Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 143(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729440

RESUMO

The management of thoracolumbar (TL) burst fractures remained challenging. Due to the complex nature of the fractured vertebrae and the lack of clinical and biomechanical evidence, currently, there was still no guideline to select the optimal posterior fixation strategy for TL burst fracture. We utilized a T10-L3 TL finite element model to simulate L1 burst fracture and four surgical constructs with one- or two-level suprajacent and infrajacent instrumentation (U1L1, U1L2, U2L1, and U2L2). This study was aimed to compare the biomechanical properties and find an optimal fixation strategy for TL burst fracture in order to minimize motion in the fractured level without exerting significant burden in the construct. Our result showed that two-level infrajacent fixation (U1L2 and U2L2) resulted in greater global motion reduction ranging from 66.0 to 87.3% compared to 32.0 to 47.3% in one-level infrajacent fixation (U1L1 and U2L1). Flexion produced the largest pathological motion in the fractured level but the differences between the constructs were small, all within 0.26 deg. Comparisons in implant stress showed that U2L1 and U2L2 had an average 25.3 and 24.8% less von Mises stress in the pedicle screws compared to U1L1 and U1L2, respectively. The construct of U2L1 had better preservation of the physiological spinal motion while providing sufficient range of motion reduction at the fractured level. We suggested that U2L1 is a good alternative to the standard long-segment fixation with better preservation of physiological motion and without an increased risk of implant failure.


Assuntos
Análise de Elementos Finitos
2.
World Neurosurg ; 180: e429-e439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37757943

RESUMO

OBJECTIVE: The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis. METHODS: A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed. RESULTS: The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced. CONCLUSIONS: The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.


Assuntos
Parafusos Pediculares , Fraturas da Coluna Vertebral , Fusão Vertebral , Humanos , Análise de Elementos Finitos , Vértebras Lombares/cirurgia , Vértebras Lombares/lesões , Vértebras Torácicas/cirurgia , Vértebras Torácicas/lesões , Fenômenos Biomecânicos , Fraturas da Coluna Vertebral/cirurgia , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa