Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FASEB J ; 36(11): e22584, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36190314

RESUMO

ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow. However, the significance of other potential phosphorylation sites of ARHGAP25 remained unknown. Now, we developed a novel, real-time bioluminescence resonance energy transfer (BRET) assay to monitor the GAP activity of ARHGAP25 in vitro. Using this approach, we revealed that phosphorylation of S363 and S488, but not that of S379-380, controls ARHGAP25's RACGAP activity. On the other hand, we found in granulocyte-differentiated human PLB-985 cells that superoxide production and actin depolymerization are regulated by residues S363 and S379-380. The present data demonstrate the value of our BRET-GAP assay and show that different phosphorylation patterns regulate ARHGAP25's GAP activity and its effect on superoxide production and phagocytosis.


Assuntos
Proteínas Ativadoras de GTPase , Superóxidos , Animais , Transferência de Energia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosforilação , Serina/metabolismo , Superóxidos/metabolismo
2.
J Biol Chem ; 295(40): 13698-13710, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32817335

RESUMO

A large number of aggressive cancer cell lines display elevated levels of activated Rac1, a small GTPase widely implicated in cytoskeleton reorganization, cell motility, and metastatic dissemination. A commonly accepted methodological approach for detecting Rac1 activation in cancer cells involves the use of a conformation-sensitive antibody that detects the active (GTP-bound) Rac1 without interacting with the GDP-bound inactive form. This antibody has been extensively used in fixed cell immunofluorescence and immunohistochemistry. Taking advantage of prostate and pancreatic cancer cell models known to have high basal Rac1-GTP levels, here we have established that this antibody does not recognize Rac1 but rather detects the intermediate filament protein vimentin. Indeed, Rac1-null PC3 prostate cancer cells or cancer models with low levels of Rac1 activation still show a high signal with the anti-Rac1-GTP antibody, which is lost upon silencing of vimentin expression. Moreover, this antibody was unable to detect activated Rac1 in membrane ruffles induced by epidermal growth factor stimulation. These results have profound implications for the study of this key GTPase in cancer, particularly because a large number of cancer cell lines with characteristic mesenchymal features show simultaneous up-regulation of vimentin and high basal Rac1-GTP levels when measured biochemically. This misleading correlation can lead to assumptions about the validity of this antibody and inaccurate conclusions that may affect the development of appropriate therapeutic approaches for targeting the Rac1 pathway.


Assuntos
Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Membrana Celular/genética , Membrana Celular/patologia , Humanos , Masculino , Microscopia de Fluorescência , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas rac1 de Ligação ao GTP/genética
3.
J Biol Chem ; 295(5): 1300-1314, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31871052

RESUMO

ß1-chimaerin belongs to the chimaerin family of GTPase-activating proteins (GAPs) and is encoded by the CHN2 gene, which also encodes the ß2- and ß3-chimaerin isoforms. All chimaerin isoforms have a C1 domain that binds diacylglycerol as well as tumor-promoting phorbol esters and a catalytic GAP domain that inactivates the small GTPase Rac. Nuclear Rac has emerged as a key regulator of various cell functions, including cell division, and has a pathological role by promoting tumorigenesis and metastasis. However, how nuclear Rac is regulated has not been fully addressed. Here, using several approaches, including siRNA-mediated gene silencing, confocal microscopy, and subcellular fractionation, we identified a nuclear variant of ß1-chimaerin, ß1-Δ7p-chimaerin, that participates in the regulation of nuclear Rac1. We show that ß1-Δ7p-chimaerin is a truncated variant generated by alternative splicing at a cryptic splice site in exon 7. We found that, unlike other chimaerin isoforms, ß1-Δ7p-chimaerin lacks a functional C1 domain and is not regulated by diacylglycerol. We found that ß1-Δ7p-chimaerin localizes to the nucleus via a nuclear localization signal in its N terminus. We also identified a key nuclear export signal in ß1-chimaerin that is absent in ß1-Δ7p-chimaerin, causing nuclear retention of this truncated variant. Functionally analyses revealed that ß1-Δ7p-chimaerin inactivates nuclear Rac and negatively regulates the cell cycle. Our results provide important insights into the diversity of chimaerin Rac-GAP regulation and function and highlight a potential mechanism of nuclear Rac inactivation that may play significant roles in pathologies such as cancer.


Assuntos
Núcleo Celular/metabolismo , Proteínas Quimerinas/genética , Proteínas Quimerinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Processamento Alternativo , Motivos de Aminoácidos/genética , Animais , Células COS , Ciclo Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Diglicerídeos/metabolismo , Éxons/genética , Inativação Gênica , Humanos , Domínios Proteicos/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno , Deleção de Sequência , Proteínas rac1 de Ligação ao GTP/genética
4.
J Biol Chem ; 295(17): 5717-5736, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32184360

RESUMO

Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+] i ), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+] i Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Fosfolipase C gama/genética , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosfolipase C gama/metabolismo , Mutação Puntual/efeitos dos fármacos
5.
J Biol Chem ; 294(25): 9937-9948, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31088913

RESUMO

Small GTPases alternatively bind GDP/GTP guanine nucleotides to gate signaling pathways that direct most cellular processes. Numerous GTPases are implicated in oncogenesis, particularly the three RAS isoforms HRAS, KRAS, and NRAS and the RHO family GTPase RAC1. Signaling networks comprising small GTPases are highly connected, and there is some evidence of direct biochemical cross-talk between their functional G-domains. The activation potential of a given GTPase is contingent on a codependent interaction with the nucleotide and a Mg2+ ion, which bind to individual variants with distinct affinities coordinated by residues in the GTPase nucleotide-binding pocket. Here, we utilized a selective-labeling strategy coupled with real-time NMR spectroscopy to monitor nucleotide exchange, GTP hydrolysis, and effector interactions of multiple small GTPases in a single complex system. We provide insight into nucleotide preference and the role of Mg2+ in activating both WT and oncogenic mutant enzymes. Multiplexing revealed guanine nucleotide exchange factor (GEF), GTPase-activating protein (GAP), and effector-binding specificities in mixtures of GTPases and resolved that the three related RAS isoforms are biochemically equivalent. This work establishes that direct quantitation of the nucleotide-bound conformation is required to accurately determine an activation potential for any given GTPase, as small GTPases such as RAS-like proto-oncogene A (RALA) or the G12C mutant of KRAS display fast exchange kinetics but have a high affinity for GDP. Furthermore, we propose that the G-domains of small GTPases behave autonomously in solution and that nucleotide cycling proceeds independently of protein concentration but is highly impacted by Mg2+ abundance.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Proto-Oncogene Mas , Transdução de Sinais , Proteínas ras/química , Proteínas rho de Ligação ao GTP/química
6.
J Biol Chem ; 294(7): 2232-2246, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530493

RESUMO

Regulatory subunits of protein kinase A (PKA) inhibit its kinase subunits. Intriguingly, their potential as cAMP-dependent signal transducers remains uncharacterized. We recently reported that type I PKA regulatory subunits (RIα) interact with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a chemotactic Rac guanine exchange factor (RacGEF). Because P-REX1 is known to be phosphorylated and inhibited by PKA, its interaction with RIα suggests that PKA regulatory and catalytic subunits may fine-tune P-REX1 activity or those of its target pools. Here, we tested whether RIα acts as a cAMP-dependent factor promoting P-REX1-mediated Rac activation and cell migration. We observed that Gs-coupled EP2 receptors indeed promote endothelial cell migration via RIα-activated P-REX1. Expression of the P-REX1-PDZ1 domain prevented RIα/P-REX1 interaction, P-REX1 activation, and EP2-dependent cell migration, and P-REX1 silencing abrogated RIα-dependent Rac activation. RIα-specific cAMP analogs activated P-REX1, but lost this activity in RIα-knockdown cells, and cAMP pulldown assays revealed that P-REX1 preferentially interacts with free RIα. Moreover, purified RIα directly activated P-REX1 in vitro We also found that the RIα CNB-B domain is critical for the interaction with P-REX1, which was increased in RIα mutants, such as the acrodysostosis-associated mutant, that activate P-REX1 at basal cAMP levels. RIα and Cα PKA subunits targeted distinct P-REX1 molecules, indicated by an absence of phosphorylation in the active fraction of P-REX1. This was in contrast to the inactive fraction in which phosphorylated P-REX1 was present, suggesting co-existence of dual stimulatory and inhibitory effects. We conclude that PKA's regulatory subunits are cAMP-dependent signal transducers.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistemas do Segundo Mensageiro , Proteínas Quinases Ativadas por AMP/genética , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/genética , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Células MCF-7 , Domínios PDZ , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo
7.
J Biol Chem ; 293(10): 3685-3699, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358323

RESUMO

IQ motif-containing GTPase-activating proteins (IQGAPs) are scaffolding proteins playing central roles in cell-cell adhesion, polarity, and motility. The Rho GTPases Cdc42 and Rac1, in their GTP-bound active forms, interact with all three human IQGAPs. The IQGAP-Cdc42 interaction promotes metastasis by enhancing actin polymerization. However, despite their high sequence identity, Cdc42 and Rac1 differ in their interactions with IQGAP. Two Cdc42 molecules can bind to the Ex-domain and the RasGAP site of the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP and promote IQGAP dimerization. Only one Rac1 molecule might bind to the RasGAP site of GRD and may not facilitate the dimerization, and the exact mechanism of Cdc42 and Rac1 binding to IQGAP is unclear. Using all-atom molecular dynamics simulations, site-directed mutagenesis, and Western blotting, we unraveled the detailed mechanisms of Cdc42 and Rac1 interactions with IQGAP2. We observed that Cdc42 binding to the Ex-domain of GRD of IQGAP2 (GRD2) releases the Ex-domain at the C-terminal region of GRD2, facilitating IQGAP2 dimerization. Cdc42 binding to the Ex-domain promoted allosteric changes in the RasGAP site, providing a binding site for the second Cdc42 in the RasGAP site. Of note, the Cdc42 "insert loop" was important for the interaction of the first Cdc42 with the Ex-domain. By contrast, differences in Rac1 insert-loop sequence and structure precluded its interaction with the Ex-domain. Rac1 could bind only to the RasGAP site of apo-GRD2 and could not facilitate IQGAP2 dimerization. Our detailed mechanistic insights help decipher how Cdc42 can stimulate actin polymerization in metastasis.


Assuntos
Modelos Moleculares , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Regulação Alostérica , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/genética
8.
J Biol Chem ; 293(24): 9358-9369, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29700112

RESUMO

Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFß-induced myofibroblast differentiation of MSC, we generated a novel MSC line and its descendants lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFß-induced expression of α-smooth muscle actin (αSMA) but not of collagen I α1 (col1a1). Whereas loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFß-induced αSMA expression, neither Arp2/3-dependent actin polymerization nor cofilin-dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction, and TGFß-induced actin polymerization correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFß signaling and have implications for our understanding of MSC function in fibrosis.


Assuntos
Actinas/genética , Colágeno Tipo I/genética , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Neuropeptídeos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteína rhoA de Ligação ao GTP
9.
J Biol Chem ; 292(47): 19179-19197, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972170

RESUMO

Cell adhesion to the extracellular matrix or to surrounding cells plays a key role in cell proliferation and differentiation and is critical for proper tissue homeostasis. An important pathway in adhesion-dependent cell proliferation is the Hippo signaling cascade, which is coregulated by the transcription factors Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ). However, how cells integrate extracellular information at the molecular level to regulate YAP1's nuclear localization is still puzzling. Herein, we investigated the role of ß1 integrins in regulating this process. We found that ß1 integrin-dependent cell adhesion is critical for supporting cell proliferation in mesenchymal cells both in vivo and in vitro ß1 integrin-dependent cell adhesion relied on the relocation of YAP1 to the nucleus after the down-regulation of its phosphorylated state mediated by large tumor suppressor gene 1 and 2 (LATS1/2). We also found that this phenotype relies on ß1 integrin-dependent local activation of the small GTPase RAC1 at the plasma membrane to control the activity of P21 (RAC1)-activated kinase (PAK) of group 1. We further report that the regulatory protein merlin (neurofibromin 2, NF2) interacts with both YAP1 and LATS1/2 via its C-terminal moiety and FERM domain, respectively. PAK1-mediated merlin phosphorylation on Ser-518 reduced merlin's interactions with both LATS1/2 and YAP1, resulting in YAP1 dephosphorylation and nuclear shuttling. Our results highlight RAC/PAK1 as major players in YAP1 regulation triggered by cell adhesion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Genes da Neurofibromatose 2/fisiologia , Integrina beta1/fisiologia , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Adesão Celular , Proteínas de Ciclo Celular , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Neurofibromina 2/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP , Quinases Ativadas por p21/genética , Proteínas rac1 de Ligação ao GTP/genética
10.
J Biol Chem ; 292(4): 1240-1250, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27941025

RESUMO

Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1flox/flox). GFAP-Cre;Rac1flox/flox (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G1 to S phase transition 1) expression and reduced responses of IL-1ß and GSPT1 to LPS treatment, indicating that IL-1ß and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury.


Assuntos
Astrócitos/metabolismo , Gliose/metabolismo , Neuropeptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Astrócitos/patologia , Gliose/genética , Gliose/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Fatores de Terminação de Peptídeos/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Proteínas rac1 de Ligação ao GTP/genética
11.
J Biol Chem ; 292(18): 7542-7553, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28320863

RESUMO

The aim of the study was to characterize the role of Rac1 GTPase for the mineralocorticoid receptor (MR)-mediated pro-fibrotic remodeling. Transgenic mice with cardiac overexpression of constitutively active Rac1 (RacET) develop an age-dependent phenotype with atrial dilatation, fibrosis, and atrial fibrillation. Expression of MR was similar in RacET and WT mice. The expression of 11ß hydroxysteroid dehydrogenase type 2 (11ß-HSD2) was age-dependently up-regulated in the atria and the left ventricles of RacET mice on mRNA and protein levels. Statin treatment inhibiting Rac1 geranylgeranylation reduced 11ß-HSD2 up-regulation. Samples of human left atrial myocardium showed a positive correlation between Rac1 activity and 11ß-HSD2 expression (r = 0.7169). Immunoprecipitation showed enhanced Rac1-bound 11ß-HSD2 relative to Rac1 expression in RacET mice that was diminished with statin treatment. Both basal and phorbol 12-myristate 13-acetate (PMA)-induced NADPH oxidase activity were increased in RacET and correlated positively with 11ß-HSD2 expression (r = 0.788 and r = 0.843, respectively). In cultured H9c2 cardiomyocytes, Rac1 activation with l-buthionine sulfoximine increased; Rac1 inhibition with NSC23766 decreased 11ß-HSD2 mRNA and protein expression. Connective tissue growth factor (CTGF) up-regulation induced by aldosterone was prevented with NSC23766. Cardiomyocyte transfection with 11ß-HSD2 siRNA abolished the aldosterone-induced CTGF up-regulation. Aldosterone-stimulated MR nuclear translocation was blocked by the 11ß-HSD2 inhibitor carbenoxolone. In cardiac fibroblasts, nuclear MR translocation induced by aldosterone was inhibited with NSC23766 and spironolactone. NSC23766 prevented the aldosterone-induced proliferation and migration of cardiac fibroblasts and the up-regulation of CTGF and fibronectin. In conclusion, Rac1 GTPase regulates 11ß-HSD2 expression, MR activation, and MR-mediated pro-fibrotic signaling.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/biossíntese , Fibrose Endomiocárdica/enzimologia , Fibroblastos/enzimologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Neuropeptídeos/biossíntese , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/biossíntese , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Aldosterona/farmacologia , Animais , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fator de Crescimento do Tecido Conjuntivo/genética , Fibrose Endomiocárdica/patologia , Fibroblastos/patologia , Fibronectinas/biossíntese , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metionina/análogos & derivados , Metionina/farmacologia , Camundongos , Camundongos Mutantes , Miocárdio/patologia , Miócitos Cardíacos/patologia , Neuropeptídeos/genética , Ratos , Ratos Sprague-Dawley , Sulfóxidos/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Proteínas rac1 de Ligação ao GTP/genética
12.
J Biol Chem ; 291(31): 16150-61, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226625

RESUMO

Elmo2, a member of the Elmo protein family, has been implicated in the regulation of Rac1 and Akt activation. Recently, we found that Elmo2 specifically interacts with ClipR-59. Because Akt and Rac1 have been implicated in insulin dependent Glut4 membrane translocation, we hypothesize here that Elmo2 may play a role in insulin-dependent Glut4 membrane translocation. Accordingly, we found that overexpression of Elmo2 enhanced, whereas its knockdown suppressed, insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and L6 skeletal muscle cells. We also examined whether Elmo2 contributes to the insulin-mediated activation of Rac1 and Akt. We found that Elmo2 is required for insulin-induced Rac1 GTP loading, but not AKT activation, in L6 cells induced by insulin. Instead, Elmo2 is required to promote the insulin-induced membrane association of Akt. Together, our studies demonstrate that Elmo2 is a new regulator of insulin-dependent Glut4 membrane translocation through modulating Rac1 activity and Akt membrane compartmentalization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/genética , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
J Biol Chem ; 291(42): 22136-22148, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27542411

RESUMO

Mutations in the gene encoding phospholipase C-γ2 (PLCγ2) have been shown to be associated with resistance to targeted therapy of chronic lymphocytic leukemia (CLL) with the Bruton's tyrosine kinase inhibitor ibrutinib. The fact that two of these mutations, R665W and L845F, imparted upon PLCγ2 an ∼2-3-fold ibrutinib-insensitive increase in the concentration of cytosolic Ca2+ following ligation of the B cell antigen receptor (BCR) led to the assumption that the two mutants exhibit constitutively enhanced intrinsic activity. Here, we show that the two PLCγ2 mutants are strikingly hypersensitive to activation by Rac2 such that even wild-type Rac2 suffices to activate the mutant enzymes upon its introduction into intact cells. Enhanced "basal" activity of PLCγ2 in intact cells is shown using the pharmacologic Rac inhibitor EHT 1864 and the PLCγ2F897Q mutation mediating Rac resistance to be caused by Rac-stimulated rather than by constitutively enhanced PLCγ2 activity. We suggest that R665W and L845F be referred to as allomorphic rather than hypermorphic mutations of PLCG2 Rerouting of the transmembrane signals emanating from BCR and converging on PLCγ2 through Rac in ibrutinib-resistant CLL cells may provide novel drug treatment strategies to overcome ibrutinib resistance mediated by PLCG2 mutations or to prevent its development in ibrutinib-treated CLL patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Fosfolipase C gama , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Proteínas rac de Ligação ao GTP , Adenina/análogos & derivados , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Piperidinas , Pironas/farmacologia , Quinolinas/farmacologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteína RAC2 de Ligação ao GTP
14.
J Biol Chem ; 291(22): 11466-75, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27026702

RESUMO

Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-ß (TGF-ß) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFß-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tßr2 (type II TGF-ß receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases.


Assuntos
Encéfalo/crescimento & desenvolvimento , Movimento Celular/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neurogênese/fisiologia , Animais , Western Blotting , Encéfalo/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinases/genética , Camundongos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas rac1 de Ligação ao GTP
15.
J Biol Chem ; 291(13): 6912-22, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26867574

RESUMO

The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found thatCryptococcus neoformansindependently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing,Cryptococcusinitiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity againstC. neoformans Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to killC. neoformans.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/imunologia , Cryptococcus neoformans/fisiologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Proteínas rac de Ligação ao GTP/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia , Quinases da Família src/imunologia , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/microbiologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Pironas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Quinases da Família src/genética , Proteína RAC2 de Ligação ao GTP
16.
J Biol Chem ; 291(12): 6182-99, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797121

RESUMO

Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membrana Celular/enzimologia , Movimento Celular , Quimiocina CXCL12/fisiologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Células Endoteliais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
17.
J Biol Chem ; 291(12): 6359-75, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26792863

RESUMO

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gßγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gßγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Animais , Encéfalo , Células COS , Forma Celular , Extensões da Superfície Celular/metabolismo , Chlorocebus aethiops , Ativação Enzimática , Células HEK293 , Humanos , Camundongos Knockout , Especificidade de Órgãos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
18.
J Biol Chem ; 291(9): 4323-33, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26740622

RESUMO

Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance.


Assuntos
Endotelinas/metabolismo , Lisofosfolipídeos/metabolismo , Melanoma/metabolismo , Podossomos/metabolismo , Receptores de Ácidos Lisofosfatídicos/agonistas , Proteína cdc42 de Ligação ao GTP/agonistas , Proteínas rac1 de Ligação ao GTP/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Hidrólise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Melanoma/enzimologia , Melanoma/patologia , Microscopia Confocal , Microscopia de Fluorescência , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Podossomos/enzimologia , Podossomos/patologia , Interferência de RNA , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagem com Lapso de Tempo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/agonistas , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 291(39): 20353-71, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27481945

RESUMO

RHO GTPase-activating proteins (RHOGAPs) are one of the major classes of regulators of the RHO-related protein family that are crucial in many cellular processes, motility, contractility, growth, differentiation, and development. Using database searches, we extracted 66 distinct human RHOGAPs, from which 57 have a common catalytic domain capable of terminating RHO protein signaling by stimulating the slow intrinsic GTP hydrolysis (GTPase) reaction. The specificity of the majority of the members of RHOGAP family is largely uncharacterized. Here, we comprehensively investigated the sequence-structure-function relationship between RHOGAPs and RHO proteins by combining our in vitro data with in silico data. The activity of 14 representatives of the RHOGAP family toward 12 RHO family proteins was determined in real time. We identified and structurally verified hot spots in the interface between RHOGAPs and RHO proteins as critical determinants for binding and catalysis. We have found that the RHOGAP domain itself is nonselective and in some cases rather inefficient under cell-free conditions. Thus, we propose that other domains of RHOGAPs confer substrate specificity and fine-tune their catalytic efficiency in cells.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas rho de Ligação ao GTP/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
20.
J Biol Chem ; 291(38): 20042-54, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27481946

RESUMO

Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gßγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Isoproterenol/farmacologia , Células MCF-7 , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Receptor de Insulina/genética , Quinases Ativadas por p21/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa