Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337346

RESUMO

Long non-coding RNAs (lncRNAs), a class of important regulatory factors for many biological processes in plants, have received much attention in recent years. To explore the molecular roles of lncRNAs in sweet cherry fruit ripening, we conducted widely targeted metabolome, transcriptome and lncRNA analyses of sweet cherry fruit at three ripening stages (yellow stage, pink stage, and dark red stage). The results show that the ripening of sweet cherry fruit involves substantial metabolic changes, and the rapid accumulation of anthocyanins (cyanidin 3-rutinoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside) is the main cause of fruit coloration. These ripening-related alterations in the metabolic profile are driven by specific enzyme genes related to the synthesis and decomposition of abscisic acid (ABA), cell wall disintegration, and anthocyanin biosynthesis, as well as transcription factor genes, such as MYBs, bHLHs, and WD40s. LncRNAs can target these ripening-related genes to form regulatory modules, incorporated into the sweet cherry fruit ripening regulatory network. Our study reveals that the lncRNA-mRNA module is an important component of the sweet cherry fruit ripening regulatory network. During sweet cherry fruit ripening, the differential expression of lncRNAs will meditate the spatio-temporal specific expression of ripening-related target genes (encoding enzymes and transcription factors related to ABA metabolism, cell wall metabolism and anthocyanin metabolism), thus driving fruit ripening.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Metaboloma , Prunus avium , RNA Longo não Codificante , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Antocianinas/biossíntese , Antocianinas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Prunus avium/crescimento & desenvolvimento , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes , Galactosídeos
2.
J Sci Food Agric ; 104(3): 1583-1590, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819712

RESUMO

BACKGROUND: Early sweet cherries have a high economic impact on cherry growers but have poorer quality characteristics and shorter shelf-life than late cherries. Melatonin has been proposed as a biostimulant that regulates plant and fruit growth and increases fruit quality and shelf-life but, in general in fruit and vegetables, there is controversy about its effects. Therefore, this work aimed to evaluate the impact of exogenous preharvest melatonin applications at dusk on the quality and bioactive compounds of two early sweet cherry cultivars. RESULTS: The M3 and M5 (3 × 10-4 and 5 × 10-4 mol L-1 melatonin, respectively) treatments effectively enhanced the endogenous melatonin and hydroxycinnamic acid concentration, enhancing the functional properties of the fruit. Additionally, the M5 treatment enhanced skin colour and consumer acceptance of 'Samba' cherries, while the M3 treatment improved cherry size in 'Sandon Rose'. CONCLUSION: Preharvest melatonin applications at dusk could be included in the scheduled preharvest treatments for early cherry cultivars in order to improve the quality and to stimulate the functionality of the fruit. However, further studies are needed to adjust the concentration depending on the cultivar and the objective pursued. © 2023 Society of Chemical Industry.


Assuntos
Melatonina , Prunus avium , Prunus , Melatonina/farmacologia , Antioxidantes/química , Prunus/química , Frutas/química
3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203428

RESUMO

γ-Aminobutyric acid (GABA) plays important roles in plant development, including the maintenance of fruit quality when applied as postharvest treatment. However, little information is available about the effects of preharvest GABA treatments. Thus, GABA (10, 50 and 100 mM) was applied as foliar spray at key points of fruit development in three sweet cherry cultivars and over two years. The results show that quality parameters, such as total soluble solid content, titratable acidity and firmness were higher in the fruit from GABA-treated trees than in the controls, either at harvest or during four weeks of cold storage. In addition, the total phenolic and total and individual anthocyanin concentrations were also enhanced by GABA treatments and the fruit color was improved. The activities of the antioxidant enzymes catalase, ascorbate peroxidase and peroxidase were also enhanced by the GABA treatments. The most effective concentration was 50 mM, which led to extending the storage period of sweet cherries with high quality traits to up to four weeks, while for the controls this was two weeks. Thus, GABA treatment had a clear effect on delaying the postharvest ripening and senescence processes in sweet cherries, with an additional effect on enhancing the content of bioactive compounds, such as phenolics and anthocyanins, with antioxidant properties and health benefits.


Assuntos
Antioxidantes , Prunus avium , Antioxidantes/farmacologia , Antocianinas/farmacologia , Peroxidases , Fenóis/farmacologia , Ácido gama-Aminobutírico
4.
Mol Biol Rep ; 49(4): 2687-2693, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35034286

RESUMO

BACKGROUND: Natural products are not only positioned in the heart of traditional medicine but also in modern medicine as many current drugs are coming from natural sources. Apart from the field of medicine and therapeutics, natural products are broadly used in other industrial fields such as nutrition, skincare products and nanotechnology. METHODS AND RESULTS: The aim of this study was to assess the effects of sweet cherry (Prunus avium L.) fruit extract from the Greek native cultivar 'Vasiliadi', on the human 2D and 3D in vitro models in order to investigate its potential impact on skin. We focused on 2D culture of primary normal human epidermal keratinocytes (NHEK) that were treated with sweet cherry fruit extract. In the first place, we targeted fruit extract potential cytotoxicity by determining ATP intracellular levels. Furthermore, we assessed its potential skin irritability by using 3D skin model. To better understand the bioactivity of sweet cherry fruit. extract, we used qPCR to study the expression of various genes that are implicated in the skin functions. Our experiments showed that sweet cherry fruit extract is non-toxic in 2D keratinocytes culture as well as non-irritant in 3D skin model. Our results revealed that the extract mediated important pathways for the optimum epidermis function such as cell proliferation, immune and inflammatory response. CONCLUSION: The sweet cherry fruit extracts possesses significant activity in epidermis function without any potential of cytotoxicity or skin irritability, which makes it a rather promising active agent for skincare.


Assuntos
Prunus avium , Frutas/genética , Humanos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Prunus avium/metabolismo , Pele
5.
Int J Biometeorol ; 66(5): 987-994, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124758

RESUMO

The frequency and severity of spring frosts increase during the budburst in many regions of the world as global warming increases. Variability in the freezing resistance of sweet cherry flower organs during the active growing period has been rarely documented, especially in regard to the sepal, pedicel, receptacle, petal, stamen, and pistil organs of flower at the deacclimation stage. The freezing resistance of flower organs of six sweet cherry cultivars was investigated at regular intervals from the first white stage through the full bloom stage using differential thermal analysis (DTA) for 2019-2020. For most of the cultivars, petal and stamen organs of flower exhibited higher freezing resistance than other flower organs. There were significant differences in frost tolerance among cultivars, and 'Van' and 'Wild Genotype' had a lower level of low temperature exotherms or critical temperatures (LT50 values) in both stages, whereas 'Merton Late' was more sensitive to frost than other cultivars. Additionally, an increase in LT50 values in all cultivars was observed with the progression of the budburst. The results in the present study can increase the certainty of decision-making regarding the timing and methods to increase the air temperature in orchards during spring frost events to prevent frost damage. Larger data sets are required to further validate our results, and future efforts should thus be focused on determining the critical temperatures of flower organs using different measurement techniques.


Assuntos
Prunus avium , Temperatura Baixa , Análise Diferencial Térmica , Flores , Temperatura
6.
Phytochem Anal ; 33(4): 564-576, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35122339

RESUMO

INTRODUCTION: Sweet cherry (Prunus avium L.), one of the most consumed fruits in the world, is rich in phenolic and especially anthocyanin content. OBJECTIVE: The aim of this study was to evaluate the phenolic properties of 11 different sweet cherry genotypes collected from Giresun, Turkey. METHODS: Total phenol, flavonoid, anthocyanin and antioxidant properties were observed spectrophotometrically in three different extraction (conventional, microwave-assisted and ultrasound-assisted) processes. Major phenolic, anthocyanin and antioxidant structures were visually assessed by high-performance thin layer chromatography (HPTLC). Various phenolics in its structure were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: T2 and E5 genotypes had the highest content in terms of total phenol, flavonoid, anthocyanin and antioxidant activity. In HPTLC, cherry samples contained high levels of chlorogenic acid, neochlorogenic acid, p-coumaroylquinic acid, rutin and cyanidin-3 rutinoside. Among the phenolics examined in the LC-MS/MS method, the major compounds in the structure of cherry were found to be chlorogenic acid, rutin and catechin. The T2 genotype had higher phenolics than the other cherry samples (chlorogenic acid 19.3 mg/100 g; catechin; 3.8 mg/100 g; rutin 33.1 mg/100 g). CONCLUSION: As a result, T2 and E5 genotypes had higher phenolic and antioxidant activity compared to other genotypes and commercial cultivars. It can be said that the antioxidant contents of these genotypes are due to the high anthocyanin amount in their structures. In addition, T2 genotype contained more major phenolics than other cherries. In the next stage, it is recommended to carry out studies on the cultivation of these two varieties.


Assuntos
Catequina , Prunus avium , Antocianinas/análise , Antioxidantes/análise , Catequina/análise , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Flavonoides/análise , Frutas/química , Frutas/genética , Genótipo , Fenóis/análise , Extratos Vegetais/química , Prunus avium/química , Prunus avium/genética , Rutina/análise , Espectrometria de Massas em Tandem , Turquia
7.
J Sci Food Agric ; 102(3): 1216-1224, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34347886

RESUMO

BACKGROUND: Sweet cherry trees (Prunus avium L.) of the cultivar Grace Star were pruned either in dormancy or in summer. The response was studied by analyzing the sugar content in different organs (flower bud, leaf, and fruit) at three sections of the canopy (inner, outer, and upper) using high-performance liquid chromatography. The effect of summer pruning was evaluated by measuring photosynthetic photon flux density (PPFD) and leaf chlorophyll content (SPAD). RESULTS: In this study, the timing of pruning had a significant effect on sugar content in flower buds, leaves, and fruit. Trees pruned in summer had higher glucose, fructose, sorbitol, and sucrose content in flower buds, higher glucose and fructose contents in leaves, and lower fructose, sorbitol, and total sugar content in fruit than in trees pruned at dormancy. Higher average PPFD and lower SPAD values were measured in the inner canopy of trees pruned in summer. All measured parameters were influenced by position in the canopy. The lowest fructose and sorbitol contents in the flower bud, the lowest content of glucose, fructose, sorbitol, total sugars and the highest SPAD values in the leaf, while less dark and lighter fruit were measured in the inner part of the canopy. CONCLUSION: Summer pruning affects sugar distribution in the tree by altering irradiation conditions within the canopy. Our results suggest that summer pruning is an effective technological measure to improve sugar content in the buds. A strong, well nourished flower bud is a good indication of high fruit production next season. © 2021 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Frutas/química , Prunus avium/crescimento & desenvolvimento , Açúcares/análise , Clorofila/análise , Clorofila/metabolismo , Flores/química , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fotossíntese , Folhas de Planta/química , Folhas de Planta/metabolismo , Prunus avium/química , Prunus avium/metabolismo , Estações do Ano , Açúcares/metabolismo
8.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059382

RESUMO

Conductance of CO2 across the mesophyll (Gm) frequently constrains photosynthesis (PN) but cannot be measured directly. We examined Gm of cherry (Prunus avium L.) subjected to severe drought using the variable J method and carbon-isotopic composition (δ13C) of sugars from the centre of the leaf, the leaf petiole sap, and sap from the largest branch. Depending upon the location of the plant from which sugars are sampled, Gm may be estimated over scales ranging from a portion of the leaf to a canopy of leaves. Both the variable J and δ13C of sugars methods showed a reduction in Gm as soil water availability declined. The δ13C of sugars further from the source of their synthesis within the leaf did not correspond as closely to the diffusive and C-isotopic discrimination conditions reflected in the instantaneous measurement of gas exchange and chlorophyll-fluorescence utilised by the variable J approach. Post-photosynthetic fractionation processes and/or the release of sugars from stored carbohydrates (previously fixed under different environmental and C-isotopic discrimination conditions) may reduce the efficacy of the δ13C of sugars from leaf petiole and branch sap in estimating Gm in a short-term study. Consideration should be given to the spatial and temporal scales at which Gm is under observation in any experimental analysis.


Assuntos
Isótopos de Carbono/metabolismo , Secas , Células do Mesofilo/metabolismo , Folhas de Planta/metabolismo , Prunus avium/metabolismo , Açúcares/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Modelos Biológicos , Fotossíntese/fisiologia , Solo , Açúcares/química , Água
9.
J Sci Food Agric ; 100(7): 2911-2921, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034777

RESUMO

BACKGROUND: Cherry fruit cracking is a costly problem for cherry growers. The effect of repeated sprayings (gibberellic acid - GA3 ; abscisic acid - ABA; salicylic acid - SA; glycine betaine - GB, and Ascophyllum nodosum - AN) combined with CaCl2 , on 'Sweetheart' cherry fruit-cracking characteristics was investigated. Cracking was quantified in terms of cracking incidence, crack morphology, confocal scanning laser microscopy, cuticular wax content, cell-wall modification, and cuticular wax gene expression. RESULTS: All spray treatments reduced cracking compared with an untreated control (H2 O), with fewer cheek cracks. The least cracking incidence was observed for ABA + CaCl2 - and GB + CaCl2 -treated fruits, indicating an added benefit compared to spraying with CaCl2 alone. In addition, GB + CaCl2 -treated fruits showed higher fruit diameter. ABA + CaCl2 and GB + CaCl2 sprays showed higher wax content and higher cuticle and epidermal thickness compared with the control, including increased expression of wax synthase (ABA + CaCl2 ) and expansin 1 (GB + CaCl2 ). CONCLUSION: In general, factors that improve the cuticle thickness appear to be important at the fruit-coloring stage. At the fruit-ripening stage, larger cell sizes of the epidermis, hypodermis, and parenchyma cells lower cracking incidence, indicating the importance of flexibility and elasticity of the epidermis. © 2020 Society of Chemical Industry.


Assuntos
Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Prunus avium/efeitos dos fármacos , Cloreto de Cálcio/farmacologia , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/efeitos dos fármacos , Prunus avium/genética , Prunus avium/fisiologia
10.
BMC Genomics ; 20(1): 974, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830909

RESUMO

BACKGROUND: Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. RESULTS: Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. CONCLUSIONS: Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.


Assuntos
Perfilação da Expressão Gênica/métodos , Dormência de Plantas , Proteínas de Plantas/genética , Prunus avium/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Prunus avium/genética
11.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974730

RESUMO

Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (-10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed.


Assuntos
Antioxidantes , Quitosana , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nanopartículas/química , Extratos Vegetais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prunus avium/química , Antioxidantes/química , Antioxidantes/farmacologia , Células CACO-2 , Quitosana/química , Quitosana/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
12.
Molecules ; 24(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013661

RESUMO

The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.


Assuntos
Sistema Enzimático do Citocromo P-450 , Frutas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos , Ácido Oleanólico , Proteínas de Plantas , Prunus avium , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Frutas/genética , Frutas/metabolismo , Ácido Oleanólico/biossíntese , Ácido Oleanólico/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Prunus avium/genética , Prunus avium/metabolismo , Ácido Ursólico
13.
Int J Biometeorol ; 62(2): 217-228, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28965141

RESUMO

Spring frost can be a limiting factor in sweet cherry (Prunus avium L.) production. Rising temperatures in spring force the development of buds, whereby their vulnerability to freezing temperatures continuously increases. With the beginning of blossom, flowers can resist only light frosts without any significant damage. In this study, we investigated the risk of spring frost damages during cherry blossom for historical and future climate conditions at two different sites in NE (Berlin) and SW Germany (Geisenheim). Two phenological models, developed on the basis of phenological observations at the experimental sweet cherry orchard in Berlin-Dahlem and validated for endodormancy release and for warmer climate conditions (already published), were used to calculate the beginning of cherry blossom in Geisenheim, 1951-2015 (external model validation). Afterwards, on the basis of a statistical regionalisation model WETTREG (RCP 8.5), the frequency of frost during cherry blossom was calculated at both sites for historical (1971-2000) and future climate conditions (2011-2100). From these data, we derived the final flower damage, defined as the percentage of frozen flowers due to single or multiple frost events during blossom. The results showed that rising temperatures in this century can premature the beginning of cherry blossom up to 17 days at both sites, independent of the used phenological model. The frequency and strength of frost was characterised by a high temporal and local variability. For both sites, no significant increase in frost frequency and frost damage during blossom was found. In Geisenheim, frost damages significantly decreased from the middle of the twenty-first century. This study additionally emphasises the importance of reliable phenological models which not only work for current but also for changed climate conditions and at different sites. The date of endodormancy release should always be a known parameter in chilling/forcing models.


Assuntos
Mudança Climática , Flores/crescimento & desenvolvimento , Congelamento , Modelos Teóricos , Prunus avium/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Alemanha , Estações do Ano
14.
Molecules ; 23(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772774

RESUMO

Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.


Assuntos
Metabolismo Energético , Flores/crescimento & desenvolvimento , Oxirredução , Dormência de Plantas , Prunus avium/fisiologia , Antioxidantes/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Fenóis/metabolismo
15.
Sensors (Basel) ; 17(2)2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28146114

RESUMO

(1) Background: The aim of the study was to use innovative sensor technology for non-destructive determination and prediction of optimum harvest date (OHD), using sweet cherry as a model fruit, based on different ripening parameters. (2) Methods: Two cherry varieties in two growing systems viz. field and polytunnel in two years were employed. The fruit quality parameters such as fruit weight and size proved unsuitable to detect OHD alone due to their dependence on crop load, climatic conditions, cultural practices, and season. Coloration during cherry ripening was characterized by a complete decline of green chlorophyll and saturation of the red anthocyanins, and was measured with a portable sensor viz. spectrometer 3-4 weeks before expected harvest until 2 weeks after harvest. (3) Results: Expressed as green NDVI (normalized differential vegetation index) and red NAI (normalized anthocyanin index) values, NAI increased from -0.5 (unripe) to +0.7 to +0.8 in mature fruit and remained at this saturation level with overripe fruits, irrespective of variety, treatment, and year. A model was developed to predict the OHD, which coincided with when NDVI reached and exceeded zero and the first derivative of NAI asymptotically approached zero. (4) Conclusion: The use of this sensor technology appears suitable for several cherry varieties and growing systems to predict the optimum harvest date.


Assuntos
Prunus avium , Antocianinas , Cor , Frutas
16.
J Sci Food Agric ; 97(11): 3649-3655, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28106249

RESUMO

BACKGROUND: Trade and consumers alike require premium-quality cherries with high nutritional and health values preferably of local origin. While early fruit imports cannot supply such fruit, a new technology of forcing cherry emerged for an early local supply by covering the crop in spring. In the apparent scarcity of data on the resulting fruit quality, fruit characteristics of forced cherries were compared with those without cover. RESULTS: Size and weight of forced cherry fruit were successfully increased by 6-14%. The less negative osmotic potential of the forced fruit (-3 to -2 MPa Ψπ ) indicates less water stress under spring cover compared with field-grown fruit (-4 MPa Ψπ ), as confirmed by the larger fruit size and weight. Greater antioxidative potentials in the lipophilic and hydrophilic extracts (control min. 185 mE vs max. 365 mE under cover) of forced fruit of two cultivars showed their healthier attribute in terms of bioactive compounds, supported also by an average 14% increase in phenolics, as a response to the modified environmental conditions, which has not been investigated before. CONCLUSION: The new technology of covering cherry trees in spring to force flowering and enhance ripening can improve the synthesis of bioactive compounds and provide the consumer with early high-quality fruit. © 2017 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Frutas/química , Prunus avium/química , Agricultura/instrumentação , Antocianinas/análise , Antioxidantes/análise , Aromatizantes/análise , Frutas/crescimento & desenvolvimento , Valor Nutritivo , Fenóis/análise , Prunus avium/crescimento & desenvolvimento , Controle de Qualidade
17.
Plant Foods Hum Nutr ; 71(2): 158-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26984340

RESUMO

Lipophilic bioactive compounds in oils recovered from the kernels of seven sweet cherry (Prunus avium L.) cultivars, harvested at single location in 2013, were studied. Oil yield in sweet cherry ranged between 30.3-40.3 % (w/w) dw. The main fatty acids were oleic acid (39.62-49.92 %), linoleic acid (31.13-38.81 %), α-eleostearic acid (7.23-10.73 %) and palmitic acid (5.59-7.10 %), all four represented approximately 95 % of the total detected fatty acids. The ranges of total tocochromanols and sterols were between 83.1-111.1 and 233.6-419.4 mg/100 g of oil, respectively. Regardless of the cultivar, the γ-tocopherol and ß-sitosterol were the main lipophilic minor bioactive compounds. The content of the carotenoids and squalene were between 0.38-0.62 and 60.9-127.7 mg/100 g of oil, respectively. Three significant correlations were found between oil yield and total contents of sterols (r = -0.852), tocochromanols (r = -0.880) and carotenoids (r = -0.698) in sweet cherry kernel oils. The oil yield, as well as the content of lipophilic bioactive compounds in oil was significantly affected by the cultivar.


Assuntos
Óleos de Plantas/química , Prunus avium/química , Carotenoides/análise , Ácido Linoleico/análise , Ácidos Linolênicos/análise , Fitosteróis/análise , Sementes/química , Sitosteroides/análise , Esqualeno/análise , Esteróis/análise
18.
Food Sci Technol Int ; 21(6): 416-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24986906

RESUMO

The biochemical processes underlying firmness loss of sweet cherry (Prunus avium L.) fruit are poorly understood. Studies on cell wall metabolism of sweet cherry have been generally undertaken during on-tree development or at harvest maturity, while published reports on postharvest changes are scarce and fragmentary. In this work, cell wall modifications after storage at 0 ℃ were studied in two cherry cultivars ('Celeste' and 'Somerset') displaying different postharvest potential. Firmness was largely determined by the yields of the Na2CO3- and KOH-soluble fractions, enriched in covalently-bound pectins and in matrix glycans, respectively, and correlated well with ascorbic acid contents. The yields of these two cell wall fractions were correlated inversely with pectinmethylesterase and endo-1,4-ß-d-glucanase activities, indicating a relevant role of these two enzymes in postharvest firmness changes in sweet cherry. The amount of solubilised cell wall materials was closely associated to the contents of dehydroascorbic acid, suggesting the possible involvement of oxidative mechanisms in cell wall disassembly. These data may help understanding the evolution of fruit quality during the marketing period, and give hints for the design of suitable management strategies to preserve key attributes.


Assuntos
Parede Celular/metabolismo , Armazenamento de Alimentos/métodos , Prunus/metabolismo , Ácido Ascórbico/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo
19.
Microorganisms ; 12(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39338511

RESUMO

The European sweet cherry Prunus avium (L.), a member of the Rosaceae family, is one of the most popular and economically valuable fruits. However, the rapid spread of gummosis and poor management practices have become the major obstacles to their production. To identify pathogenic microorganisms responsible for gummosis disease, we conducted observations comparing the garden of Bailuyuan, which heavily suffered from gummosis disease and horn beetle damage, with the orchard of Mayuhe, which only suffered from gummosis disease, both from Xi'an, Shaanxi, China. Samples were obtained from the healthy tissues and gummosis disease tissues that used the Illumina sequence of 16S rRNA and the internal transcribed spacer region (ITS) to identify bacterial and fungal communities in these samples. An alpha diversity analysis revealed a significantly higher fungal diversity of disease than in healthy tissue in the gummosis period. The results suggested that an imbalance in the fungal genera may be associated with gummosis disease. Species relative analyses showed some bacterial genera (Pelagibacterium, Halomonas, Azospirillum, Aquabacterium and Alistipes) and fungal genera (Penicillium, Alternaria and Rhodotorula) in the diseased tissues of gummosis. Among these, the increased relative abundance of the bacteria genes Halomonas, Pelagibacterium, Chelativorans, Pantoea, Aquabacterium, Alternaria and fungi genes Penicillium, Cystobasidium, Rhodotorula may be associated with gummosis of P. avium. The bacterial genera Methylobacterium, Psychroglaciecola, Aeromonas, Conexibacter and fungal genera Didymella, Aureobasidium, Mycosphaerella, Meyerozyma are probably antagonists of the pathogen of gummosis. These findings are an initial step in the identification of potential candidates for the biological control of the disease.

20.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999578

RESUMO

Disease severity and drought due to climate change present significant challenges to orchard productivity. This study examines the effects of spring inoculation with Pseudomonas syringae pv. syringae (Pss) on sweet cherry plants, cvs. Bing and Santina with varying defense responses, assessing plant growth, physiological variables (water potential, gas exchange, and plant hydraulic conductance), and the levels of abscisic acid (ABA) and salicylic acid (SA) under two summer irrigation levels. Pss inoculation elicited a more pronounced response in 'Santina' compared to 'Bing' at 14 days post-inoculation (dpi), and those plants inoculated with Pss exhibited a slower leaf growth and reduced transpiration compared to control plants during 60 dpi. During differential irrigations, leaf area was reduced 14% and 44% in Pss inoculated plants of 'Bing' and 'Santina' respectively, under well-watered (WW) conditions, without changes in plant water status or gas exchange. Conversely, water-deficit (WD) conditions led to gas exchange limitations and a 43% decrease in plant biomass compared to that under WW conditions, with no differences between inoculation treatments. ABA levels were lower under WW than under WD at 90 dpi, while SA levels were significantly higher in Pss-inoculated plants under WW conditions. These findings underscore the influence on plant growth during summer in sweet cherry cultivars that showed a differential response to Pss inoculations and how the relationship between ABA and SA changes in plant drought level responses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa