were included in the study. The median BMI was 29.3 kg/m2 (range 23.6-42.2 kg/m2). The baseline median (range) aspartate transaminase, alanine transaminase, gamma glutamyl transferase, LSM and CAP values were 40 IU/dL (range 22-144 IU/dL), 48 IU/dL (range 13-164 IU/dL), 42 IU/dL (range 4-171 IU/dL), 6.7 kPa (range 3.6-13.1 kPa), and 308 dB/m (range 249-400 dB/m). All patients tolerated saroglitazar well. At 3-month, 57 patients (63%) were able to reduce ≥5% weight, whereas in the remaining 34 patients (37%), the weight reduction was <5% from baseline. Transaminases values improved in both the groups; however, LSM and CAP values improved only in patients who reduced weight. Conclusion: In overweight patients with NAFLD, a 3-month therapy with saroglitazar is able to improve transaminases but not LSM and CAP values unless accompanied by weight reduction of at least 5%. Larger randomized controlled trials are needed to document the independent effect of saroglitazar in these patients.

8.
J Clin Exp Hepatol ; 12(6): 1428-1437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340302

RESUMO

Background: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent conditions characterized by inflammation and fibrosis of the liver, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Conventional modalities are mainly symptomatic, with no definite solution. Beta-glucan-based biological response modifiers are a potential strategy in lieu of their beneficial metabolic effects. Aureobasidium pullulans strains AFO-202 and N-163 beta-glucans were evaluated for anti-fibrotic and anti-inflammatory hepatoprotective potentials in a NASH animal model in this study. Methods: In the STAM™ murine model of NASH, five groups were studied for 8 weeks: (1) vehicle (RO water), (2) AFO-202 beta-glucan; (3) N-163 beta-glucan, (4) AFO-202+N-163 beta-glucan, and (5) telmisartan (standard pharmacological intervention). Evaluation of biochemical parameters in plasma and hepatic histology including Sirius red staining and F4/80 immunostaining were performed. Results: AFO-202 beta-glucan significantly decreased inflammation-associated hepatic cell ballooning and steatosis. N-163 beta-glucan decreased fibrosis and inflammation significantly (P value < 0.05). The combination of AFO-202 with N-163 significantly decreased the NAFLD Activity Score (NAS) compared with other groups. Conclusion: This preclinical study supports the potential of N-163 and AFO-202 beta-glucans alone or in combination as potential preventive and therapeutic agent(s), for NASH.

9.
Neurobiol Pain ; 12: 100104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531614

RESUMO

There is growing literature supporting cannabinoids as a potential therapeutic for pain conditions. The development of chronic pain has been associated with reduced concentrations of the endogenous cannabinoid anandamide (AEA) in the midbrain dorsal periaqueductal gray (dPAG), and microinjections of synthetic cannabinoids into the dPAG are antinociceptive. Therefore, the goal of this study was to examine the role of the dPAG in cannabinoid-mediated sensory inhibition. Given that cannabinoids in the dPAG also elicit sympathoexcitation, a secondary goal was to assess coordination between sympathetic and antinociceptive responses. AEA was microinjected into the dPAG while recording single unit activity of wide dynamic range (WDR) dorsal horn neurons (DHNs) evoked by high intensity mechanical stimulation of the hindpaw, concurrently with renal sympathetic nerve activity (RSNA), in anesthetized male rats. AEA microinjected into the dPAG decreased evoked DHN activity (n = 24 units), for half of which AEA also elicited sympathoexcitation. AEA actions were mediated by cannabinoid 1 receptors as confirmed by local pretreatment with the cannabinoid receptor antagonist AM281. dPAG microinjection of the synaptic excitant DL-homocysteic acid (DLH) also decreased evoked DHN activity (n = 27 units), but in all cases this was accompanied by sympathoexcitation. Thus, sensory inhibition elicited from the dPAG is not exclusively linked with sympathoexcitation, suggesting discrete neuronal circuits. The rostrocaudal location of sites may affect evoked responses as AEA produced sensory inhibition without sympathetic effects at 86 % of caudal compared to 25 % of rostral sites, supporting anatomically distinct neurocircuits. These data indicate that spatially selective manipulation of cannabinoid signaling could provide analgesia without potentially harmful autonomic activation.

10.
J Clin Exp Hepatol ; 12(1): 61-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068786

RESUMO

BACKGROUND: Saroglitazar-a unique dual peroxisome proliferator-activated receptor agonist was approved marketing authorization in India in 2013 for diabetic dyslipidemia. Postmarketing studies have additionally shown improvement in liver parameters in diabetic dyslipidemia patients with nonalcoholic fatty liver disease (NAFLD) who received saroglitazar. AIM: The aim of this study was to evaluate the effect of saroglitazar on liver function test, liver fibrosis score by FibroScan, lipid profiles, HbA1c in NAFLD patients with diabetic dyslipidemia in southern India. METHODOLOGY: A prospective, interventional, pilot study was performed to study the safety and efficacy of saroglitazar in NAFLD patients having type 2 diabetes mellitus. About 97 patients were screened, of which 85 patients were involved in the study based on the inclusion criteria. The clinical parameters and liver stiffness were measured at the baseline and also after 12 weeks of treatment with administration of saroglitazar 4 mg once daily. The change in the parameters at the baseline and after the end of the treatment was measured and was subjected to statistical analysis using SPSS software. RESULTS: The recruited patients received saroglitazar and were followed up for a period of 12 weeks. The clinical parameters such as fasting blood sugar, postprandial blood sugar, HbA1c, total cholesterol, triglycerides, SGPT, and liver stiffness showed significant difference after 12 weeks of treatment when compared with the baseline values. No adverse drug reaction was reported in patients receiving saroglitazar during the study. CONCLUSION: Saroglitazar was found to show significant improvement in liver parameters in NAFLD patients with a significant reduction in liver fibrosis and triglycerides level.

11.
Comput Struct Biotechnol J ; 20: 5935-5951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382190

RESUMO

Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.

12.
J Biochem ; 170(6): 775-785, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34557892

RESUMO

In this study, we investigated the activation of TRPV1 and TRPA1 by N-acyl homoserine lactones, quorum sensing molecules produced by Gram-negative bacteria, and the inhibitory effect of TRPV1 and TRPA1 by autoinducing peptides (AIPs), quorum sensing molecules produced by Gram-positive bacteria, using human embryonic kidney 293T cell lines stably expressing human TRPV1 and TRPA1, respectively. As a result, we found that some N-acyl homoserine lactones, such as N-octanoyl-L-homoserine lactone (C8-HSL), N-nonanoyl-L-homoserine lactone (C9-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL), activated both TRPV1 and TRPA1. In addition, we clarified that some N-acyl homoserine lactones, such as N-3-oxo-dodecanoyl-L-homoserine lactone (3-oxo-C12-HSL), only activated TRPV1 and N-acyl homoserine lactones having saturated short acyl chain, such as N-acetyl-L-homoserine lactone (C2-HSL) and N-butyryl-L-homoserine lactone (C4-HSL), only activated TRPA1. Furthermore, we found that an AIP, simple linear peptide CHWPR, inhibited both TRPV1 and TRPA1 and peptide having thiolactone ring DICNAYF, the thiolactone ring were formed between C3 to F7, strongly inhibited only the TRPV1. Although the specificity of TRPV1 and TRPA1 for quorum sensing molecules was different, these data suggest that both TRPV1 and TRPA1 would function as receptors for quorum sensing molecule produced by bacteria. Graphical Abstract.


Assuntos
Acil-Butirolactonas/farmacologia , Bactérias Gram-Negativas/química , Percepção de Quorum , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Acil-Butirolactonas/química , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Células HEK293 , Humanos , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
13.
JID Innov ; 1(3): 100033, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34909730

RESUMO

Alterations of the lipid profile of the stratum corneum have an important role in the pathogenesis of atopic dermatitis (AD) because they contribute to epidermal barrier impairment. However, they have not previously been envisioned as a cellular response to altered metabolic requirements in AD epidermis. In this study, we report that the lipid composition in the epidermis of flaky tail, that is, ft/ft mice mimics that of human lesional AD (ADL) epidermis, both showing a shift toward shorter lipid species. The amounts of C24 and C26 free fatty acids and C24 and C26 ceramides-oxidized exclusively in peroxisomes-were reduced in the epidermis of ft/ft mice despite increased lipid synthesis, similar to that seen in human ADL edpidermis. Increased ACOX1 protein and activity in granular keratinocytes of ft/ft epidermis, altered lipid profile in human epidermal equivalents overexpressing ACOX1, and increased ACOX1 immunostaining in skin biopsies from patients with ADL suggest that peroxisomal ß-oxidation significantly contributes to lipid signature in ADL epidermis. Moreover, we show that increased anaerobic glycolysis in ft/ft mouse epidermis is essential for keratinocyte proliferation and adenosine triphosphate synthesis but does not contribute to local inflammation. Thus, this work evidenced a metabolic shift toward enhanced peroxisomal ß-oxidation and anaerobic glycolysis in ADL epidermis.

14.
Biochem Biophys Rep ; 27: 101091, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34381883

RESUMO

Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (Ppara ΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.

15.
JHEP Rep ; 3(3): 100265, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34027337

RESUMO

Liver steatosis is emerging as a major cause of chronic liver disease worldwide, mainly due to the increasing rate of obesity, type 2 diabetes, and metabolic syndrome. Because of the increased incidence of liver steatosis, many organs are currently declined for transplantation despite high demand and waiting list mortality. Defatting strategies have recently emerged as a means of rapidly reducing liver steatosis to expand the pool of available organs. This review summarises advances in defatting strategies in experimental and human models of liver steatosis over the last 20 years.

16.
Comput Struct Biotechnol J ; 19: 1956-1965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995897

RESUMO

Principal component analysis (PCA) is a useful tool for omics analysis to identify underlying factors and visualize relationships between biomarkers. However, this approach is limited in addressing life complexity and further improvement is required. This study aimed to develop a new approach that combines mass spectrometry-based metabolomics with multiblock PCA to elucidate the whole-body global metabolic network, thereby generating comparable metabolite maps to clarify the metabolic relationships among several organs. To evaluate the newly developed method, Zucker diabetic fatty (ZDF) rats (n = 6) were used as type 2 diabetic models and Sprague Dawley (SD) rats (n = 6) as controls. Metabolites in the heart, kidney, and liver were analyzed by capillary electrophoresis and liquid chromatography mass spectrometry, respectively, and the detected metabolites were analyzed by multiblock PCA. More than 300 metabolites were detected in the heart, kidney, and liver. When the metabolites obtained from the three organs were analyzed with multiblock PCA, the score and loading maps obtained were highly synchronized and their metabolism patterns were visually comparable. A significant finding in this study was the different expression patterns in lipid metabolism among the three organs; notably triacylglycerols with polyunsaturated fatty acids or less unsaturated fatty acids showed specific accumulation patterns depending on the organs.

17.
JACC Basic Transl Sci ; 6(6): 507-523, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34222722

RESUMO

Neutrophil adhesion on the atheroprone femoral artery of high-fat diet-fed low-density lipoprotein receptor-null mice was enhanced more than in wild-type mice. The inhibition of histone H3 citrullination of neutrophils reversed the enhancement of neutrophil adhesion, suggesting that hypercitrullination contributes to enhanced neutrophil adhesion. Furthermore, pemafibrate reduced the citrullination of histone H3 in these mice. Therefore, the hypercitrullination of histone H3 in neutrophils contributes to atherosclerotic vascular inflammation.

18.
Bone Rep ; 15: 101132, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632003

RESUMO

The osteoclast-dependent bone resorption process is a crucial part of the bone regulatory system. The excessive function of osteoclasts can cause diseases of bone, joint, and other tissues such as osteoporosis and osteoarthritis. Greenshell mussel oil (GSM), a good source of long chain omega-3 polyunsaturated fatty acids (LCn-3PUFAs), was fractionated into total lipid, polar lipid, and non-polar lipid components and their anti-osteoclastogenic activity tested in RAW 264.7 cell cultures. Osteoclast differentiation process was achieved after 5 days of incubation with RANKL in 24-well culture plates. Introducing the non-polar lipid fraction into the culture caused a lack of cell differentiation, and a reduction in tartrate-resistant acid phosphatase (TRAP) activity and TRAP cell numbers in a dose-dependent manner (50% reduction at the concentration of 20 µg/mL, p < 0.001). Moreover, actin ring formation was significantly diminished by non-polar lipids at 10-20 µg/mL. The bone digestive enzymes released by osteoclasts into the pit formation were also compromised by downregulating gene expression of cathepsin K, carbonic anhydrase II (CA II), matrix metalloproteinase 9 (MMP-9), and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). This study revealed that the non-polar lipid fraction of GSM oil contains bioactive substances which possess potent anti-osteoclastogenic activity.

19.
JHEP Rep ; 3(3): 100237, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34151243

RESUMO

BACKGROUND & AIMS: Aramchol is a fatty acid-bile acid conjugate that reduces liver fat content and is being evaluated in a phase III clinical trial for non-alcoholic steatohepatitis (NASH). Aramchol attenuates NASH in mouse models and decreases steatosis by downregulating the fatty acid synthetic enzyme stearoyl CoA desaturase 1 (SCD1) in hepatocytes. Although hepatic stellate cells (HSCs) also store lipids as retinyl esters, the impact of Aramchol in this cell type is unknown. METHODS: We investigated the effects of Aramchol on a human HSC line (LX-2), primary human HSCs (phHSCs), and primary human hepatocytes (phHeps). RESULTS: In LX-2 and phHSCs, 10 µM Aramchol significantly reduced SCD1 mRNA while inducing PPARG (PPARγ) mRNA, with parallel changes in the 2 proteins; ACTA2, COL1A1, ß-PDGFR (bPDGFR) mRNAs were also significantly reduced in LX-2. Secretion of collagen 1 (Col1α1) was inhibited by 10 µM Aramchol. SCD1 knockdown in LX-2 cells phenocopied the effect of Aramchol by reducing fibrogenesis, and addition of Aramchol to these cells did not rescue fibrogenic gene expression. Conversely, in LX-2 overexpressing SCD1, Aramchol no longer suppressed fibrogenic gene expression. The drug also induced genes in LX-2 that promote cholesterol efflux and inhibited ACAT2, which catalyses cholesterol synthesis. In phHeps, Aramchol also reduced SCD1 and increased PPARG mRNA expression. CONCLUSIONS: Aramchol downregulates SCD1 and elevates PPARG in HSCs, reducing COL1A1 and ACTA2 mRNAs and COL1A1 secretion. These data suggest a direct inhibitory effect of Aramchol in HSCs through SCD1 inhibition, as part of a broader impact on both fibrogenic genes as well as mediators of cholesterol homeostasis. These findings illustrate novel mechanisms of Aramchol activity, including potential antifibrotic activity in patients with NASH and fibrosis. LAY SUMMARY: In this study, we have explored the potential activity of Aramchol, a drug currently in clinical trials for fatty liver disease, in blocking fibrosis, or scarring, by hepatic stellate cells, the principal collagen-producing (i.e. fibrogenic) cell type in liver injury. In both isolated human hepatic stellate cells and in a human hepatic stellate cell line, the drug suppresses the key fat-producing enzyme, stearoyl CoA desaturase 1 (SCD1), which leads to reduced expression of genes and proteins associated with hepatic fibrosis, while inducing the protective gene, PPARγ. The drug loses activity when SCD1 is already reduced by gene knockdown, reinforcing the idea that inhibition of SCD1 is a main mode of activity for Aramchol. These findings strengthen the rationale for testing Aramchol in patients with NASH.

20.
JHEP Rep ; 3(3): 100284, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34027340

RESUMO

Fatty liver disease can be triggered by a combination of excess alcohol, dysmetabolism and other environmental cues, which can lead to steatohepatitis and can evolve to acute/chronic liver failure and hepatocellular carcinoma, especially in the presence of shared inherited determinants. The recent identification of the genetic causes of steatohepatitis is revealing new avenues for more effective risk stratification. Discovery of the mechanisms underpinning the detrimental effect of causal mutations has led to some breakthroughs in the comprehension of the pathophysiology of steatohepatitis. Thanks to this approach, hepatocellular fat accumulation, altered lipid droplet remodelling and lipotoxicity have now taken centre stage, while the role of adiposity and gut-liver axis alterations have been independently validated. This process could ignite a virtuous research cycle that, starting from human genomics, through omics approaches, molecular genetics and disease models, may lead to the development of new therapeutics targeted to patients at higher risk. Herein, we also review how this knowledge has been applied to: a) the study of the main PNPLA3 I148M risk variant, up to the stage of the first in-human therapeutic trials; b) highlight a role of MBOAT7 downregulation and lysophosphatidyl-inositol in steatohepatitis; c) identify IL-32 as a candidate mediator linking lipotoxicity to inflammation and liver disease. Although this precision medicine drug discovery pipeline is mainly being applied to non-alcoholic steatohepatitis, there is hope that successful products could be repurposed to treat alcohol-related liver disease as well.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa