Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioact Mater ; 21: 157-174, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36093325

RESUMO

Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications.

2.
Acta Pharm Sin B ; 11(5): 1329-1340, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094837

RESUMO

5-Aminolevulinic acid (5-ALA) has been approved for clinical photodynamic therapy (PDT) due to its negligible photosensitive toxicity. However, the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells. Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair, a liposomal nanomedicine (MFLs@5-ALA/DFO) with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA, which was prepared by co-encapsulating 5-ALA and DFO (deferoxamine, a special iron chelator) into the membrane fusion liposomes (MFLs). MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery. MFLs@5-ALA/DFO could efficiently reduce iron ion, thus blocking the biotransformation of photosensitive protoporphyrin IX (PpIX) to heme, realizing significant accumulation of photosensitivity. Meanwhile, the activity of DNA repair enzyme was also inhibited with the reduction of iron ion, resulting in the aggravated DNA damage in tumor cells. Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.

3.
Acta Pharm Sin B ; 11(2): 373-393, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643818

RESUMO

The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.

4.
Acta Pharm Sin B ; 9(5): 937-951, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31649844

RESUMO

Artemisinin and its derivatives (ARTs) were reported to display heme-dependent antitumor activity. On the other hand, histone deacetylase inhibitors (HDACi) were known to be able to promote heme synthesis in erythroid cells. Nevertheless, the effect of HDACi on heme homeostasis in non-erythrocytes remains unknown. We envisioned that the combination of HDACi and artesunate (ARS) might have synergistic antitumor activity through modulating heme synthesis. In vitro studies revealed that combination of ARS and HDACi exerted synergistic tumor inhibition by inducing cell death. Moreover, this combination exhibited more effective antitumor activity than either ARS or HDACi monotherapy in xenograft models without apparent toxicity. Importantly, mechanistic studies revealed that HDACi coordinated with ARS to increase 5-aminolevulinate synthase (ALAS1) expression, and subsequent heme production, leading to enhanced cytotoxicity of ARS. Notably, knocking down ALAS1 significantly blunted the synergistic effect of ARS and HDACi on tumor inhibition, indicating a critical role of ALAS1 upregulation in mediating ARS cytotoxicity. Collectively, our study revealed the mechanism of synergistic antitumor action of ARS and HDACi. This finding indicates that modulation of heme synthesis pathway by the combination based on ARTs and other heme synthesis modulators represents a promising therapeutic approach to solid tumors.

6.
Arab J Urol ; 15(2): 100-109, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29071138

RESUMO

OBJECTIVE: To assess the diagnostic accuracy and safety of photodynamic diagnosis (PDD) in upper urinary tract urothelial carcinoma (UUTUC). MATERIALS AND METHODS: A systematic literature search was conducted. Included studies were assessed for the risks of bias and quality using appropriate tools. Dedicated data extraction forms were used. Diagnostic accuracy in terms of sensitivity and specificity were quoted whenever provided by individual studies. A combined toxicity profile of 5-aminolevulinic acid (5ALA) was given after reviewing individual studies. RESULTS: In all, 17 studies were identified. After screening seven studies were included involving a total of 194 patients. None of the studies were randomised. All the available studies were of low-to-moderate quality. The largest available study, with 106 patients, reported a sensitivity of 95.8% and 53.5% for PDD and white-light (WL) ureterorenoscopy (URS) respectively, with a statistically significant difference. The specificity was 96.6% for PDD and 95.2% for WL-URS with no statistical significance. PDD showed better ability in detecting carcinoma in situ and dysplasia. One study compared PDD to computed tomography urogram (CTU) and found PDD to have better sensitivity and statistically significantly better specificity. 5ALA-associated toxicity was minor in nature and hypotension was the most common adverse event. CONCLUSION: PDD in UUTUC appears to be more accurate than WL-URS and CTU, with no significant toxicity. Larger scale randomised trials are needed.

7.
FEBS Open Bio ; 4: 347-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918048

RESUMO

The nuclear receptor, REV-ERBα, has a key role in circadian rhythms and requires heme as its ligand. The present study determined whether the heme precursor, 5-aminolevulinic acid (ALA), affects REV-ERBα and its target genes. When exposed to ALA, the human lung diploid cell line, WI-38, exhibited activation of REV-ERBα and repression of the transcription of REV-ERBα target genes, including BMAL1, an essential component of the circadian oscillator. Moreover, co-incubation of sodium ferrous citrate (SFC) and ALA also activated REV-ERBα and repressed the transcription of REV-ERBα target genes. These results indicate that ALA regulates human circadian rhythms via REV-ERBα.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa