RESUMO
Deletion of c-Src, a ubiquitously expressed tyrosine kinase, results in osteoclast dysfunction and osteopetrosis, in which bones harden into "stone." In contrast, deletion of the genes encoding other members of the Src family kinase (SFK) fails to produce an osteopetrotic phenotype. This suggests that c-Src performs a unique function in the osteoclast that cannot be compensated for by other SFKs. We aimed to identify the molecular basis of this unique role in osteoclasts and bone resorption. We found that c-Src, Lyn, and Fyn were the most highly expressed SFKs in WT osteoclasts, whereas Hck, Lck, Blk, and Fgr displayed low levels of expression. Formation of the podosome belt, clusters of unique actin assemblies, was disrupted in src-/- osteoclasts; introduction of constitutively activated SFKs revealed that only c-Src and Fyn could restore this process. To identify the key structural domains responsible, we constructed chimeric Src-Hck and Src-Lyn constructs in which the unique, SH3, SH2, or catalytic domains had been swapped. We found that the Src unique, SH3, and kinase domains were each crucial to establish Src functionality. The SH2 domain could however be substituted with Lyn or Hck SH2 domains. Furthermore, we demonstrate that c-Src's functionality is, in part, derived from an SH3-proximal proline-rich domain interaction with c-Cbl, leading to phosphorylation of c-Cbl Tyr700. These data help clarify Src's unique functionality in the organization of the cytoskeleton in osteoclasts, required for efficient bone resorption and explain why c-Src cannot be replaced, in osteoclasts, by other SFKs.
Assuntos
Osteoclastos/metabolismo , Podossomos/metabolismo , Domínios de Homologia de src , Quinases da Família src/metabolismo , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Células HEK293 , Humanos , Camundongos , Osteoclastos/citologia , Quinases da Família src/genéticaRESUMO
Core fucose is an N-glycan structure synthesized by α1,6-fucosyltransferase 8 (FUT8) localized to the Golgi apparatus and critically regulates the functions of various glycoproteins. However, how FUT8 activity is regulated in cells remains largely unclear. At the luminal side and uncommon for Golgi proteins, FUT8 has an Src homology 3 (SH3) domain, which is usually found in cytosolic signal transduction molecules and generally mediates protein-protein interactions in the cytosol. However, the SH3 domain has not been identified in other glycosyltransferases, suggesting that FUT8's functions are selectively regulated by this domain. In this study, using truncated FUT8 constructs, immunofluorescence staining, FACS analysis, cell-surface biotinylation, proteomics, and LC-electrospray ionization MS analyses, we reveal that the SH3 domain is essential for FUT8 activity both in cells and in vitro and identified His-535 in the SH3 domain as the critical residue for enzymatic activity of FUT8. Furthermore, we found that although FUT8 is mainly localized to the Golgi, it also partially localizes to the cell surface in an SH3-dependent manner, indicating that the SH3 domain is also involved in FUT8 trafficking. Finally, we identified ribophorin I (RPN1), a subunit of the oligosaccharyltransferase complex, as an SH3-dependent binding protein of FUT8. RPN1 knockdown decreased both FUT8 activity and core fucose levels, indicating that RPN1 stimulates FUT8 activity. Our findings indicate that the SH3 domain critically controls FUT8 catalytic activity and localization and is required for binding by RPN1, which promotes FUT8 activity and core fucosylation.
Assuntos
Fucose/metabolismo , Fucosiltransferases/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Domínios de Homologia de srcRESUMO
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD4/metabolismo , Cristalografia por Raios X , Regulação para Baixo , HIV-1/patogenicidade , Evasão da Resposta Imune , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/metabolismo , Proteínas Quinases/efeitos dos fármacos , Transporte Proteico , Relação Estrutura-Atividade , Produtos do Gene nef do Vírus da Imunodeficiência Humana/químicaRESUMO
The chemistry of protein-ligand binding is the basis of virtually every biological process. Ligand binding can be essential for a protein to function in the cell by stabilizing or altering the conformation of a protein, particularly for partially or completely unstructured proteins. However, the mechanisms by which ligand binding impacts disordered proteins or influences the role of disorder in protein folding is not clear. To gain insight into this question, the mechanism of folding induced by the binding of a Pro-rich peptide ligand to the SH3 domain of phosphatidylinositol 3-kinase unfolded in the presence of urea has been studied using kinetic methods. Under strongly denaturing conditions, folding was found to follow a conformational selection (CS) mechanism. However, under mildly denaturing conditions, a ligand concentration-dependent switch in the mechanism was observed. The folding mechanism switched from being predominantly a CS mechanism at low ligand concentrations to being predominantly an induced fit (IF) mechanism at high ligand concentrations. The switch in the mechanism manifests itself as an increase in the reaction flux along the IF pathway at high ligand concentrations. The results indicate that, in the case of intrinsically disordered proteins too, the folding mechanism is determined by the concentration of the ligand that induces structure formation.
Assuntos
Desdobramento de Proteína , Cinética , Ligantes , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Ureia/farmacologia , Domínios de Homologia de srcRESUMO
B-cell adaptor protein (BCAP) is a multimodular, multifunctional signal transducer that regulates signal transduction pathways in leukocytes, including macrophages, B-cells, and T-cells. In particular, BCAP suppresses inflammatory signaling by Toll-like receptors (TLRs). However, how BCAP itself is regulated and what its interaction partners are is unclear. Here, using human immune cell lines, including THP-1 cells, we characterized the complex phosphorylation patterns of BCAP and used a novel protein complex trapping strategy, called virotrap, to identify its interaction partners. This analysis identified known interactions of BCAP with phosphoinositide 3-kinase (PI3K) p85 subunit and NCK adaptor protein (NCK), together with previously unknown interactions of BCAP with Src homology 2 (SH2) and SH3 domain-containing adaptor proteins, notably growth factor receptor-bound protein 2 (GRB2) and CRK-like proto-oncogene, adaptor protein (CRKL). We show that the SH3 domain of GRB2 can bind to BCAP independently of BCAP phosphorylation status, suggesting that the SH2 domains mediate interactions with activated receptor tyrosine kinase complexes including the CD19 subunit of the B-cell receptor. Our results also suggested that the PI3K p85 subunit binds to BCAP via SH3 domains forming an inactive complex that is then activated by sequential binding with the SH2 domains. Taken together, our results indicate that BCAP is a complex hub that processes signals from multiple pathways in diverse cell types of the immune system.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Genes Reporter , Células HEK293 , Humanos , Espectrometria de Massas , Proteínas Oncogênicas/metabolismo , Peptídeos/análise , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Proto-Oncogene Mas , Domínios de Homologia de srcRESUMO
Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.
Assuntos
Tirosina/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Humanos , Ligantes , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Espalhamento a Baixo ÂnguloRESUMO
T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Células HEK293 , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/genética , Proto-Oncogene Mas , Domínios de Homologia de srcRESUMO
Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a ß-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.
Assuntos
MAP Quinase Quinase Quinases/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , MAP Quinase Quinase Quinases/química , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/química , Ligação Proteica , Domínios de Homologia de src , MAP Quinase Quinase Quinase 11 Ativada por MitógenoRESUMO
Liquid-liquid phase separation (LLPS) is thought to contribute to the establishment of many biomolecular condensates, eukaryotic cell structures that concentrate diverse macromolecules but lack a bounding membrane. RNA granules control RNA metabolism and comprise a large class of condensates that are enriched in RNA-binding proteins and RNA molecules. Many RNA granule proteins are composed of both modular domains and intrinsically disordered regions (IDRs) having low amino acid sequence complexity. Phase separation of these molecules likely plays an important role in the generation and stability of RNA granules. To understand how folded domains and IDRs can cooperate to modulate LLPS, we generated a series of engineered proteins. These were based on fusions of an IDR derived from the RNA granule protein FUS (fused in sarcoma) to a multivalent poly-Src homology 3 (SH3) domain protein that phase-separates when mixed with a poly-proline-rich-motif (polyPRM) ligand. We found that the wild-type IDR promotes LLPS of the polySH3-polyPRM system, decreasing the phase separation threshold concentration by 8-fold. Systematic mutation of tyrosine residues in Gly/Ser-Tyr-Gly/Ser motifs of the IDR reduced this effect, depending on the number but not on the position of these substitutions. Mutating all tyrosines to non-aromatic residues or phosphorylating the IDR raised the phase separation threshold above that of the unmodified polySH3-polyPRM pair. These results show that low-complexity IDRs can modulate LLPS both positively and negatively, depending on the degree of aromaticity and phosphorylation status. Our findings provide plausible mechanisms by which these sequences could alter RNA granule properties on evolutionary and cellular timescales.
Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas Intrinsicamente Desordenadas/química , Transição de Fase , Fosforilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína FUS de Ligação a RNA/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Tirosina/química , Domínios de Homologia de srcRESUMO
The ligase Itch plays major roles in signaling pathways by inducing ubiquitylation-dependent degradation of several substrates. Substrate recognition and binding are critical for the regulation of this reaction. Like closely related ligases, Itch can interact with proteins containing a PPXY motif via its WW domains. In addition to these WW domains, Itch possesses a proline-rich region (PRR) that has been shown to interact with several Src homology 3 (SH3) domain-containing proteins. We have previously established that despite the apparent surface uniformity and conserved fold of SH3 domains, they display different binding mechanisms and affinities for their interaction with the PRR of Itch. Here, we attempt to determine the molecular bases underlying the wide range of binding properties of the Itch PRR. Using pulldown assays combined with mass spectrometry analysis, we show that the Itch PRR preferentially forms complexes with endophilins, amphyphisins, and pacsins but can also target a variety of other SH3 domain-containing proteins. In addition, we map the binding sites of these proteins using a combination of PRR sub-sequences and mutants. We find that different SH3 domains target distinct proline-rich sequences overlapping significantly. We also structurally analyze these protein complexes using crystallography and molecular modeling. These structures depict the position of Itch PRR engaged in a 1:2 protein complex with ß-PIX and a 1:1 complex with the other SH3 domain-containing proteins. Taken together, these results reveal the binding preferences of the Itch PRR toward its most common SH3 domain-containing partners and demonstrate that the PRR region is sufficient for binding.
Assuntos
Modelos Moleculares , Proteínas Repressoras/química , Ubiquitina-Proteína Ligases/química , Domínios de Homologia de src , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.
Assuntos
Proteínas de Transporte/química , Dinaminas/química , Neuropeptídeos/química , Fosfoproteínas/química , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Ratos , Domínios de Homologia de srcRESUMO
We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Vírus Chikungunya/química , Proteínas Nucleares/química , Peptídeos/química , Proteínas Supressoras de Tumor/química , Proteínas não Estruturais Virais/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Vírus Chikungunya/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo , Proteínas não Estruturais Virais/metabolismo , Domínios de Homologia de srcRESUMO
It is currently believed that inactive tyrosine kinase c-Src in platelets binds to the cytoplasmic tail of the ß3 integrin subunit via its SH3 domain. Although a recent NMR study supports this contention, it is likely that such binding would be precluded in inactive c-Src because an auto-inhibitory linker physically occludes the ß3 tail binding site. Accordingly, we have re-examined c-Src binding to ß3 by immunoprecipitation as well as NMR spectroscopy. In unstimulated platelets, we detected little to no interaction between c-Src and ß3. Following platelet activation, however, c-Src was co-immunoprecipitated with ß3 in a time-dependent manner and underwent progressive activation as well. We then measured chemical shift perturbations in the (15)N-labeled SH3 domain induced by the C-terminal ß3 tail peptide NITYRGT and found that the peptide interacted with the SH3 domain RT-loop and surrounding residues. A control peptide whose last three residues where replaced with those of the ß1 cytoplasmic tail induced only small chemical shift perturbations on the opposite face of the SH3 domain. Next, to mimic inactive c-Src, we found that the canonical polyproline peptide RPLPPLP prevented binding of the ß3 peptide to the RT- loop. Under these conditions, the ß3 peptide induced chemical shift perturbations similar to the negative control. We conclude that the primary interaction of c-Src with the ß3 tail occurs in its activated state and at a site that overlaps with PPII binding site in its SH3 domain. Interactions of inactive c-Src with ß3 are weak and insensitive to ß3 tail mutations.
Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Plaquetas/química , Plaquetas/citologia , Proteína Tirosina Quinase CSK , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Domínios de Homologia de src , Quinases da Família src/química , Quinases da Família src/genéticaRESUMO
c-CrkII is a central signal adapter protein. A domain opening/closing reaction between its N- and C-terminal Src homology 3 domains (SH3N and SH3C, respectively) controls signal propagation from upstream tyrosine kinases to downstream targets. In chicken but not in human c-CrkII, opening/closing is coupled with cis/trans isomerization at Pro-238 in SH3C. Here, we used advanced double-mixing experiments and kinetic simulations to uncover dynamic domain interactions in c-CrkII and to elucidate how they are linked with cis/trans isomerization and how this regulates substrate binding to SH3N. Pro-238 trans â cis isomerization is not a simple on/off switch but converts chicken c-CrkII from a high affinity to a low affinity form. We present a double-box model that describes c-CrkII as an allosteric system consisting of an open, high affinity R state and a closed, low affinity T state. Coupling of the T-R transition with an intrinsically slow prolyl isomerization provides c-CrkII with a kinetic memory and possibly functions as a molecular attenuator during signal transduction.
Assuntos
Proteínas Proto-Oncogênicas c-crk/química , Proteínas Proto-Oncogênicas c-crk/metabolismo , Regulação Alostérica , Animais , Galinhas , Humanos , Dobramento de Proteína , Transdução de Sinais , Domínios de Homologia de src/fisiologiaRESUMO
Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr-Purcell-Meiboom-Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes.
Assuntos
Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Calorimetria , Galinhas , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Eletricidade Estática , Domínios de Homologia de srcRESUMO
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners.