Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 75(2): 224-237.e5, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31201089

RESUMO

Cohesin entraps sister DNAs within tripartite rings created by pairwise interactions between Smc1, Smc3, and Scc1. Because Smc1/3 ATPase heads can also interact with each other, cohesin rings have the potential to form a variety of sub-compartments. Using in vivo cysteine cross-linking, we show that when Smc1 and Smc3 ATPases are engaged in the presence of ATP (E heads), cohesin rings generate a "SMC (S) compartment" between hinge and E heads and a "kleisin (K) compartment" between E heads and their associated kleisin subunit. Upon ATP hydrolysis, cohesin's heads associate in a different mode, in which their signature motifs and their coiled coils are closely juxtaposed (J heads), creating alternative S and K compartments. We show that K compartments of either E or J type can entrap single DNAs, that acetylation of Smc3 during S phase is associated with J heads, and that sister DNAs are entrapped in J-K compartments.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Cromátides/genética , DNA/química , Dimerização , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã/genética , Coesinas
2.
Mol Cell ; 70(6): 1134-1148.e7, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932904

RESUMO

Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
3.
Mol Cell ; 68(3): 605-614.e4, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100057

RESUMO

Cohesins establish sister chromatid cohesion during S phase and are removed when cohesin Scc1 is cleaved by separase at anaphase onset. During this process, cohesin Smc3 undergoes a cycle of acetylation: Smc3 acetylation by Eco1 in S phase stabilizes cohesin association with chromosomes, and its deacetylation by Hos1 in anaphase allows re-use of Smc3 in the next cell cycle. Here we find that Smc3 deacetylation by Hos1 has a more immediate effect in the early anaphase of budding yeast. Hos1 depletion significantly delayed sister chromatid separation and segregation. Smc3 deacetylation facilitated removal of cohesins from chromosomes without changing Scc1 cleavage efficiency, promoting dissolution of cohesion. This action is probably due to disengagement of Smc1-Smc3 heads prompted by de-repression of their ATPase activity. We suggest Scc1 cleavage per se is insufficient for efficient dissolution of cohesion in early anaphase; subsequent Smc3 deacetylation, triggered by Scc1 cleavage, is also required.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Cromátides/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetilação , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Histona Desacetilases/genética , Histona Desmetilases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Separase/genética , Separase/metabolismo , Transdução de Sinais , Fatores de Tempo , Coesinas
4.
Protein Expr Purif ; 222: 106532, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38857716

RESUMO

Chlamydia trachomatis (CT) is the bacterial pathogen responsible for causing the most common sexually transmitted disease in the United States. This obligate, intracellular Gram-negative bacterium has a type III secretion system (T3SS) to invade host cells. CopN is an important effector, plug protein that mediates early interactions between the host and Chlamydia. CopN is chaperoned by a heterodimer, T3SS chaperone complex containing Scc4 and Scc1. Scc4 is a unique, bifunctional protein that, in addition to its T3SS chaperone activity, acts as an RNA polymerase (RNAP) binding protein. We hypothesized that the two functions occur at different points in CT's developmental cycle with Scc4 acting alone in the early-to-mid stages and the Scc4:Scc1 complex chaperoning CopN in the mid-to-late stages. To study the Scc4:Scc1 complex by NMR, we previously explored various methods of associating Scc4 and Scc1 in vitro to produce the complex with chain-selective isotopic labeling. Though co-expressed Scc4 and Scc1 form a stable complex, the in vitro association studies suggest that partial protein denaturation and/or components in E. coli lysate are necessary to form the stable complex. In this study Scc4 and Scc1 were sequentially expressed in E. coli under the control of different promoters, allowing separate isotopic labeling of each chain and complex formation in vivo. Sequential expression resulted in no or unstable complex formation depending on the culture medium used. These results, taken together with previous in vitro association studies, suggest that Scc4 and Scc1 assemble co-translationally to form the stable Scc4:Scc1 complex in E. coli.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Escherichia coli , Chaperonas Moleculares , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/biossíntese , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Expressão Gênica
5.
J Biol Chem ; 290(47): 28141-28155, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438824

RESUMO

Secretion of effector proteins into the eukaryotic host cell is required for Chlamydia trachomatis virulence. In the infection process, Scc1 and Scc4, two chaperones of the type III secretion (T3S) system, facilitate secretion of the important effector and plug protein, CopN, but little is known about the details of this event. Here we use biochemistry, mass spectrometry, nuclear magnetic resonance spectroscopy, and genetic analyses to characterize this trimolecular event. We find that Scc4 complexes with Scc1 and CopN in situ at the late developmental cycle of C. trachomatis. We show that Scc4 and Scc1 undergo dynamic interactions as part of the unique bacterial developmental cycle. Using alanine substitutions, we identify several amino acid residues in Scc4 that are critical for the Scc4-Scc1 interaction, which is required for forming the Scc4·Scc1·CopN ternary complex. These results, combined with our previous findings that Scc4 plays a role in transcription (Rao, X., Deighan, P., Hua, Z., Hu, X., Wang, J., Luo, M., Wang, J., Liang, Y., Zhong, G., Hochschild, A., and Shen, L. (2009) Genes Dev. 23, 1818-1829), reveal that the T3S process is linked to bacterial transcriptional events, all of which are mediated by Scc4 and its interacting proteins. A model describing how the T3S process may affect gene expression is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chaperonas Moleculares/metabolismo , Escherichia coli/metabolismo , Células HeLa , Humanos , Solubilidade
6.
Genetics ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110836

RESUMO

Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1 rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature sensitive (ts) growth defects exhibited by eco1 rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1 rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1 rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.

7.
Biomolecules ; 10(11)2020 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114427

RESUMO

Scc4 is an unusual bi-functional protein from Chlamydia trachomatis (CT) that functions as a type III secretion system (T3SS) chaperone and an RNA polymerase (RNAP)-binding protein. Both functions require interactions with protein partners during specific stages of the CT developmental cycle. As a T3SS chaperone, Scc4 binds Scc1 during the late stage of development to form a heterodimer complex, which chaperones the essential virulence effector, CopN. During the early-middle stage of development, Scc4 regulates T3SS gene expression by binding the σ66-containing RNAP holoenzyme. In order to study the structure and association mechanism of the Scc4:Scc1 T3SS chaperone complex using nuclear magnetic resonance (NMR) spectroscopy, we developed an approach to selectively label each chain of the Scc4:Scc1 complex with the 15N-isotope. The approach allowed one protein to be visible in the NMR spectrum at a time, which greatly reduced resonance overlap and permitted comparison of the backbone structures of free and bound Scc4. 1H,15N-heteronuclear single quantum coherence spectra of the 15N-Scc4:Scc1 and Scc4:15N-Scc1 complexes showed a total structural rearrangement of Scc4 upon binding Scc1 and a dynamic region isolated to Scc1, respectively. Development of the chain-selective labeling approach revealed that the association of Scc4 and Scc1 requires partial denaturation of Scc1 to form the high affinity complex, while low affinity interactions occurred between the isolated proteins under non-denaturing conditions. These results provide new models for Scc4's functional switching mechanism and Scc4:Scc1 association in CT.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/química , Marcação por Isótopo , Chaperonas Moleculares/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica
8.
Epigenetics Chromatin ; 12(1): 47, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331360

RESUMO

BACKGROUND: A complex interplay between chromatin and topological machineries is critical for genome architecture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. RESULTS: We have used genome-wide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1-73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the - 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1-73 cells, downregulated genes are enriched in promoters with short or no nucleosome-free region (NFR) and a fragile "nucleosome - 1/RSC complex" particle. These results, together with a preferential increase in the occupancy of nucleosome - 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1-73 upregulated genes are enriched in promoters with an "open" chromatin structure and are mostly at cohesin-enriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. CONCLUSIONS: Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesin-mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina , Replicação do DNA , Regulação para Baixo , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ativação Transcricional , Regulação para Cima , Coesinas
9.
Elife ; 82019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31162048

RESUMO

Cohesin mediates higher order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesin by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose that this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Proteínas de Ciclo Celular/química , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/química , Complexos Multiproteicos/química , Mutação/genética , Domínios Proteicos , Subunidades Proteicas/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Coesinas
10.
Methods Mol Biol ; 2004: 119-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147914

RESUMO

A plethora of biological processes like gene transcription, DNA replication, DNA recombination, and chromosome segregation are mediated through protein-DNA interactions. A powerful method for investigating proteins within a native chromatin environment in the cell is chromatin immunoprecipitation (ChIP). Combined with the recent technological advancement in next generation sequencing, the ChIP assay can map the exact binding sites of a protein of interest across the entire genome. Here we describe a-step-by step protocol for ChIP followed by library preparation for ChIP-seq from yeast cells.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromossomos Fúngicos/genética , Leveduras/genética , Sítios de Ligação/genética , Cromatina/genética , Segregação de Cromossomos/genética , Ligação Proteica/genética
11.
Methods Mol Biol ; 1818: 99-112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29961259

RESUMO

Separase proteolytically removes cohesin complexes from sister chromatid arms in meiosis I, which is essential for chromosome segregation. Regulation of separase activity is essential for proper cell cycle progression and correct chromosome segregation. Onset of endogenous separase activity has not yet been observed in live oocytes.We describe here a method for detecting separase activity in mouse oocytes in vivo. This method utilizes a previously described cleavage sensor made up of H2B-mCherry fused with Scc1(107-268 aa)-YFP. The cleavage sensor is loaded on the chromosomes through its H2B-tag, and the signal from both mCherry and YFP is visible. Upon separase activation the Scc1 fragment is cleaved and YFP dissociates from the chromosomes. The change in the ratio between mCherry and YFP fluorescence intensity is a readout of separase activity.


Assuntos
Técnicas Biossensoriais/métodos , Segregação de Cromossomos , Oócitos/metabolismo , Separase/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Feminino , Histonas/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Oócitos/enzimologia , Troca de Cromátide Irmã , Proteína Vermelha Fluorescente
12.
Artigo em Chinês | WPRIM | ID: wpr-463587

RESUMO

Objective:To investigate the affects of NOD2 on rapamycin (Rap)induced autophagy and on the proliferation and mi-gration of tongue squamous carcinoma SCC-1 5 cells.Methods:① Synthesized NOD2 over-expression plasmid and NOD2-shRNA were transfected into SCC-1 5 cells respectively.②Normal control SCC-1 5 cells,NOD2 over-expression cells and NOD2-shRNA cells were treated with Rap to induce autophagy.Then,the expression of LC3 and Beclin-1 was examined by Western blot.Cell pro-liferation was tested by MTT assay.Cell migration was assessed by wound healing assay.Results:①After Rap treatment,the expres-sion of protein LC3-Ⅱand Beclin-1 in NOD2 over-expression cells increased(P <0.05)and in NOD2-shRNA cells were suppressed (P <0.05).② Compared with control group,the proliferation and migration ability were decreased in NOD2 over-expression cells (P <0.05),but in NOD2-shRNA cells the proliferation and migration ability were increased(P <0.05).Conclusion:NOD2 can up-regulate the autophagy and suppress the proliferation and migration of tongue squamous SCC-1 5 cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa