Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Cell ; 84(19): 3610-3626, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39366350

RESUMO

Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.


Assuntos
Dano ao DNA , Reparo do DNA , Epigênese Genética , RNA , Humanos , Animais , RNA/metabolismo , RNA/genética , Transcriptoma , Processamento Pós-Transcricional do RNA , Instabilidade Genômica , Edição de RNA , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/genética
2.
Cell ; 167(4): 1001-1013.e7, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881299

RESUMO

RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.


Assuntos
Instabilidade Genômica , Reparo de DNA por Recombinação , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , DNA/metabolismo , Dano ao DNA , Expressão Gênica , RNA/metabolismo , RNA Polimerase II/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Schizosaccharomyces/enzimologia
3.
Genes Dev ; 34(13-14): 863-864, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611612

RESUMO

R loops arise from hybridization of RNA transcripts with template DNA during transcription. Unrepaired R loops lead to transcription-replication collisions, causing DNA damage and genomic instability. In this issue of Genes & Development, Pérez-Calero and colleagues (pp. 898-912) identify UAP56 as a cotranscriptional RNA-DNA helicase that unwinds R loops. They found that UAP56 helicase activity is required to remove R loops formed from different sources and prevent R-loop accumulation genome-wide at actively transcribed genes.


Assuntos
Genoma/genética , Estruturas R-Loop/genética , Transcrição Gênica/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica/genética , Humanos , Células K562
4.
Genes Dev ; 34(13-14): 898-912, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439635

RESUMO

Nonscheduled R loops represent a major source of DNA damage and replication stress. Cells have different ways to prevent R-loop accumulation. One mechanism relies on the conserved THO complex in association with cotranscriptional RNA processing factors including the RNA-dependent ATPase UAP56/DDX39B and histone modifiers such as the SIN3 deacetylase in humans. We investigated the function of UAP56/DDX39B in R-loop removal. We show that UAP56 depletion causes R-loop accumulation, R-loop-mediated genome instability, and replication fork stalling. We demonstrate an RNA-DNA helicase activity in UAP56 and show that its overexpression suppresses R loops and genome instability induced by depleting five different unrelated factors. UAP56/DDX39B localizes to active chromatin and prevents the accumulation of RNA-DNA hybrids over the entire genome. We propose that, in addition to its RNA processing role, UAP56/DDX39B is a key helicase required to eliminate harmful cotranscriptional RNA structures that otherwise would block transcription and replication.


Assuntos
RNA Helicases DEAD-box/metabolismo , Genoma/genética , Estruturas R-Loop/genética , Transcrição Gênica/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , Expressão Gênica/genética , Instabilidade Genômica/genética , Humanos , Células K562
5.
EMBO J ; 42(1): e111703, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36326837

RESUMO

EXD2 is a recently identified exonuclease that cleaves RNA and DNA in double-stranded (ds) forms. It thus serves as a model system for investigating the similarities and discrepancies between exoribonuclease and exodeoxyribonuclease activities and for understanding the nucleic acid (NA) unwinding-degradation coordination of an exonuclease. Here, using a single-molecule fluorescence resonance energy transfer (smFRET) approach, we show that despite stable binding to both substrates, EXD2 barely cleaves dsDNA and yet displays both exoribonuclease and exodeoxyribonuclease activities toward RNA-DNA hybrids with a cleavage preference for RNA. Unexpectedly, EXD2-mediated hybrid cleavage proceeds in a discrete stepwise pattern, wherein a sudden 4-bp duplex unwinding increment and the subsequent dwell constitute a complete hydrolysis cycle. The relatively weak exodeoxyribonuclease activity of EXD2 partially originates from frequent hybrid rewinding. Importantly, kinetic analysis and comparison of the dwell times under varied conditions reveal two rate-limiting steps of hybrid unwinding and nucleotide excision. Overall, our findings help better understand the cellular functions of EXD2, and the cyclic coupling between duplex unwinding and exonucleolytic degradation may be generalizable to other exonucleases.


Assuntos
Exorribonucleases , RNA , RNA/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Cinética , DNA/metabolismo , Exodesoxirribonucleases/metabolismo
6.
Annu Rev Microbiol ; 76: 461-480, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35655343

RESUMO

During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.


Assuntos
Proteínas de Bactérias , Ribonucleases , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA , Replicação do DNA , RNA/genética , Ribonucleases/genética , Ribonucleases/metabolismo
7.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30639241

RESUMO

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Assuntos
Dano ao DNA , Replicação do DNA , Instabilidade Genômica , Neoplasias/genética , Clivagem do RNA , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Poliadenilação , Precursores de RNA/biossíntese , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Proteínas de Ligação a RNA
8.
Genes Dev ; 33(7-8): 436-451, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804228

RESUMO

Caenorhabditis elegans has two histone H3 Lys9 methyltransferases, MET-2 (SETDB1 homolog) and SET-25 (G9a/SUV39H1 related). In worms, we found simple repeat sequences primarily marked by H3K9me2, while transposable elements and silent tissue-specific genes bear H3K9me3. RNA sequencing (RNA-seq) in histone methyltransferase (HMT) mutants shows that MET-2-mediated H3K9me2 is necessary for satellite repeat repression, while SET-25 silences a subset of transposable elements and tissue-specific genes through H3K9me3. A genome-wide synthetic lethality screen showed that RNA processing, nuclear RNA degradation, the BRCA1/BARD1 complex, and factors mediating replication stress survival are necessary for germline viability in worms lacking MET-2 but not SET-25. Unlike set-25 mutants, met-2-null worms accumulated satellite repeat transcripts, which form RNA:DNA hybrids on repetitive sequences, additively with the loss of BRCA1 or BARD1. BRCA1/BARD1-mediated H2A ubiquitination and MET-2 deposited H3K9me2 on satellite repeats are partially interdependent, suggesting both that the loss of silencing generates BRCA-recruiting DNA damage and that BRCA1 recruitment by damage helps silence repeats. The artificial induction of MSAT1 transcripts can itself trigger damage-induced germline lethality in a wild-type background, arguing that the synthetic sterility upon BRCA1/BARD1 and H3K9me2 loss is directly linked to the DNA damage provoked by unscheduled satellite repeat transcription.


Assuntos
Proteína BRCA1/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Animais , Proteína BRCA1/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos de DNA Transponíveis/genética , Embrião não Mamífero , Fertilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Repetições de Microssatélites/genética , Mutação , Processamento Pós-Transcricional do RNA/genética , Temperatura
9.
Mol Cell ; 66(5): 597-609.e5, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575656

RESUMO

R loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite. Notably, they are similar size regardless of whether or not they induce genome instability. Contrary to mutants causing R loop-mediated instability, these histone mutants do not accumulate H3 serine-10 phosphate (H3S10-P). We propose a two-step mechanism in which, first, an altered chromatin facilitates R loops, and second, chromatin is modified, including H3S10-P, as a requisite for compromising genome integrity. Consistently, these histone mutations suppress the high H3S10 phosphorylation and genomic instability of hpr1 and sen1 mutants. Therefore, contrary to what was previously believed, R loops do not cause genome instability by themselves.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , DNA Fúngico/genética , Genoma Fúngico , Instabilidade Genômica , Histonas/genética , Mutação Puntual , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Cromatina/química , Cromatina/metabolismo , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
10.
J Theor Biol ; 595: 111962, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384064

RESUMO

R-loops are structures containing an RNA-DNA duplex and an unpaired DNA strand. During R-loop formation an RNA strand invades the DNA duplex, displacing the homologous DNA strand and binding the complementary DNA strand. Here we analyze a model for transcription-dependent R-loop formation at double-stranded DNA breaks (DSBs). In this model, R-loop formation is preceded by detachment of the non-template DNA strand from the RNA polymerase (RNAP). Then, strand exchange is initiated between the nascent RNA and the non-template DNA strand. During that strand exchange the length of the R-loop could either increase, or decrease in a biased random-walk fashion, in which the bias would depend upon the DNA sequence. Eventually, the restoration of the DNA duplex would completely displace the RNA. However, as long as the RNAP remains bound to the template DNA strand it prevents that displacement. Thus, according to the model, RNAPs stalled at DSBs can increase the lifespan of R-loops, increasing their detectability in experiments, and perhaps enhancing their biological effects.

11.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108225

RESUMO

R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.


Assuntos
Neoplasias , Estruturas R-Loop , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Proteína BRCA2/genética , RNA/metabolismo , RNA Mensageiro , Neoplasias/tratamento farmacológico , Neoplasias/genética , Instabilidade Genômica
12.
EMBO J ; 37(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959219

RESUMO

Long INterspersed Element class 1 (LINE-1) elements are a type of abundant retrotransposons active in mammalian genomes. An average human genome contains ~100 retrotransposition-competent LINE-1s, whose activity is influenced by the combined action of cellular repressors and activators. TREX1, SAMHD1 and ADAR1 are known LINE-1 repressors and when mutated cause the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). Mutations in RNase H2 are the most common cause of AGS, and its activity was proposed to similarly control LINE-1 retrotransposition. It has therefore been suggested that increased LINE-1 activity may be the cause of aberrant innate immune activation in AGS Here, we establish that, contrary to expectations, RNase H2 is required for efficient LINE-1 retrotransposition. As RNase H1 overexpression partially rescues the defect in RNase H2 null cells, we propose a model in which RNase H2 degrades the LINE-1 RNA after reverse transcription, allowing retrotransposition to be completed. This also explains how LINE-1 elements can retrotranspose efficiently without their own RNase H activity. Our findings appear to be at odds with LINE-1-derived nucleic acids driving autoinflammation in AGS.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Malformações do Sistema Nervoso/genética , Ribonuclease H/genética , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Células HCT116 , Células HeLa , Humanos , Transcrição Reversa/genética , Ribonuclease H/biossíntese
13.
J Cell Sci ; 133(20)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32989039

RESUMO

TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-43 nucleic-acid-binding and self-assembly activities are important in inhibiting R-loop accumulation and preserving normal DNA replication. We also found that TDP-43 cytoplasmic aggregation impairs TDP-43 function in R-loop regulation. Furthermore, increased R-loop accumulation and DNA damage is observed in neurons upon loss of TDP-43. Together, our findings indicate that TDP-43 function and normal protein homeostasis are crucial in maintaining genomic stability through a co-transcriptional process that prevents aberrant R-loop accumulation. We propose that the increased R-loop formation and genomic instability associated with TDP-43 loss are linked to the pathogenesis of TDP-43 proteinopathies.This article has an associated First Person interview with the first author of the paper.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Estruturas R-Loop
14.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445553

RESUMO

Since their discovery, R-loops have been associated with both physiological and pathological functions that are conserved across species. R-loops are a source of replication stress and genome instability, as seen in neurodegenerative disorders and cancer. In response, cells have evolved pathways to prevent R-loop accumulation as well as to resolve them. A growing body of evidence correlates R-loop accumulation with changes in the epigenetic landscape. However, the role of chromatin modification and remodeling in R-loops homeostasis remains unclear. This review covers various mechanisms precluding R-loop accumulation and highlights the role of chromatin modifiers and remodelers in facilitating timely R-loop resolution. We also discuss the enigmatic role of RNA:DNA hybrids in facilitating DNA repair, epigenetic landscape and the potential role of replication fork preservation pathways, active fork stability and stalled fork protection pathways, in avoiding replication-transcription conflicts. Finally, we discuss the potential role of several Chro-Mates (chromatin modifiers and remodelers) in the likely differentiation between persistent/detrimental R-loops and transient/benign R-loops that assist in various physiological processes relevant for therapeutic interventions.


Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Estruturas R-Loop , Humanos
15.
Yi Chuan ; 43(9): 835-848, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34702697

RESUMO

The expansion and deletion instabilities shown by some trinucleotide repeated DNA sequences are associated with more than 50 neurodegenerative diseases in humans. The increase or decrease of the trinucleotide repeat units underlying the diseases are not yet clearly explained using any mechanism, but has been found to affect the expression of specific genes, or produces cytotoxic RNA and protein, which has now become a common pathological mechanism of the diseases. The ongoing studies have shown that the changes in the copy numbers of the disease-related trinucleotide repeats may result from abnormal DNA replication, repair, recombination, and gene transcription. Human genetical studies also suggest that abnormal DNA replication, repair, recombination, or gene transcription that occurred in the disease-related trinucleotide repeat DNA sites may play a key role in the trinucleotide repeat DNA instabilities. Based on the research experiences of our research group, this paper reviews the recent research progress on the mechanisms of the disease-associated trinucleotide repeat DNA instabilities including their base mutation instabilities, the amplification and deletion instabilities of the repeat units, to better understand the molecular mechanism of the disease-associated trinucleotide repeats instabilities.


Assuntos
Doenças Neurodegenerativas , DNA , Reparo do DNA , Humanos , Doenças Neurodegenerativas/genética , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/genética
16.
Int J Mol Sci ; 21(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131532

RESUMO

In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.


Assuntos
DNA/química , Instabilidade Genômica , Ácidos Nucleicos Heteroduplexes/química , Ribonucleotídeos/química , Animais , DNA/genética , Replicação do DNA , Humanos , Ácidos Nucleicos Heteroduplexes/genética , Estruturas R-Loop , Ribonucleotídeos/genética
17.
Trends Genet ; 32(12): 828-838, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793359

RESUMO

RNA molecules, such as long noncoding RNAs (lncRNAs), have critical roles in regulating gene expression, chromosome architecture, and the modification states of chromatin. Recent developments suggest that RNA also influences gene expression and chromatin patterns through the interaction of nascent transcripts with their DNA template via the formation of co-transcriptional R-loop structures. R-loop formation over specific, conserved, hotspots occurs at thousands of genes in mammalian genomes and represents an important and dynamic feature of mammalian chromatin. Here, focusing primarily on mammalian systems, I describe the accumulating connections and possible mechanisms linking R-loop formation and chromatin patterning. The possible contribution of aberrant R-loops to pathological conditions is also discussed.


Assuntos
Cromatina/genética , Regulação da Expressão Gênica/genética , RNA Longo não Codificante/genética , Animais , Montagem e Desmontagem da Cromatina/genética , Mamíferos
18.
EMBO J ; 33(24): 2937-46, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25425575

RESUMO

Intracellular recognition of non-self and also self-nucleic acids can result in the initiation of potent pro-inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2'-5'), which then binds to the endoplasmic reticulum resident protein STING. This initiates a signaling cascade that triggers the induction of an antiviral immune response. While most studies on intracellular nucleic acids have focused on dsRNA or dsDNA, it has remained unexplored whether cytosolic RNA:DNA hybrids are also sensed by the innate immune system. Studying synthetic RNA:DNA hybrids, we indeed observed a strong type I interferon response upon cytosolic delivery of this class of molecule. Studies in THP-1 knockout cells revealed that the recognition of RNA:DNA hybrids is completely attributable to the cGAS-STING pathway. Moreover, in vitro studies showed that recombinant cGAS produced cGAMP upon RNA:DNA hybrid recognition. Altogether, our results introduce RNA:DNA hybrids as a novel class of intracellular PAMP molecules and describe an alternative cGAS ligand next to dsDNA.


Assuntos
DNA/genética , Proteínas de Membrana/metabolismo , Hibridização de Ácido Nucleico , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , RNA/genética , Vírus/imunologia , Mordeduras e Picadas , Linhagem Celular , DNA/metabolismo , Humanos , Interferon Tipo I/metabolismo , Monócitos/imunologia , Ligação Proteica , RNA/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(18): 5779-84, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902524

RESUMO

DNA replication initiates at defined replication origins along eukaryotic chromosomes, ensuring complete genome duplication within a single S-phase. A key feature of replication origins is their ability to control the onset of DNA synthesis mediated by DNA polymerase-α and its intrinsic RNA primase activity. Here, we describe a novel origin-independent replication process that is mediated by transcription. RNA polymerase I transcription constraints lead to persistent RNA:DNA hybrids (R-loops) that prime replication in the ribosomal DNA locus. Our results suggest that eukaryotic genomes have developed tools to prevent R-loop-mediated replication events that potentially contribute to copy number variation, particularly relevant to carcinogenesis.


Assuntos
Replicação do DNA , DNA Ribossômico/química , DNA/química , Instabilidade Genômica , RNA/química , Ribonuclease H/química , Proteínas de Bactérias , Camptotecina/química , Carcinogênese/metabolismo , Ciclo Celular , Separação Celular , Cromossomos/química , Variações do Número de Cópias de DNA , Eletroforese em Gel Bidimensional , Citometria de Fluxo , Dosagem de Genes , Humanos , Hidroxiureia/química , Proteínas Luminescentes , Metanossulfonato de Metila/química , Mutação , Origem de Replicação , Saccharomyces cerevisiae/metabolismo
20.
Adv Exp Med Biol ; 1042: 455-487, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29357070

RESUMO

DNA topological transitions occur when replication forks encounter other DNA transactions such as transcription. Failure in resolving such conflicts leads to generation of aberrant replication and transcription intermediates that might have adverse effects on genome stability. Cells have evolved numerous surveillance mechanisms to avoid, tolerate, and resolve such replication-transcription conflicts. Defects or non-coordination in such cellular mechanisms might have catastrophic effect on cell viability. In this chapter, we review consequences of replication encounters with transcription and its associated events, topological challenges, and how these inevitable conflicts alter the genome structure and functions.


Assuntos
Replicação do DNA/fisiologia , Transcrição Gênica/fisiologia , Animais , DNA/química , DNA/genética , DNA/metabolismo , DNA Topoisomerases/fisiologia , Instabilidade Genômica/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa