Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38610503

RESUMO

Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.

2.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991698

RESUMO

The acousto-electric (AE) effect associated with the propagation of Rayleigh and Sezawa surface acoustic waves (SAWs) in ZnO/fused silica was theoretically investigated under the hypothesis that the electrical conductivity of the piezoelectric layer has an exponentially decaying profile akin to the photoconductivity effect induced by ultra-violet illumination in wide-band-gap photoconducting ZnO. The calculated waves' velocity and attenuation shift vs. ZnO conductivity curves have the form of a double-relaxation response, as opposed to a single-relaxation response which characterizes the AE effect due to surface conductivity changes. Two configurations were studied which reproduced the effect of UV light illumination from the top or from the bottom side of the ZnO/fused silica substrate: 1. the ZnO conductivity inhomogeneity starts from the free surface of the layer and decreases exponentially in depth; 2. the conductivity inhomogeneity starts from the lower surface of the ZnO layer contacting the fused silica substrate. To the author's knowledge, this is the first time the double-relaxation AE effect has been theoretically studied in bi-layered structures.

3.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36772461

RESUMO

The acousto-electric (AE) effect associated with the propagation of the Rayleigh wave in ZnO half-space was theoretically investigated by studying the changes in wave velocity and propagation loss induced by in-depth inhomogeneous changes in the ZnO electrical conductivity. An exponentially decaying profile for the electrical conductivity was attributed to the ZnO half-space, for some values of the exponential decay constant (from 100 to 500 nm), in order to simulate the photoconductivity effect induced by ultra-violet illumination. The calculated Rayleigh wave velocity and attenuation vs. ZnO conductivity curves have the form of a double-relaxation response as opposed to the single-relaxation response which characterizes the well-known AE effect due to surface conductivity changes onto piezoelectric media. As to the author's knowledge, this is the first time the double-relaxation AE effect has been theoretically predicted.

4.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904868

RESUMO

This paper presents a method for measuring surface cracks based on the analysis of Rayleigh waves in the frequency domain. The Rayleigh waves were detected by a Rayleigh wave receiver array made of a piezoelectric polyvinylidene fluoride (PVDF) film and enhanced by a delay-and-sum algorithm. This method employs the determined reflection factors of Rayleigh waves scattered at a surface fatigue crack to calculate the crack depth. In the frequency domain, the inverse scattering problem is solved by comparing the reflection factor of the Rayleigh waves between the measured and the theoretical curves. The experimental measurement results quantitatively matched the simulated surface crack depths. The advantages of using the low-profile Rayleigh wave receiver array made of a PVDF film for detecting the incident and reflected Rayleigh waves were analyzed in contrast with those of a Rayleigh wave receiver using a laser vibrometer and a conventional lead zirconate titanate (PZT) array. It was found that the Rayleigh waves propagating across the Rayleigh wave receiver array made of the PVDF film had a lower attenuation rate of 0.15 dB/mm compared to that of 0.30 dB/mm of the PZT array. Multiple Rayleigh wave receiver arrays made of the PVDF film were applied for monitoring surface fatigue crack initiation and propagation at welded joints under cyclic mechanical loading. Cracks with a depth range of 0.36-0.94 mm were successfully monitored.

5.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161729

RESUMO

Rotational observation is essential for a comprehensive description of the ground motion, and can provide additional wave-field information. With respect to the three typical layered models in shallow engineering geology, under the assumption of linear small deformation, we simulate the 2-dimensional radial, vertical, and rotational components of the wave fields and analyze the different characteristics of Rayleigh wave dispersion recorded for the rotational and translational components. Then, we compare the results of single-component inversion with the results of multi-component joint inversion. It is found that the rotational component has wider spectral bands and more higher modes than the translational components, especially at high frequencies; the rotational component has better anti-interference performance in the noisy data test, and it can improve the inversion accuracy of the shallow shear-wave velocity. The field examples also show the significant advantages of the joint utility of the translational and rotational components, especially when a low-velocity layer exists. Rotational observation shall be beneficial for shallow surface-wave exploration.

6.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236548

RESUMO

Soil moisture has been considered a key variable in governing the terrestrial ecosystem. However, it is challenging to preserve indigenous soil characteristics using conventional soil moisture monitoring methods that require maximum soil contacts. To overcome this issue, we developed a non-destructive method of evaluating soil moisture using a contactless ultrasonic system. This system was designed to measure leaky Rayleigh waves at the air-soil joint-half space. The influences of soil moisture on leaky Rayleigh waves were explored under sand, silt, and clay in a controlled experimental design. Our results showed that there were strong relationships between the energy and amplitude of leaky Rayleigh waves and soil moisture for all three soil cases. These results can be explained by reduced soil strengths during evaporation processes for coarse soil particles as opposed to fine soil particles. To evaluate soil moisture based on the dynamic parameters and wave properties obtained from the observed leaky Rayleigh waves, we used the random forest model. The accuracy of predicted soil moisture was exceptional for test data sets under all soil types (R2 ≥ 0.98, RMSE ≤ 0.0089 m3 m-3). That is, our study demonstrated that the leaky Rayleigh waves had great potential to continuously assess soil moisture variations without soil disturbances.


Assuntos
Ecossistema , Solo , Argila , Areia , Ultrassom
7.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236319

RESUMO

The laser ultrasonic method using the characteristics of transmitted Rayleigh waves in the frequency domain to determine micro-crack depth is proposed. A low-pass filter model based on the interaction between Rayleigh waves and surface cracks is built and shows that the stop band, called the sensitive frequency range, is sensitive to the depth of surface cracks. The sum of transmission coefficients in the sensitive frequency range is defined as an evaluated parameter to determine crack depth. Moreover, the effects of the sensitive frequency range and measured distance on the evaluated results are analyzed by the finite-element method to validate the robustness of this depth-evaluating method. The estimated results of surface cracks with depths ranging from 0.08 mm to ~0.5 mm on the FEM models and aluminum-alloy samples demonstrate that the laser ultrasounds using the characteristics of Rayleigh waves in the frequency domain do work for quantitative crack depth.


Assuntos
Alumínio , Ultrassom , Ligas , Lasers , Ultrassonografia
8.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161565

RESUMO

Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.

9.
Sensors (Basel) ; 21(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065469

RESUMO

The classical Rayleigh surface rotational wave in terms of its theoretical notation and, resulting from this, properties associated with the induced seismic phenomena in mines are presented. This kind of seismic wave was analysed in-depth from the point of view of the parameters governing the form of its mathematical notation based on the similarity to the records obtained during the induced seismicity in near-field 6-DoF monitoring. Furthermore, conducted field measurements made it possible to relate the amount of the emitted seismic energy to the expected highest amplitude of rotational vibrations in the entire field of their impact on the rock mass. As a result, this made it possible to impose the completely defined R wave to the numerical models of given objects; the safety level, when subjected to the dynamic load induced by the rotational wave, would be an objective of the performed analyses. The conducted preliminary analyses were prepared for a plane strain state, for which the values of seismic rotations were evaluated concerning the energy and the distance of the seismic event's source. As a result of the performed simulations, it was found that the results of the calculations matched with a satisfying degree with the field seismic measurements of the rotational ground motion induced by propagating the seismic wave. Such a verified analytical description of the theoretical formulas can be the basis for the implementation of R-wave characteristics into seismic codes and numerical analyses of object stability in the Lower Silesian Copper Basin region.

10.
Sensors (Basel) ; 21(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923270

RESUMO

Laser ultrasonic technology can provide a non-contact, reliable and efficient inspection of train rails. However, the laser-generated signals measured at the railhead are usually contaminated with a high level of noise and unwanted wave components that complicate the identification of defect echoes in the signal. This study explores the possibility of combining laser ultrasonic technology (LUT) and an enhanced matching pursuit (MP) to achieve a fully non-contact inspection of the rail track. A completely non-contact laser-based inspection system was used to generate and sense Rayleigh waves to detect artificial surface horizontal, surface edge, subsurface horizontal and subsurface vertical defects created at railheads of different dimensions. MP was enhanced by developing two novel dictionaries, which include a finite element method (FEM) simulation dictionary and an experimental dictionary. The enhanced MP was used to analyze the experimentally obtained laser-generated Rayleigh wave signals. The results show that the enhanced MP is highly effective in detecting defects by suppressing noise, and, further, it could also overcome the deficiency in the low repeatability of the laser-generated signals. The comparative analysis of MP with both the FEM simulation and experimental dictionaries shows that the enhanced MP with the FEM simulation dictionary is highly efficient in both noise removal and defect detection from the experimental signals captured by a laser-generated ultrasonic inspection system. The major novelty contributed by this research work is the enhanced MP method with the developments of, first, an FEM simulation dictionary and, second, an experimental dictionary that is especially suited for Rayleigh wave signals. Third, the enhanced MP dictionaries are created to process the Rayleigh wave signals generated by laser excitation and received using a 3D laser scanner. Fourth, we introduce a pioneer application of such laser-generated Rayleigh waves for inspecting surface and subsurface detects occurring in train rails.

11.
Sensors (Basel) ; 21(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502837

RESUMO

Horizontal-to-Vertical Spectral Ratios (HVSR) and Rayleigh group velocity dispersion curves (DC) can be used to estimate the shallow S-wave velocity (VS) structure. Knowing the VS structure is important for geophysical data interpretation either in order to better constrain data inversions for P-wave velocity (VP) structures such as travel time tomography or full waveform inversions or to directly study the VS structure for geo-engineering purposes (e.g., ground motion prediction). The joint inversion of HVSR and dispersion data for 1D VS structure allows characterising the uppermost crust and near surface, where the HVSR data (0.03 to 10s) are most sensitive while the dispersion data (1 to 30s) constrain the deeper model which would, otherwise, add complexity to the HVSR data inversion and adversely affect its convergence. During a large-scale experiment, 197 three-component short-period stations, 41 broad band instruments and 190 geophones were continuously operated for 6 months (April to October 2017) covering an area of approximately 1500km2 with a site spacing of approximately 1 to 3km. Joint inversion of HVSR and DC allowed estimating VS and, to some extent density, down to depths of around 1000m. Broadband and short period instruments performed statistically better than geophone nodes due to the latter's gap in sensitivity between HVSR and DC. It may be possible to use HVSR data in a joint inversion with DC, increasing resolution for the shallower layers and/or alleviating the absence of short period DC data, which may be harder to obtain. By including HVSR to DC inversions, confidence improvements of two to three times for layers above 300m were achieved. Furthermore, HVSR/DC joint inversion may be useful to generate initial models for 3D tomographic inversions in large scale deployments. Lastly, the joint inversion of HVSR and DC data can be sensitive to density but this sensitivity is situational and depends strongly on the other inversion parameters, namely VS and VP. Density estimates from a HVSR/DC joint inversion should be treated with care, while some subsurface structures may be sensitive, others are clearly not. Inclusion of gravity inversion to HVSR/DC joint inversion may be possible and prove useful.


Assuntos
Movimento (Física)
12.
Sensors (Basel) ; 20(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138294

RESUMO

The propagation of surface acoustic waves (SAWs) along a ZnO/SiO2/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength λ = 30 µm, and for SiO2 and ZnO layers with a thickness of 1 and 2.4 µm. The numerical and three-dimensional (3D) finite element method analysis revealed that the multilayered substrate supports the propagation of Rayleigh and Sezawa modes (Rm and Sm), their third and fifth harmonics at λ/3 and λ/5. The velocity of all the modes was found in good agreement with the theoretically predicted values. Eigenfrequency, frequency domain, and time domain studies were performed to calculate the velocity, the electroacoustic coupling coefficient, the shape of the modes, the propagation loss, and the scattering parameter S21 of the SAW delay lines based on the propagation of these modes. The sensitivity to five different gases (dichloromethane, trichloromethane, carbontetrachloride, tetrachloroethylene, and trichloroethylene) was calculated under the hypothesis that the ZnO surface is covered by a polyisobutylene (PIB) layer 0.8 µm thick. The results show that the modes resonating at different frequencies exhibit different sensitivities toward the same gas. The multi-frequency ZnO/SiO2/Si single device structure is a promising solution for the development of a multiparameters sensing platform; multiple excitation frequencies with different sensing properties can allow the parallel analysis of the same gas with improved accuracy.

13.
Acta Carsologica ; 49(2-3): 241-253, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35548323

RESUMO

We use the magnitude and centroid period of Rayleigh wave along with the amplitude of fluctuations of water level in a well to calculate effective porosity of a karst aquifer at the site scale. The radial and vertical displacements of Rayleigh wave are first related to the confining pressure of rock, which is then related to fluid pressure via the Gassmann equation. Three seismograms recorded at station 633A of the USARRAY and the induced responses of Well J-17 in the Edwards Aquifer (Texas) allow the calculation of an effective porosity between 17.0 and 24.4 percent, the average of which is close to the total porosity of core samples determined by geophysical well logs. This paper provides an innovative method to measure effective porosity in aquifers. Because of the long wavelengths of Rayleigh wave, the interdisciplinary approach is advantageous in that the resulting effective porosity is at the site scale which includes large conduits or voids.

14.
Philos Trans A Math Phys Eng Sci ; 377(2156): 20190111, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31474203

RESUMO

Elastodynamics of a half-space coated by a thin soft layer with a clamped upper face is considered. The focus is on the analysis of localized waves that do not exist on a clamped homogeneous half-space. Non-traditional effective boundary conditions along the substrate surface incorporating the effect of the coating are derived using a long-wave high-frequency procedure. The derived conditions are implemented within the framework of the earlier developed specialized formulation for surface waves, resulting in a perturbation of the shortened equation of surface motion in the form of an integral or pseudo-differential operator. Non-uniform asymptotic formula for the speeds of the sought for Rayleigh-type waves, failing near zero frequency and the thickness resonances of a layer with both clamped faces, follow from the aforementioned perturbed equation. Asymptotic results are compared with the numerical solutions of the full dispersion relation for a clamped coated half-space. A similarity with Love-type waves proves to be useful for interpreting numerical data. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 1)'.

15.
Sensors (Basel) ; 19(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600982

RESUMO

Although cable-based seismic sensing systems have provided reliable data in the past several decades, they become a bottleneck for large-area monitoring and critical environmental (volcanic eruptions) sensing because of their cost, difficulty in deploying and expanding, and lack of accurate three-dimensional geographic information. In this paper, a new wireless sensing system is designed consisting of a portable satellite device, a self-sustaining power source, a low-cost computational core, and a high-precision sensor. The emphasis of this paper is to implement in low-cost hardware without requirements of highly specialized and expensive data acquisition instruments. Meanwhile, a computational-core-embedded algorithm based on compressive sensing (CS) is also developed to compress data size for transmission and encrypt the measured data preventing information loss. Seismic data captured by the accelerometer sensor are coded into compressive data packages and then transferred via satellite communication to a cloud-based server for storage. Acceleration and GPS information is decrypted by the ℓ1-norm minimization optimization algorithm for further processing. In this research, the feasibility of the proposed sensing system for the acquisition of seismic testing is investigated in an outdoor field surface wave testing. Results indicate the proposed low-cost wireless sensing system has the capability of collecting ground motions, transferring data, and sharing GPS information via satellite communication for large area monitoring. In addition, it has a great potential of recovering measurements even with significant data package loss.

16.
Sensors (Basel) ; 17(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632183

RESUMO

A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

17.
Sensors (Basel) ; 16(11)2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27827856

RESUMO

The characteristics of two types of surface acoustic waves SAWs (Rayleigh waves and Love waves) propagating in bilayered structures of ( 11 2 ¯ 0 ) ZnO/R-sapphire are simulated by a finite element method (FEM) model, in which both SAWs have crossed propagation directions. Furthermore, based on the bilayered structures, the frequency responses of Rayleigh wave and Love wave humidity sensors are also simulated. Meanwhile, the frequency shifts, insertion loss changes and then the sensitivities of both humidity sensors induced by the adsorbed water layer perturbations, including the mechanical and electrical factors, are calculated numerically. Generally, the characteristics and performances of both sensors are strongly dependent on the thickness of the ZnO films. By appropriate selecting the ratio of the film thickness to SAW wavelength for each kind of the sensors, the performances of both sensors can be optimized.

18.
Sensors (Basel) ; 16(3)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959028

RESUMO

An improved single sided Rayleigh wave (R-wave) measurement was suggested to characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations were performed to clarify the behavior of R-waves interacting with surface breaking crack with different depths and degrees of inclinations. Through analysis of simulation results, correlations between R-wave parameters of interest and crack characteristics (depth and degree of inclination) were obtained, which were then validated by experimental measurement of concrete specimens instigated with vertical and inclined artificial cracks of different depths. Wave parameters including velocity and amplitude attenuation for each case were studied. The correlations allowed us to estimate the depth and inclination of cracks measured experimentally with acceptable discrepancies, particularly for cracks which are relatively shallow and when the crack depth is smaller than the wavelength.

19.
Biosens Bioelectron ; 247: 115944, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141441

RESUMO

Shear horizontal surface acoustic wave (SH-SAW) sensors are regarded as a promising alternative for label-free, sensitive, real time and low-cost detection. Nevertheless, achieving high sensitivity with SH-SAW has approached its limit imposed by the mass transport and probe-target affinity. We present here an SH-SAW biosensor accompanied by a unique Rayleigh wave-based actuator. The platform assembled on an ST-quartz substrate consists of dual-channel SH-SAW delay lines fabricated along a 90°-rotated direction, whilst another interdigital electrode (IDT) is orthogonally placed to generate Rayleigh waves so as to induce favourable streaming in the bio-chamber, enhancing the binding efficiency of the bio-target. Theoretical foundation and simulation have shown that Rayleigh acoustic streaming generates a level of agitation that accelerates the mass transport of the biomolecules to the surface. A fourfold improvement in sensitivity is achieved compared with conventional SH-SAW biosensors by means of complementary DNA hybridization with the aid of the Rayleigh wave device, giving a sensitivity level up to 6.15 Hz/(ng/mL) and a limit of detection of 0.617 ng/mL. This suggests that the proposed scheme could improve the sensitivity of SAW biosensors in real-time detection.


Assuntos
Técnicas Biossensoriais , Som , Acústica
20.
Materials (Basel) ; 17(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38541520

RESUMO

Adhesive joints are non-separable connections that are used in numerous ways in vehicle construction, particularly in buses. The widespread use of adhesive joints makes it necessary to assess their quality, especially under production conditions. The main goal of this study was to develop a mathematical model to estimate the width of the adhesive path in a plywood-adhesive-closed-profile joint based on selected parameters of the ultrasonic surface wave. A digital ultrasonic flaw detector and Rayleigh wave probes were applied. The test involved evaluating different widths of hybrid adhesive and two-component epoxy adhesive. The tests were conducted on a steel profile from a bus construction. The attenuation of the ultrasonic waves on the steel profile (0.026 db/mm) and the adhesive (0.264 dB/mm) was determined. A one-size-fits-all model for estimating adhesive path width for specific conditions is proposed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa