Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285612

RESUMO

AIM: This study aimed to develop a sensitive and specific recombinant antigen protein indirect enzyme-linked immunosorbent assay (ELISA) kit to detect the Shiga toxin (Stx)-producing Escherichia coli (STEC) antibodies against porcine edema disease (ED). METHODS AND RESULTS: The recombinant antigen was co-expressed with the STEC-derived Stx2e A2-fragment and Stx2e B protein in E. coli BL21(DE3) pLysS cells and purified using maltose-binding protein open columns. We used a Shiga-like toxin 2 antibody to test the specificity of the recombinant antigen in an indirect ELISA, which was detected in antigen-coated wells but not in uncoated wells. We tested the indirect ELISA system using samples from the STEC-immunized pig group, the commercial swine farm group, and healthy aborted fetal pleural effusion group; five and twenty samples, respectively, were positive for STEC in the former, whereas all three samples were negative for STEC in the latter. CONCLUSIONS: This newly developed indirect ELISA may be a specific method for diagnosing STEC infections in pigs.


Assuntos
Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Doenças dos Suínos , Suínos , Animais , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Edema
2.
Vet Res ; 54(1): 29, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973816

RESUMO

Porcine edema disease (ED) is an enterotoxaemia that frequently occurs in 4-12 week-old piglets and results in high mortality. ED is caused by Shiga toxin 2e (Stx2e), produced by host-adapted Shiga toxin-producing Escherichia coli (STEC) strains. We constructed a recombinant protein in which the B subunit of Stx2e (Stx2eB) was linked to Cartilage Oligomeric Matrix Protein (COMP)'s pentameric domain to enhance antigenicity to induce neutralizing antibodies against Stx2e. We evaluated the efficacy of this antigen as a vaccine on the farm where ED had occurred. The suckling piglets were divided into two groups. The pigs in the vaccinated group were intramuscularly immunized with the vaccine containing 30 µg/head of Stx2eB-COMP at 1 and 4 weeks of age. The control pigs were injected with saline instead of the vaccine. The neutralizing antibody titer to Stx2e, mortality, clinical score, and body weight was evaluated up to 11 weeks after the first vaccination. In the vaccinated group, the Stx2e neutralizing antibody was detected 3 weeks after the first vaccination, its titer increased during the following weeks. The antibody was not detected in the control group during the test period. The STEC gene was detected in both groups during the test period, but a typical ED was observed only in control pigs; the mortality and clinical score were significantly lower in the vaccinated group than in the control group. These data indicate that the pentameric B subunit vaccine is effective for preventing ED and offers a promising tool for pig health control.


Assuntos
Antitoxinas , Edematose Suína , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Doenças dos Suínos , Animais , Suínos , Toxina Shiga II/genética , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Edematose Suína/prevenção & controle , Anticorpos Neutralizantes , Vacinas de Subunidades Antigênicas , Edema/prevenção & controle , Edema/veterinária , Doenças dos Suínos/prevenção & controle
3.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994679

RESUMO

AIMS: This study was conducted to investigate the presence of Shiga toxin-producing O157 and non-O157 E. coli in raw water buffalo milk, as well as to determine the virulence gene profiles, phylogroups, sequence types, and serotypes of the isolated strains. METHODS AND RESULTS: A total of 200 hand-milked raw water buffalo milk samples were collected from 200 different water buffaloes over a period of three months from 20 different farms. Isolation of STEC was performed using CHROMagar STEC. Presence of stx1, stx2, and eaeA genes were investigated by mPCR. Phylogroups and sequence types of E. coli strains were determined by Clermont phylotyping and MLST. Serotyping was performed using PCR or WGS. According to the results, two milk samples obtained from two different farms were found as STEC-positive. All Stx-positive E. coli isolates belonged to phylogenetic group A and were assigned to ST10. WGS results indicated that serotype of two isolates was O21:H25 and average nucleotide identity was detected at 99.99%. Thirteen additional registered E. coli O21:H25 assembled WGS data were obtained from EnteroBase and a phylogenetic tree was constructed. CONCLUSIONS: With this study, the presence of stx2 harboring E. coli O21:H25 in milk was identified for the first time. Although the identified serotype is considered a non-pathogen seropathotype, we conclude it could play an important role in the environmental circulation of Stx-phages and consequently contribute to the emergence of new STEC-related outbreaks.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Búfalos/genética , Proteínas de Escherichia coli/genética , Filogenia , Tipagem de Sequências Multilocus , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária
4.
Anim Genet ; 54(1): 55-67, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36305422

RESUMO

Understanding the genetic mechanism of highland adaptation is of great importance for breeding improvement of Tibetan chickens (TBC). Some studies of TBC have identified some candidate genes and pathways from multiple subgroups, but the related genetic mechanisms remain largely unknown. Different genetic backgrounds and the independent genetic basis of highland adaptation make it difficult to identity the selective region of highland adaptation with all TBC samples. In this study, we conducted pre-analysis in a large-scale population to select a TBC subgroup with the purest and highest level of highland-specific lineage for the further analysis. Finally, the 37 samples from a TBC subgroup and 19 Lahsa White chickens were used to represent the highland group for further analysis with 80 samples from five Chinese local lowland breeds as controls. Population structure analysis revealed that highland adaptation significantly affected population stratification in Chinese local chicken breeds. Genome-wide selection signal analysis identified 201 candidate genes associated with highland adaptation of TBC, and these genes were significantly enriched in calcium signaling, vascular smooth muscle contraction and the cellular response to oxidative stress pathways. Additionally, we identified a narrow 1.76 kb region containing an overlapping region between HBZ and an active enhancer, and our identified region showed a highly significant signal. The highland group selected the haplotype with high activity to improve the oxygen-carrying capacity, thus being adapted to a hypoxic environment. We also found that STX2 was significantly selected in the highland group, thus potentially reducing the oxidative stress caused by hypoxia, and that STX2 exhibited the opposite effects on highland adaptation and reproductive traits. Our findings advance our understanding of extreme environment adaptation of highland chickens, and provide some variants and genes beneficial to TBC genetic breeding improvement.


Assuntos
Adaptação Fisiológica , Galinhas , Animais , Adaptação Fisiológica/genética , Galinhas/genética , Genoma , Hipóxia/genética , Sequenciamento Completo do Genoma/veterinária , Altitude
5.
Emerg Infect Dis ; 28(2): 382-393, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35075992

RESUMO

Edema disease is an often fatal enterotoxemia caused by specific strains of Shiga toxin-producing Escherichia coli (STEC) that affect primarily healthy, rapidly growing nursery pigs. Recently, outbreaks of edema disease have also emerged in France in wild boars. Analysis of STEC strains isolated from wild boars during 2013-2019 showed that they belonged to the serotype O139:H1 and were positive for both Stx2e and F18 fimbriae. However, in contrast to classical STEC O139:H1 strains circulating in pigs, they also possessed enterotoxin genes sta1 and stb, typical of enterotoxigenic E. coli. In addition, the strains contained a unique accessory genome composition and did not harbor antimicrobial-resistance genes, in contrast to domestic pig isolates. These data thus reveal that the emergence of edema disease in wild boars was caused by atypical hybrid of STEC and enterotoxigenic E. coli O139:H1, which so far has been restricted to the wildlife environment.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Células Clonais , Edema , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Sus scrofa , Suínos
6.
J Clin Microbiol ; 60(3): e0222921, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35225693

RESUMO

Shiga toxin (Stx) is the definitive virulence factor of Shiga toxin-producing Escherichia coli (STEC). Stx variants are currently organized into a taxonomic system of three Stx1 (a, c, and d) and seven Stx2 (a, b, c, d, e, f, and g) subtypes. In this study, seven STEC isolates from food and clinical samples possessing stx2 sequences that do not fit current Shiga toxin taxonomy were identified. Genome assemblies of the STEC strains were created from Oxford Nanopore and Illumina sequence data. The presence of atypical stx2 sequences was confirmed by Sanger sequencing, as were Stx2 expression and cytotoxicity. A strain of O157:H7 was found to possess stx1a and a truncated stx2a, which were originally misidentified as an atypical stx2. Two strains possessed unreported variants of Stx2a (O8:H28) and Stx2b (O146:H21). In four of the strains, we found three Stx subtypes that are not included in the current taxonomy. Stx2h (O170:H18) was identified in a Canadian sprout isolate; this subtype has only previously been reported in STEC from Tibetan Marmots. Stx2o (O85:H1) was identified in a clinical isolate. Finally, Stx2j (O158:H23 and O33:H14) was found in lettuce and clinical isolates. The results of this study expand the number of known Stx subtypes, the range of STEC serotypes, and isolation sources in which they may be found. The presence of the Stx2j and Stx2o in clinical isolates of STEC indicates that strains carrying these variants are potential human pathogens.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Canadá , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética
7.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805890

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Colo , Células Endoteliais/química , Células Epiteliais , Glicoesfingolipídeos/análise , Humanos , Rim , Toxina Shiga
8.
J Pediatr ; 232: 200-206.e4, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417918

RESUMO

OBJECTIVE: To assess the performance of a hemolytic uremic syndrome (HUS) severity score among children with Shiga toxin-producing Escherichia coli (STEC) infections and HUS by stratifying them according to their risk of adverse events. The score has not been previously evaluated in a North American acute care setting. STUDY DESIGN: We reviewed medical records of children <18 years old infected with STEC and treated in 1 of 38 participating emergency departments in North America between 2011 and 2015. The HUS severity score (hemoglobin [g/dL] plus 2-times serum creatinine [mg/dL]) was calculated using first available laboratory results. Children with scores >13 were designated as high-risk. We assessed score performance to predict severe adverse events (ie, dialysis, neurologic complication, respiratory failure, and death) using discrimination and net benefit (ie, threshold probability), with subgroup analyses by age and day-of-illness. RESULTS: A total of 167 children had HUS, of whom 92.8% (155/167) had relevant data to calculate the score; 60.6% (94/155) experienced a severe adverse event. Discrimination was acceptable overall (area under the curve 0.71, 95% CI 0.63-0.79) and better among children <5 years old (area under the curve 0.77, 95% CI 0.68-0.87). For children <5 years, greatest net benefit was achieved for a threshold probability >26%. CONCLUSIONS: The HUS severity score was able to discriminate between high- and low-risk children <5 years old with STEC-associated HUS at a statistically acceptable level; however, it did not appear to provide clinical benefit at a meaningful risk threshold.


Assuntos
Regras de Decisão Clínica , Serviço Hospitalar de Emergência , Infecções por Escherichia coli/diagnóstico , Síndrome Hemolítico-Urêmica/diagnóstico , Índice de Gravidade de Doença , Escherichia coli Shiga Toxigênica , Adolescente , Criança , Pré-Escolar , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/mortalidade , Feminino , Síndrome Hemolítico-Urêmica/complicações , Síndrome Hemolítico-Urêmica/mortalidade , Humanos , Lactente , Recém-Nascido , Masculino , América do Norte , Prognóstico , Estudos Retrospectivos , Medição de Risco , Sensibilidade e Especificidade
9.
J Appl Microbiol ; 130(6): 1913-1924, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33151599

RESUMO

AIMS: To analyse the non-glycosylated protein fraction from Melipona beecheii honey for antimicrobial activity against Escherichia coli O157:H7. METHODS AND RESULTS: The proteins from M. beecheii honey were separated according to their degree of glycosylation using Concanavalin A-affinity chromatography. The total protein extract and its fractions were analysed by 1D and 2D electrophoresis. We also determined the antimicrobial and antihaemolytic activities of the total protein extract and the non-glycosylated fraction. Furthermore, we evaluated the effect of this non-glycosylated fraction for the expression of the Stx1, Stx2, EAE and HlyA pathogen genes. Melipona beecheii honey contained at least 24 proteins with molecular weights ranging between 7·6 and 95 kDa and isoelectric points between 3 and 10, three proteins from the 24 are non-glycosylated. The non-glycosylated fraction had an MIC90 of 1·128 µg ml-1 , and this fraction inhibited the haemolytic activity of the pathogen, as well as reduced the expression of Stx1, Stx2 and HlyA. The MbF1-2 protein from the non-glycosylated fraction was sequenced and identified as a homologue of the royal jelly-like protein of Melipona quadrifasciata. CONCLUSIONS: The non-glycosylated protein fraction from M. beecheii honey greatly contributes to antibacterial activity and it is composed of at least three proteins, of which MbF1-2 provided over 50% of the antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The study showed significant antimicrobial activity from several proteins present in the honey of M. beecheii. Interestingly, the non-glycosylated protein fraction demonstrated antihaemolytic activity and adversely affected the expression of virulence genes in Escherichia coli O157:H7; these proteins have the potential to be used in developing therapeutic agents against this bacterium.


Assuntos
Antibacterianos/farmacologia , Abelhas/química , Escherichia coli O157/efeitos dos fármacos , Mel , Proteínas de Insetos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Expressão Gênica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Mel/análise , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Testes de Sensibilidade Microbiana , Fatores de Virulência/genética
10.
Int J Mol Sci ; 22(18)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576167

RESUMO

Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the sensitivity of the human colon epithelium towards Stx and the decoration with the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) is a matter of debate. Structural analysis of the globo-series GSLs of serum-free cultivated primary human colon epithelial cells (pHCoEpiCs) revealed Gb4Cer as the major neutral GSL with Cer (d18:1, C16:0), Cer (d18:1, C22:1/C22:0) and Cer (d18:1, C24:2/C24:1) accompanied by minor Gb3Cer with Cer (d18:1, C16:0) and Cer (d18:1, C24:1) as the dominant lipoforms. Gb3Cer and Gb4Cer co-distributed with cholesterol and sphingomyelin to detergent-resistant membranes (DRMs) used as microdomain analogs. Exposure to increasing Stx concentrations indicated only a slight cell-damaging effect at the highest toxin concentration of 1 µg/mL for Stx1a and Stx2a, whereas a significant effect was detected for Stx2e. Considerable Stx refractiveness of pHCoEpiCs that correlated with the rather low cellular content of the high-affinity Stx-receptor Gb3Cer renders the human colon epithelium questionable as a major target of Stx1a and Stx2a.


Assuntos
Colo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Globosídeos/metabolismo , Toxina Shiga/metabolismo , Triexosilceramidas/metabolismo , Linhagem Celular , Células Cultivadas , Cromatografia em Camada Fina , Glicoesfingolipídeos/metabolismo , Humanos , Espectrometria de Massas , Sintaxina 1/metabolismo
11.
BMC Genomics ; 21(1): 562, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807088

RESUMO

BACKGROUND: Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant foodborne pathogen that resides asymptomatically within cattle and other ruminants. The EHEC genome harbors an extensive collection of mobile genetic elements (MGE), including multiple prophage, prophage-like elements, plasmids, and insertion sequence (IS) elements. RESULTS: A chronological collection of EHEC strains (FRIK804, FRIK1275, and FRIK1625) isolated from a Wisconsin dairy farm (farm X) comprised a closely related clade genetically differentiated by structural alterations to the chromosome. Comparison of the FRIK804 genome with a reference EHEC strain Sakai found a unique prophage like element (PLE, indel 1) and an inversion (1.15 Mb) situated symmetrically with respect to the terminus region. Detailed analysis determined the inversion was due to homologous recombination between repeat sequences in prophage. The three farm X strains were distinguished by the presence or absence of indel 3 (61 kbp) and indel 4 (48 kbp); FRIK804 contained both of these regions, FRIK1275 lacked indel 4, and indels 3 and 4 were both absent in FRIK1625. Indel 3 was the stx2 prophage and indel 4 involved a deletion between two adjacent prophage with shared repeat sequences. Both FRIK804 and FRIK1275 produced functional phage while FRIK1625 did not, which is consistent with indel 3. Due to their involvement in recombination events, direct and inverted repeat sequences were identified, and their locations mapped to the chromosome. FRIK804 had a greater number and overall length of repeat sequences than E. coli K12 strain MG1655. Repeat sequences were most commonly associated with MGE. CONCLUSIONS: This research demonstrated that three EHEC strains from a Wisconsin dairy farm were closely related and distinguished by variability within prophage regions and other MGE. Chromosome alterations were associated with recombination events between repeat sequences. An inventory of direct and inverted repeat sequences found a greater abundance and total length of repeat sequences in the EHEC strains compared to E. coli strain MG1655. The locations of the repeat sequences were biased towards MGE. The findings from this study expand our understanding of the precise molecular events and elements that contributed to genetic diversification of wild-type EHEC in the bovine and farm environments.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Escherichia coli O157 , Animais , Bacteriófagos/genética , Bovinos , Elementos de DNA Transponíveis , Escherichia coli O157/genética , Prófagos/genética
12.
J Clin Microbiol ; 58(3)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31826960

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) is the main cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening clinical complication characterized by hemolytic anemia, thrombocytopenia, and acute renal failure that mainly affects children. A relevant feature of STEC strains is the production of Stx, and all of them express Stx1 and/or Stx2 regardless of the strain serotype. Therefore, Stx detection assays are considered the most suitable methods for the early detection of STEC infections. Single-domain antibodies from camelids (VHHs) exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis. In this work, we have exploited VHH technology for the development of an immunocapture assay for Stx2 detection. Thirteen anti-Stx2 VHHs previously obtained from a variable-domain repertoire library were selected and evaluated in 130 capture-detection pair combinations for Stx detection. Based on this analysis, two VHHs were selected and a double VHH-based biotin-streptavidin capture enzyme-linked immunosorbent assay (ELISA) with spectrophotometric detection was developed and optimized for Stx2 detection. This assay showed an excellent analytical and clinical sensitivity in both STEC culture supernatants and stool samples even higher than the sensitivity of a commercial ELISA. Furthermore, based on the analysis of stool samples, the VHH-based ELISA showed high correlation with stx2 detection by PCR and a commercial rapid membrane-based immunoassay. The intrinsic properties of VHHs (high target affinity and specificity, stability, and ease of expression at high yields in recombinant bacteria) and their optimal performance for Stx detection make them attractive tools for the diagnosis of HUS related to STEC (STEC-HUS).


Assuntos
Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Síndrome Hemolítico-Urêmica/diagnóstico , Toxina Shiga I/isolamento & purificação , Toxina Shiga II/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Anticorpos de Domínio Único/química , Animais , Argentina , Pré-Escolar , Chlorocebus aethiops , Diagnóstico Precoce , Fezes/microbiologia , Humanos , Sensibilidade e Especificidade , Células Vero
13.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527121

RESUMO

There are two major antigenic forms of Shiga toxin (Stx), Stx1 and Stx2, which bind the same receptor and act on the same target but nonetheless differ in potency. Stx1a is more toxic to cultured cells, but Stx2 subtypes are more potent in animal models. To understand this phenomenon in cultured cells, we used a system that combines flow cytometry with a fluorescent reporter to monitor the Stx-induced inhibition of protein synthesis in single cells. We observed that Vero cells intoxicated with Stx1a behave differently than those intoxicated with Stx2 subtypes: cells challenged with Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Cells challenged with a hybrid toxin containing the catalytic subunit of Stx1a and the cell-binding subunit of Stx2a also exhibited a bimodal response to intoxication, while cells challenged with a hybrid toxin containing the catalytic subunit of Stx2a and the cell-binding subunit of Stx1a exhibited a population-wide loss of protein synthesis. Other experiments further supported a primary role for the subtype of the B subunit in the outcome of host-Stx interactions. Our collective observations indicate that the bimodal response to Stx2 subtypes is due to relatively weak binding between Stx2 and the host cell that reduces the total functional pool of Stx2 in comparison to that of Stx1a. This explains, in part, the molecular basis for the differential cellular toxicity between Stx1a and Stx2 subtypes.


Assuntos
Biossíntese de Proteínas/fisiologia , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade , Animais , Domínio Catalítico/genética , Linhagem Celular , Chlorocebus aethiops , Infecções por Escherichia coli/patologia , Citometria de Fluxo , Ligação Proteica/fisiologia , Toxina Shiga I/imunologia , Toxina Shiga II/imunologia , Células Vero
14.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670557

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) causes foodborne outbreaks of bloody diarrhea. There are two major types of immunologically distinct Stxs: Stx1a and Stx2a. Stx1a is more cytotoxic to Vero cells than Stx2a, but Stx2a has a lower 50% lethal dose (LD50) in mice. Epidemiological data suggest that infections by STEC strains that produce only Stx2a progress more often to a life-threatening sequela of infection called hemolytic-uremic syndrome (HUS) than isolates that make Stx1a only or produce both Stx1a and Stx2a. In this study, we found that an E. coli O26:H11 strain that produces both Stx1a and Stx2a was virulent in streptomycin- and ciprofloxacin-treated mice and that mice were protected by administration of an anti-Stx2 antibody. However, we discovered that in the absence of ciprofloxacin, neutralization of Stx1a enhanced the virulence of the strain, a result that corroborated our previous finding that Stx1a reduces the toxicity of Stx2a by the oral route. We further found that intraperitoneal administration of the purified Stx1a B subunit delayed the mean time to death of mice intoxicated with Stx2a and reduced the cytotoxic effect of Stx2a on Vero cells. Taken together, our data suggest that Stx1a reduces both the pathogenicity of Stx2 in vivo and cytotoxicity in vitro.


Assuntos
Infecções por Escherichia coli/microbiologia , Toxina Shiga I/toxicidade , Toxina Shiga II/toxicidade , Escherichia coli Shiga Toxigênica/metabolismo , Animais , Chlorocebus aethiops , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Células Vero , Virulência
15.
BMC Genomics ; 20(1): 271, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953471

RESUMO

BACKGROUND: Wild birds, in particular pigeons are considered a natural reservoir for stx2f-carrying E. coli. An extensive comparison of isolates from pigeons and humans from the same region is lacking, which hampers justifiable conclusions on the epidemiology of these pathogens. Over two hundred human and pigeon stx2f-carrying E. coli isolates predominantly from the Netherlands were analysed by whole genome sequencing and comparative genomic analysis including in silico MLST, serotyping, virulence genes typing and whole genome MLST (wgMLST). RESULTS: Serotypes and sequence types of stx2f-carrying E. coli showed a strong non-random distribution among the human and pigeon isolates with O63:H6/ST583, O113:H6/ST121 and O125:H6/ST583 overrepresented among the human isolates and not found among pigeons. Pigeon isolates were characterized by an overrepresentation of O4:H2/ST20 and O45:H2/ST20. Nearly all isolates harboured the locus of enterocyte effacement (LEE) but different eae and tir subtypes were non-randomly distributed among human and pigeon isolates. Phylogenetic core genome comparison demonstrated that the pigeon isolates and clinical isolates largely occurred in separated clusters. In addition, serotypes/STs exclusively found among humans generally were characterized by high level of clonality, smaller genome sizes and lack of several non-LEE-encoded virulence genes. A bundle-forming pilus operon, including bfpA, indicative for typical enteropathogenic E. coli (tEPEC) was demonstrated in 72.0% of the stx2f-carrying serotypes but with distinct operon types between the main pigeon and human isolate clusters. CONCLUSIONS: Comparative genomics revealed that isolates from mild human disease are dominated by serotypes not encountered in the pigeon reservoir. It is therefore unlikely that zoonotic transmission from this reservoir plays an important role in the contribution to the majority of human disease associated with stx2f-producing E. coli in the Netherlands. Unexpectedly, this study identified the common occurrence of STEC2f/tEPEC hybrid pathotype in various serotypes and STs. Further research should focus on the possible role of human-to-human transmission of Stx2f-producing E. coli.


Assuntos
Doenças das Aves/epidemiologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/metabolismo , Genômica/métodos , Toxina Shiga/metabolismo , Fatores de Virulência/metabolismo , Animais , Columbidae , Escherichia coli Enteropatogênica/classificação , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Filogenia , Toxina Shiga/genética , Fatores de Virulência/genética
16.
BMC Genomics ; 20(1): 504, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208335

RESUMO

BACKGROUND: Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. RESULTS: Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. CONCLUSIONS: Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation.


Assuntos
Carbono/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Regulação Bacteriana da Expressão Gênica , Prófagos/fisiologia , Toxina Shiga/metabolismo , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/virologia , Perfilação da Expressão Gênica , Fenótipo , Prófagos/metabolismo
17.
Trop Anim Health Prod ; 51(5): 1117-1123, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30661176

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is an important public health concern pathogen, as it produces two toxins, Stx1 and Stx2, with cytotoxic capacity. In addition, STEC strains are frequently involved in food outbreaks worldwide, leading to public health challenges and economic losses. In this context, the occurrence and antimicrobial resistance profile of the STEC isolated from fresh beef produced in Mato Grosso, Brazil, were estimated. One hundred seven retail beef under vacuum-packaged produced by 13 different slaughterhouses were submitted to microbiological, molecular, and antimicrobial resistance analyses. STEC occurrence in beef was of 4.67%, and five strains presented the stx2 gene. The O111 serogroup, reported in several outbreak cases worldwide, was detected, and other serotypes (O8:H20, O22:H16, and O141:H49) were also isolated. All isolated strains displayed sensitivity to 12 antibiotics, except for two strains, which where streptomycin-resistant. The presence of STEC in retail beef samples indicates public health risks with significant economic impact throughout the retail beef chain.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Carne Vermelha/microbiologia , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Brasil , Microbiologia de Alimentos , Escherichia coli Shiga Toxigênica/isolamento & purificação
18.
Hum Mutat ; 39(6): 830-833, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29570232

RESUMO

STX2 encodes a sulfoglycolipid transporter. Although Stx2 nullizygosity is known to cause spermatogenic failure in mice, STX2 mutations have not been identified in humans. Here, we performed STX2 mutation analysis for 131 Japanese men clinically diagnosed with nonobstructive azoospermia. As a result, we identified a homozygous frameshift mutation [c.8_12delACCGG, p.(Asp3Alafs*8)] in one patient. The mutation-positive patient exhibited loss-of-heterozygosity for 58.4 Mb genomic regions involving STX2, suggesting possible parental consanguinity. The patient showed azoospermia, relatively small testes, and a mildly elevated follicle stimulating hormone level, but no additional clinical features. Testicular histology of the patient showed universal maturation arrest and multinucleated spermatocytes, which have also been observed in mice lacking Stx2. PCR-based cDNA screening revealed wildtype STX2 expression in various tissues including the testis. Our results indicate that STX2 nullizygosity results in nonsyndromic maturation arrest with multinucleated spermatocytes, and accounts for a small fraction of cases with nonobstructive azoospermia.


Assuntos
Azoospermia/genética , Espermatogênese/genética , Sintaxina 1/genética , Adulto , Animais , Azoospermia/patologia , Humanos , Perda de Heterozigosidade/genética , Masculino , Camundongos , Mutação , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
19.
Emerg Infect Dis ; 24(12): 2219-2227, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457544

RESUMO

Among Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a ß-glucuronidase-positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (ß-glucuronidase-negative) and GP STEC O157:H7 strains, and the Stx2-producing ability of PV15-279 is comparable to that of typical STEC O157:H7 strains; therefore, PV15-279 presents a virulence potential similar to that of typical STEC O157:H7. This study reveals the importance of GP O157:H7 as a source of highly pathogenic STEC clones.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Genoma Bacteriano , Genômica , Glucuronidase/metabolismo , Toxina Shiga II/biossíntese , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Escherichia coli O157/classificação , Escherichia coli O157/efeitos dos fármacos , Genômica/métodos , Mitomicina/farmacologia , Filogenia , Polimorfismo de Nucleotídeo Único , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética
20.
Int J Med Microbiol ; 308(7): 969-976, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30064820

RESUMO

Escherichia coli-induced hemolytic uremic syndrome (eHUS) is a life-threatening complication of infection with Shiga toxin (Stx), in particular Stx2a-producing Escherichia coli. Enhanced coagulation activation with formation of microthrombi seems to be a key event in development of eHUS. Platelet activation has been postulated as a possible, but controversially debated mechanism. The present study investigated the effect of Stx2a on plasmatic coagulation and platelets. Binding studies were initially performed with ELISA and co-immunoprecipitation and supported by quartz crystal microbalance with dissipation monitoring (QCM-D). Antithrombin (AT) activity was measured using the automated BCS XP® system. ROTEM® was used for functional coagulation testing. Platelet binding and activation was studied with FACS and light-transmission aggregometry. We found binding of Stx2a to AT, an important inhibitor of blood coagulation, but only a mild albeit significant reduction of AT activity against FXa in the presence of Stx2a. QCM-D analysis also showed binding of Stx2a to heparin and an impaired binding of AT to Stx2a-bound heparin. ROTEM® using Stx2a-treated platelet-poor plasma revealed a significant, but only moderate shortening of clotting time. Neither binding nor activation of platelets by Stx2a could be demonstrated. In summary, data of this study suggest that Stx2a binds to AT, but does not induce major effects on plasmatic coagulation. In addition, no interaction with platelets occurred. The well-known non-beneficial administration of heparin in eHUS patients could be explained by the interaction of Stx2a with heparin.


Assuntos
Antitrombinas/metabolismo , Coagulação Sanguínea/fisiologia , Heparina/metabolismo , Agregação Plaquetária/imunologia , Toxina Shiga II/metabolismo , Plaquetas/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Ligação Proteica/fisiologia , Escherichia coli Shiga Toxigênica/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa