Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 367, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480003

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have been brought great attention for their crucial roles in diverse biological processes. However, systematic identification of lncRNAs associated with specialized rice pest, brown planthopper (BPH), defense in rice remains unexplored. RESULTS: In this study, a genome-wide high throughput sequencing analysis was performed using leaf sheaths of susceptible rice Taichung Native 1 (TN1) and resistant rice IR36 and R476 with and without BPH feeding. A total of 2283 lncRNAs were identified, of which 649 lncRNAs were differentially expressed. During BPH infestation, 84 (120 in total), 52 (70 in total) and 63 (94 in total) of differentially expressed lncRNAs were found only in TN1, IR36 and R476, respectively. Through analyzing their cis-, trans-, and target mimic-activities, not only the lncRNAs targeting resistance genes (NBS-LRR and RLKs) and transcription factors, but also the lncRNAs acting as the targets of the well-studied stress-related miRNAs (miR2118, miR528, and miR1320) in each variety were identified. Before the BPH feeding, 238 and 312 lncRNAs were found to be differentially expressed in TN1 vs. IR36 and TN1 vs. R476, respectively. Among their putative targets, the plant-pathogen interaction pathway was significantly enriched. It is speculated that the resistant rice was in a priming state by the regulation of lncRNAs. Furthermore, the lncRNAs extensively involved in response to BPH feeding were identified by Weighted Gene Co-expression Network Analysis (WGCNA), and the possible regulation networks of the key lncRNAs were constructed. These lncRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. CONCLUSION: In summary, we identified the specific lncRNAs targeting the well-studied stress-related miRNAs, resistance genes, and transcription factors in each variety during BPH infestation. Additionally, the possible regulating network of the lncRNAs extensively responding to BPH feeding revealed by WGCNA were constructed. These findings will provide further understanding of the regulatory roles of lncRNAs in BPH defense, and lay a foundation for functional research on the candidate lncRNAs.


Assuntos
Hemípteros , MicroRNAs , Oryza , RNA Longo não Codificante , MicroRNAs/genética , Oryza/genética , Folhas de Planta/genética , RNA Longo não Codificante/genética , Fatores de Transcrição , Transcriptoma , Animais
2.
J Adv Res ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38246245

RESUMO

INTRODUCTION: During the adaptation to host plant resistance, herbivorous insects faced the challenge of overcoming plant defenses while ensuring their own development and reproductive success. To achieve this, a strategic allocation of energy resources for detoxification and ecological fitness maintenance became essential. OBJECTIVE: This study aimed to elucidate the intricate energy allocation mechanisms involved in herbivore adaptation that are currently poorly understood. METHODS: The rice Oryza sativa and its monophagous pest, the brown planthopper (BPH), Nilaparvata lugens were used as a model system. An integrated analysis of metabolomes and transcriptomes from different BPH populations were conducted to identify the biomarkers. RNA interference of key genes and exogenous injection of key metabolites were performed to validate the function of biomarkers. RESULTS: We found that alanine was one of the key biomarkers of BPH adaptation to resistant rice variety IR36. We also found that alanine flow determined the adaptation of BPH to IR36 rice. The alanine aminotransferase (ALT)-mediated alanine transfer to pyruvate was necessary and sufficient for the adaptation. This pathway may be conserved, at least to some extent, in BPH adaptation to multiple rice cultivars with different resistance genes. More importantly, ALT-mediated alanine metabolism is the foundation of downstream energy resource allocation for the adaptation. The adapted BPH population exhibited a significantly higher level of energy reserves in the fat body and ovary when fed with IR36 rice, compared to the unadapted population. This rendered the elevated detoxification in the adapted BPH and their ecological fitness recovery. CONCLUSION: Overall, our findings demonstrated the crucial role of ALT-mediated alanine metabolism in energy allocation during the adaptation to resistant rice in BPH. This will provide novel knowledge regarding the co-evolutionary mechanisms between herbivores and their host plants.

3.
J Adv Res ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37499938

RESUMO

INTRODUCTION: Preventing crop yield loss caused by pests is critical for global agricultural production. Agricultural pest control has largely relied on chemical pesticides. The interaction between insecticide resistance and the adaptation of herbivorous pests to host plants may represent an emerging threat to future food security. OBJECTIVES: This study aims to unveil genetic evidence for the reduction in the profitability of resistant cultivars derived from insecticide resistance in target pest insects. METHODS: An experimental evolution system encompassing resistant rice and its major monophagous pest, the brown planthopper Nilaparvata lugens, was constructed. Whole genome resequencing and selective sweep analysis were utilized to identify the candidate gene loci related to the adaptation. RNA interference and induced expression assay were conducted to validate the function of the candidate loci. RESULTS: We found that the imidacloprid-resistant population of N. lugens rapidly adapted to resistant rice IR36. Gene loci related to imidacloprid resistance may contribute to this phenomenon. Multiple alleles in the nicotinic acetylcholine receptor (nAChR)-7-like and P450 CYP4C61 were significantly correlated with changes in virulence to IR36 rice and insecticide resistance of N. lugens. One avirulent/susceptible genotype and two virulent/resistant genotypes could be inferred from the corresponding alleles. Importantly, we found that the virulent/resistant genotypes already exist in the wild in China, exhibiting increasing frequencies along with insecticide usage. We validated the relevance of these genotypes and the virulence to three more resistant rice cultivars. Knockdown of the above two genes in N. lugens significantly decreased both the resistance to imidacloprid and the virulence towards resistant rice. CONCLUSION: Our findings provide direct genetic evidence to the eco-evolutionary consequence of insecticide resistance, and suggest an urgent need for the implementation of predictably sustainable pest management.

4.
Pest Manag Sci ; 78(2): 785-792, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34713554

RESUMO

BACKGROUND: Although the striped stem borer (SSB, Chilo suppressalis Walker) is a devastating pest of rice that causes significant economic losses, management options are currently limited. Plant-mediated RNA interference (RNAi) is an emerging crop protection technique in which transgenic plants are modified to express insect-specific double-stranded RNAs (dsRNAs) that trigger RNAi silencing in target pests. RESULT: In this study, an RNAi-based screen of 35 candidate SSB genes identified a small heat shock protein gene (CssHsp) as a potential plant-based RNAi target. To assess its utility in planta, a total of 39 transgenic rice plants were generated, with 11 independent transformants found to contain a single copy of the dsCssHsp expression cassette. In life-time feeding bioassays, three transgenic lines (DS10, DS35, DS36) were found to have significant negative impacts on SSB populations. After feeding for 8 days, mortality in the three transgenic lines exceeded 60%. By pupation, mortality further increased to 90% and few SSB survived to eclosion. Gene expression analyses confirmed that CssHsp transcript levels were significantly reduced after feeding on the transgenic dsCssHsp rice. CONCLUSION: These results demonstrate the potential for developing a plant-mediated RNAi strategy targeting CssHsp as a more biorational field-based approach for SSB control. © 2021 Society of Chemical Industry.


Assuntos
Mariposas , Oryza , Animais , Larva , Mariposas/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/genética
5.
Insects ; 13(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055928

RESUMO

The brown planthopper (BPH), Nilaparvata lugens, is a serious pest of rice throughout Asia. Yeast-like symbionts (YLS) are endosymbionts closely linked with the development of BPH and the adapted mechanism of BPH virulence to resistant plants. In this study, we used semi-quantitative DGGE and absolute quantitative real-time PCR (qPCR) to quantify the number of the three YLS strains (Ascomycetes symbionts, Pichia-like symbionts, and Candida-like symbionts) that typically infect BPH in the nymphal stages and in newly emerged female adults. The quantities of each of the three YLS assessed increased in tandem with the developing nymphal instar stages, peaking at the fourth instar stage, and then declined significantly at the fifth instar stage. However, the amount of YLS present recovered sharply within the emerging adult females. Additionally, we estimated the quantities of YLS for up to eight generations after their inoculation onto resistant cultivars (Mudgo, ASD7, and RH) to reassociate the dynamics of YLS with the fitness of BPH. The minimum number of each YLS was detected in the second generation and gradually increased from the third generation with regard to resistant rice varieties. In addition, the Ascomycetes symbionts of YLS were found to be the most abundant of the three YLS strains tested for all of the development stages of BPH.

6.
Protoplasma ; 259(1): 61-73, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33811539

RESUMO

Rice sheath blight (ShB) disease, caused by the fungal pathogen Rhizoctonia solani AG1-IA, is one of the devastating diseases and causes severe yield losses all over the world. No completely resistant germplasm is known till now, and as a result, the progress in resistance breeding is unsatisfactory. Basic studies to identify candidate genes, QTLs, and to better understand the host-pathogen interaction are also scanty. In this study, we report the identification of a new ShB-tolerant rice germplasm, CR 1014. Further, we investigated the basis of tolerance by exploring the disease responsive differentially expressed transcriptome and comparing them with that of a susceptible variety, Swarna-Sub1. A total of 815 and 551 genes were found to be differentially regulated in CR 1014 and Swarna-Sub1, respectively, at two different time points. The result shows that the ability to upregulate genes for glycosyl hydrolase, secondary metabolite biosynthesis, cytoskeleton and membrane integrity, the glycolytic pathway, and maintaining photosynthesis make CR 1014 a superior performer in resisting the ShB pathogen. We discuss several putative candidate genes for ShB resistance. The present study, for the first time, revealed the basis of ShB tolerance in the germplasm CR1014 and should prove to be particularly valuable in understanding molecular response to ShB infection. The knowledge could be utilized to devise strategies to manage the disease better.


Assuntos
Oryza , Perfilação da Expressão Gênica , Genótipo , Oryza/genética , Doenças das Plantas/genética , Transcriptoma/genética
7.
Front Microbiol ; 9: 1390, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008701

RESUMO

The impacts of rice varieties with stacked drought tolerance and insect resistance on soil microbiomes are poorly understood. Hence, the objective of this study was to investigate the effects resulting from the cultivation of the drought-tolerant and insect-resistant rice cultivar, Hanhui3T, on soil physical-chemical properties, and bacterial and fungal community composition. Soil samples of Hanhui3T and conventional rice varieties (Hanhui3 and Zhonghua11) were collected in triplicate at the booting stage, and bacterial and fungal population sizes and community structures were assessed using qPCR and Illumina MiSeq sequencing, respectively. The Bt protein concentration of Hanhui3T was significantly higher than that of Hanhui3 and Zhonghua11, while the pH of Hanhui3T was significantly lower. Bacterial population sizes and community composition were significantly different between Hanhui3T and Hanhui3 (or Zhonghua11), while no similar effects were observed for fungal communities. These differences suggest that the effect of Hanhui3T cultivation on bacterial community composition is stronger than the effect on fungal communities. Moreover, bacterial abundance was positively correlated to soil pH, while bacterial community structure variations were mainly driven by soil pH and Bt protein concentration differences. In conclusion, the abundances and structure of bacterial communities were altered in rhizosphere with Hanhui3T cultivation that changed soil pH and Bt protein concentrations, while fungal communities displayed no such responsiveness.

8.
Environ Entomol ; 44(3): 582-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26313963

RESUMO

The specific primers of five species of endosymbiotic bacteria were designed to determine their numbers in three virulent populations of brown planthopper, Nilapavata lugens Stål, and to assess changes during adaptation to different resistant varieties using fluorescent quantitative PCR. The results showed that Chryseobacterium was the dominant bacteria in all three populations of brown planthopper, followed by Acinetobacter in TN1 population, Arsenophonus and Serratia in Mudgo population, and Arthrobacter and Acinetobacter in ASD7 population. When the TN1 population of brown planthopper was transferred to ASD7 (with resistant gene bph2) rice plants, Chryseobacterium was still the dominant bacteria, but the originally subdominant Acinetobacter declined to a level that was not significantly different from that of other endosymbiotic bacteria. After they were transferred to Mudgo (with resistant gene Bph1), Serratia and Arsenophonus increased significantly and became the dominant bacteria. However, they declined to a level that was not significantly different from that of the three other species after two generations. When ASD7 and Mudgo populations of brown planthopper were transferred to the susceptible variety TN1, the community of endosymbiotic bacteria in the ASD7 population of brown planthopper showed no significant changes. However, the numbers of Acinetobacter and Arthrobacter in the Mudgo population of brown planthopper exhibited a transient increase and returned to their original levels after two generations. After the Mudgo population of brown planthopper was transferred to ASD7 rice plants, the quantity of endosymbiotic bacteria fluctuated, but the bacterial structure did not change significantly. However, after the ASD7 population of brown planthopper was transferred to the Mudgo rice plants, the bacterial structure changed significantly. Serratia and Arsenophonus increased significantly and became dominant. Although Serratia and Arsenophonus decreased significantly after a generation, they were still greater than Chryseobacterium. It was presumed that Chryseobacterium was dominant in all three populations of virulent brown planthoppers, but had no significant effect on virulence variation of brown planthopper. However, Serratia and Arsenophonus might be correlated with virulence variation of brown planthopper.


Assuntos
Adaptação Fisiológica , Bactérias/classificação , Bactérias/isolamento & purificação , Hemípteros/microbiologia , Hemípteros/fisiologia , Oryza/genética , Simbiose , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
9.
Food Chem Toxicol ; 84: 89-98, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277627

RESUMO

This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/análise , DNA Bacteriano/análise , Inspeção de Alimentos/métodos , Oryza/química , Plantas Geneticamente Modificadas/química , Sementes/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , Culinária , Clivagem do DNA/efeitos da radiação , DNA Bacteriano/metabolismo , Estudos de Viabilidade , Alimentos Geneticamente Modificados/efeitos da radiação , Temperatura Alta , Micro-Ondas , Oligodesoxirribonucleotídeos/análise , Oligodesoxirribonucleotídeos/metabolismo , Oryza/genética , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Plantas Geneticamente Modificadas/genética , Polidesoxirribonucleotídeos/análise , Polidesoxirribonucleotídeos/metabolismo , Estabilidade Proteica , Proteólise/efeitos da radiação , Sementes/genética
10.
J Food Sci ; 79(5): T1055-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24758488

RESUMO

UNLABELLED: In order to assess the degradation of endogenous and exogenous genes during food processing, genetically modified rice with Cry1Ab was used as raw material to produce 4 processed foods: steamed rice, rice noodles, rice crackers, and sweet rice wine. The results showed various processing procedures caused different degrees of degradation of both endogenous and exogenous genes. During the processing of steamed rice and rice noodles, the procedures were so mild that only genes larger than 1500 bp were degraded, and no degradation of NOS terminator and Hpt gene was detected. For rice crackers, frying was the most severe procedure, followed by microwaving, baking, boiling, 1st drying, and 2nd drying. For sweet rice wine, fermentation had more impact on degradation of genes than the other processing procedures. All procedures in this study did not lead to degradation of genes to below 200 bp, except for NOS terminator. In the case of stability of the genes studied during processing of rice crackers and sweet rice wine, SPS gene was the most, followed by the Cry1Ab gene, Hpt gene, Pubi promoter, and NOS terminator. PRACTICAL APPLICATION: In our study, we gained some information about the degradation of endogenous and exogenous genes during 4 foods processing, compared the different stabilities between endogenous and exogenous genes, and analyzed different effects of procedure on degradation of genes. In addition, the fragments of endogenous and exogenous genes about 200 bp could be detected in final products, except NOS terminator. As a result, we provided some base information about risk assessment of genetically modified (GM) food and appropriate length of fragment to detect GM component in processed foods.


Assuntos
Fragmentação do DNA , Manipulação de Alimentos/métodos , Alimentos Geneticamente Modificados , Oryza/genética , Plantas Geneticamente Modificadas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Culinária , Dieta , Endotoxinas/genética , Fermentação , Genes Bacterianos , Genes de Plantas , Proteínas Hemolisinas/genética , Temperatura Alta , Humanos
11.
Artigo em Coreano | WPRIM | ID: wpr-648245

RESUMO

This study was conducted to evaluate the safety of herbicide-resistant rice, a genetically modified organism (GMO) developed by the Rural Development Administration, in Sprague-Dawley rats. The nutrient content of herbicide-resistant polished and brown cooked rice was compared with that of conventional Ilpum polished and brown cooked rice to assess composition equivalence. Compositional analysis was performed to measure proximates, fiber, and minerals before animal feeding. Growing male rats were fed one of the following four diets for six weeks: Ilpum polished cooked rice (IP) and Ilpum brown cooked rice (IB) as a non-GMO and herbicide-resistant polished cooked rice (GP) and brown cooked rice (GB) as a GMO. We checked clinical symptoms (anorexia, salivation, diarrhea, polyuria, anuria, fecal change) every day, food intake, change of body weight twice a week, and serum biochemistry and organ weights after 6 weeks of experimental feeding among the four groups. Nutrient content of the herbicide-resistant rice was similar to that of the non-transgenic control and was within the published range observed for non-transgenic rice. We could not find any significant difference in the above-mentioned items as the index to be checked in the animals fed the GMO. These results suggest that the nutrient content of genetically modified herbicide-resistant rice is compositionally equivalent to that of conventional Ilpum rice and that growing male rats fed herbicide-resistant rice are no different from those fed Ilpum rice, non-GMO for 6 weeks.


Assuntos
Animais , Humanos , Masculino , Ratos , Ração Animal , Anuria , Bioquímica , Peso Corporal , Diarreia , Dieta , Ingestão de Alimentos , Minerais , Tamanho do Órgão , Organismos Geneticamente Modificados , Poliúria , Ratos Sprague-Dawley , Salivação , Planejamento Social
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa