Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ginseng Res ; 44(3): 373-385, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372859

RESUMO

Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.

2.
J Ginseng Res ; 43(2): 291-299, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976167

RESUMO

BACKGROUND: Ginsenosides of Korean Red Ginseng extracts (RGE) and its saponin components suppress secretion of inflammasome-mediating cytokines, whereas the nonsaponin fraction (NS) of RGE oppositely stimulates cytokine secretion. Although direct exposure of NS to macrophages in mice induces cytokine production, oral administration of NS has not been studied in inflammasome-related disease in animal models. METHODS: Mice were fed RGE or NS for 7 days and then developed peritonitis. Peritoneal cytokines were measured, and peritoneal exudate cells (PECs) were collected to assay expression levels of a set of toll-like receptors (TLRs) and cytokines in response to NS ingestion. In addition, the role of intestinal bacteria in NS-fed mice was assessed. The effect of preexposure to NS in bone marrow-derived macrophages (BMDMs) on cytokine production was further confirmed. RESULTS: NS ingestion attenuated secretion of peritoneal cytokines resulting from peritonitis. In addition, the isolated PECs from NS-fed mice presented lower TLR transcription levels than PECs from control diet-fed mice. BMDMs treated with NS showed downregulation of TLR4 mRNA and protein expression, which was mediated by the TLR4-MyD88-NFκB signal pathway. BMDMs pretreated with NS produced less cytokines in response to TLR4 ligands. CONCLUSION: NS administration directly inhibits TLR4 expression in inflammatory cells such as macrophages, thereby reducing secretion of cytokines during peritonitis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa