Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
RNA ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117455

RESUMO

Many RNA binding proteins (RBPs) contain low-complexity domains (LCDs) with prion-like compositions. These long intrinsically disordered regions regulate their solubility, contributing to their physiological roles in RNA processing and organization. However, this also makes these RBPs prone to pathological misfolding and aggregation that are characteristic of neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) forms pathological aggregates associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While molecular chaperones are well-known suppressors of these aberrant events, we recently reported that highly disordered, hydrophilic and charged heat-resistant obscure (Hero) proteins may have similar effects. Specifically, Hero proteins can maintain the activity of other proteins from denaturing conditions in vitro, while their overexpression can suppress cellular aggregation and toxicity associated with aggregation-prone proteins. However, it is unclear how these protective effects are achieved. Here, we utilized single-molecule FRET to monitor the conformations of the aggregation-prone prion-like LCD of TDP-43. While we observed high conformational heterogeneity in wild-type LCD, the ALS-associated mutation A315T promoted collapsed conformations. In contrast, an Hsp40 chaperone, DNAJA2, and a Hero protein, Hero11 stabilized extended states of the LCD, consistent with their ability to suppress the aggregation of TDP-43. Our results link single-molecule effects on conformation to macro effects on bulk aggregation, where a Hero protein, like a chaperone, can maintain the conformational integrity of a client protein to prevent its aggregation.

2.
Brain ; 147(10): 3501-3512, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39045644

RESUMO

Grey matter ageing-related tau astrogliopathy (ARTAG) pathology is common in aged brains and detected in multiple brain regions. However, the associations of grey matter ARTAG with Alzheimer's disease and other common age-related proteinopathies, in addition to clinical phenotypes, including Alzheimer's dementia and cognitive decline, remain unclear. We examined 442 decedents (mean age at death = 90 years, males = 32%) from three longitudinal community-based clinical-pathological studies. Using AT8 immunohistochemistry, grey matter ARTAG pathology was counted in the superior frontal region, anterior temporal tip and amygdala and summarized as a severity score ranging from zero (none) to six (severe). Alzheimer's disease and other common age-related neuropathologies were also evaluated. The diagnosis of Alzheimer's dementia was based on clinical evaluations; annual tests of cognitive performance were summarized as global cognition and five cognitive domains. Multivariable logistic regression tested the associations of grey matter ARTAG pathology with an array of age-related neuropathologies. To evaluate associations of grey matter ARTAG pathology with Alzheimer's dementia and cognitive decline, we used logistic regression and linear mixed-effect models. Grey matter ARTAG pathology was seen in 324 (73%) participants, of which 303 (68%) participants had ARTAG in the amygdala, 246 (56%) in the anterior temporal tip and 137 (31%) in the superior frontal region. Grey matter ARTAG pathology from each of the three regions was associated with a pathological diagnosis of Alzheimer's disease and limbic-predominant age-related TAR DNA-binding protein 43 encephalopathy-neuropathological change but not with vascular pathology. In fully adjusted models that controlled for demographics, Alzheimer's disease and common age-related pathologies, an increase in severity of grey matter ARTAG pathology in the superior frontal cortex, but not in the amygdala or the anterior temporal tip, was associated with higher odds of Alzheimer's dementia and faster decline in global cognition, episodic memory and semantic memory. These results provide compelling evidence that grey matter ARTAG, specifically in the superior frontal cortex, contributes to Alzheimer's dementia and cognitive decline in old age.


Assuntos
Envelhecimento , Disfunção Cognitiva , Substância Cinzenta , Proteínas tau , Humanos , Masculino , Feminino , Substância Cinzenta/patologia , Idoso de 80 Anos ou mais , Disfunção Cognitiva/patologia , Envelhecimento/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Idoso , Encéfalo/patologia , Astrócitos/patologia , Astrócitos/metabolismo , Tauopatias/patologia , Estudos Longitudinais
3.
Cell Mol Life Sci ; 81(1): 377, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212733

RESUMO

Lewy body diseases (LBD) comprise a group of complex neurodegenerative conditions originating from accumulation of misfolded alpha-synuclein (α-syn) in the form of Lewy bodies. LBD pathologies are characterized by α-syn deposition in association with other proteins such as Amyloid ß (Aß), Tau, and TAR-DNA-binding protein. To investigate the complex interactions of these proteins, we constructed 2 novel transgenic overexpressing (OE) C. elegans strains (α-synA53T;Taupro-agg (OE) and α-synA53T;Aß1-42;Taupro-agg (OE)) and compared them with previously established Parkinson's, Alzheimer's, and Lewy Body Dementia disease models. The LBD models presented here demonstrate impairments including uncoordinated movement, egg-laying deficits, altered serotonergic and cholinergic signaling, memory and posture deficits, as well as dopaminergic neuron damage and loss. Expression levels of total and prone to aggregation α-syn protein were increased in α-synA53T;Aß1-42 but decreased in α-synA53T;Taupro-agg animals when compared to α-synA53T animals suggesting protein interactions. These alterations were also observed at the mRNA level suggesting a pre-transcriptional mechanism. miRNA-seq revealed that cel-miR-1018 was upregulated in LBD models α-synA53T, α-synA53T;Aß1-42, and α-synA53T;Taupro-agg compared with WT. cel-miR-58c was upregulated in α-synA53T;Taupro-agg but downregulated in α-synA53T and α-synA53T;Aß1-42 compared with WT. cel-miR-41-3p and cel-miR-355-5p were significantly downregulated in 3 LBD models. Our results obtained in a model organism provide evidence of interactions between different pathological proteins and alterations in specific miRNAs that may further exacerbate or ameliorate LBD pathology.


Assuntos
Peptídeos beta-Amiloides , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Doença por Corpos de Lewy , MicroRNAs , alfa-Sinucleína , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
4.
J Biol Chem ; 299(11): 105272, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739033

RESUMO

The cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 kDa (TDP-43) has been linked to the progression of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 secreted into the extracellular space has been suggested to contribute to the cell-to-cell spread of the cytoplasmic accumulation of TDP-43 throughout the brain; however, the underlying mechanisms remain unknown. We herein demonstrated that the secretion of TDP-43 was stimulated by the inhibition of the autophagy-lysosomal pathway driven by progranulin (PGRN), a causal protein of frontotemporal lobar degeneration. Among modulators of autophagy, only vacuolar-ATPase inhibitors, such as bafilomycin A1 (Baf), increased the levels of the full-length and cleaved forms of TDP-43 and the autophagosome marker LC3-II (microtubule-associated proteins 1A/1B light chain 3B) in extracellular vesicle fractions prepared from the culture media of HeLa, SH-SY5Y, or NSC-34 cells, whereas vacuolin-1, MG132, chloroquine, rapamycin, and serum starvation did not. The C-terminal fragment of TDP-43 was required for Baf-induced TDP-43 secretion. The Baf treatment induced the translocation of the aggregate-prone GFP-tagged C-terminal fragment of TDP-43 and mCherry-tagged LC3 to the plasma membrane. The Baf-induced secretion of TDP-43 was attenuated in autophagy-deficient ATG16L1 knockout HeLa cells. The knockdown of PGRN induced the secretion of cleaved TDP-43 in an autophagy-dependent manner in HeLa cells. The KO of PGRN in mouse embryonic fibroblasts increased the secretion of the cleaved forms of TDP-43 and LC3-II. The treatment inducing TDP-43 secretion increased the nuclear translocation of GFP-tagged transcription factor EB, a master regulator of the autophagy-lysosomal pathway in SH-SY5Y cells. These results suggest that the secretion of TDP-43 is promoted by dysregulation of the PGRN-driven autophagy-lysosomal pathway.


Assuntos
Autofagia , Proteínas de Ligação a DNA , Lisossomos , Progranulinas , Humanos , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Progranulinas/genética , Progranulinas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Inibidores Enzimáticos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo
5.
Alzheimers Dement ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351959

RESUMO

INTRODUCTION: Biomarkers for Alzheimer's disease neuropathologic change (ADNC) have been instrumental in developing effective disease-modifying therapeutics. However, to prevent/treat dementia effectively, we require biomarkers for non-AD neuropathologies; for this, neuropathologic examinations and annotated tissue samples are essential. METHODS: We conducted clinicopathologic correlation for the first 100 Alzheimer's Disease Neuroimaging Initiative (ADNI) Neuropathology Core (NPC) cases. RESULTS: Clinical syndromes in this cohort showed 95% sensitivity and 79% specificity for predicting high/intermediate ADNC, a 21% false positive rate, and a ∼44% false negative rate. In addition, 60% with high/intermediate ADNC harbored additional potentially dementing co-pathologies. DISCUSSION: These results suggest that clinical presentation imperfectly predicts ADNC and that accurate prediction of high/intermediate ADNC does not exclude co-pathology that may modify presentation, biomarkers, and therapeutic responses. Therefore, new biomarkers are needed for non-AD neuropathologies. The ADNI NPC supports this mission with well-characterized tissue samples (available through ADNI and the National Institute on Aging) and "gold-standard" diagnostic information (soon to include digital histology). HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) Neuropathology Core (NPC) brain donation cohort now exceeds 200 cases. ADNI NPC data in National Alzheimer's Coordinating Center format are available through the Laboratory of Neuro Imaging. Digitized slide files from the ADNI NPC will be available in 2025. Requests for ADNI brain tissue samples can be submitted online for ADNI/National Institute on Aging evaluation. Clinical diagnoses of Alzheimer's disease (AD)/AD and related dementias (ADRD) do not always predict post mortem neuropathology. Neuropathology is essential for the development of novel AD/ADRD biomarkers.

6.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37908186

RESUMO

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Lobo Frontal/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
Alzheimers Dement ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193664

RESUMO

INTRODUCTION: Typical Alzheimer's disease (AD) and limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE) are two neurodegenerative diseases that present with a similar initial amnestic clinical phenotype but are associated with distinct proteinopathies. METHODS: We investigated white matter (WM) fiber bundle alterations, using fixel-based analysis, a state-of-the-art diffusion magnetic resonance imaging model, in early AD, presumed LATE, and controls. We also investigated regional cortical atrophy. RESULTS: Both amnestic AD and presumed LATE patients exhibited WM alterations in tracts of the temporal and limbic lobes and in callosal fibers connecting superior frontal gyri. In addition, presumed LATE patients showed alterations in callosal fibers connecting the middle frontal gyri and in the cerebello-thalamo-cortical tract. Cortical thickness was reduced in regions connected by the most altered tracts. DISCUSSION: These findings, the first to describe WM fiber bundle alterations in presumed LATE, are consistent with results on cortical atrophy and with the staging system of tau or TDP-43 accumulation. HIGHLIGHTS: Fixel-based analysis revealed white matter (WM) fiber bundle alterations in presumed limbic-predominant age-related TAR DNA-binding protein 43 encephalopathy (LATE) patients identified by isolated episodic/limbic amnesia, the absence of positive Alzheimer's disease (AD) biomarkers, and no other neurological diagnosis after 2 years of follow-up. Presumed LATE and amnestic AD shared similar patterns of WM alterations in fiber bundles of the limbic and temporal lobes, in congruence with their similar limbic cognitive phenotype. Presumed LATE differed from AD by the alteration of the callosal fibers connecting the middle frontal gyri and of the cerebello-thalamo-cortical tract. WM fiber bundle alterations were consistent with results on regional cortical atrophy. The different anatomical patterns of WM degeneration could provide information on the propagation pathways of distinct proteinopathies.

8.
Alzheimers Dement ; 20(1): 266-277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37592813

RESUMO

INTRODUCTION: Research-oriented autopsy cohorts provide critical insights into dementia pathobiology. However, different studies sometimes report disparate findings, partially because each study has its own recruitment biases. We hypothesized that a straightforward metric, related to the percentage of research volunteers cognitively normal at recruitment, would predict other inter-cohort differences. METHODS: The National Alzheimer's Coordinating Center (NACC) provided data on N = 7178 autopsied participants from 28 individual research centers. Research cohorts were grouped based on the proportion of participants with normal cognition at initial clinical visit. RESULTS: Cohorts with more participants who were cognitively normal at recruitment contained more individuals who were older, female, had lower frequencies of apolipoprotein E ε4, Lewy body disease, and frontotemporal dementia, but higher rates of cerebrovascular disease. Alzheimer's disease (AD) pathology was little different between groups. DISCUSSION: The percentage of participants recruited while cognitively normal predicted differences in findings in autopsy research cohorts. Most differences were in non-AD pathologies. HIGHLIGHTS: Systematic differences exist between autopsy cohorts that serve dementia research. We propose a metric to use for gauging a research-oriented autopsy cohort. It is essential to consider the characteristics of autopsy cohorts.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Doença por Corpos de Lewy , Humanos , Feminino , Viés de Seleção , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/patologia , Autopsia
9.
J Neurochem ; 164(5): 643-657, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527420

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively attacks motor neurons, and leads to progressive muscle weakness and death. A common pathological feature is the misfolding, aggregation, and cytoplasmic mislocalization of TAR DNA-binding protein 43 (TDP-43) proteins in more than 95% of ALS patients, suggesting a universal role TDP-43 proteinopathy in ALS. Mutations in SQSTM1/p62 have been identified in familial and sporadic cases of ALS. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate their target genes. Emerging evidence indicates that miRNA dysregulation is associated with neuronal toxicity and mitochondrial dysfunction, and also plays a pivotal role in ALS pathogenesis. Here, we report the first evidence that miR-183-5p is aberrantly upregulated in spinal cords of patients with ALS. Using luciferase reporter assays and miR-183-5p agomirs, we demonstrate that miR-183-5p regulates the SQSTM1/p62 3'-untranslated region to suppress expression. A miR-183-5p agomir attenuated SOSTM1/p62 expression and led to an increase in TDP-43 protein levels in neuronal and non-neuronal cells. In contrast, a miR-183-5p antagomir decreased TDP-43 but increased SQSTM1/p62 protein levels. The antagomir repressed formation of stress granules and aggregated TDP43 protein in neuronal cells under stress-induced conditions and protected against cytotoxicity. Knockdown of SQSTM1/p62 decreased total ubiquitination and increased TDP-43 protein aggregation, indicating that SQSTM1/p62 may play a protective role in cells. In summary, our study reveals a novel mechanism of TDP-43 proteinopathy mediated by the miR-183-5p and provides a molecular link between aberrant RNA processing and protein degradation, two major pillars in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteína Sequestossoma-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Antagomirs/metabolismo , Neurônios Motores/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a DNA/metabolismo
10.
Acta Neuropathol ; 146(3): 433-450, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466726

RESUMO

The C9ORF72-linked diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by the nuclear depletion and cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43). Recent studies have shown that the loss of TDP-43 function leads to the inclusion of cryptic exons (CE) in several RNA transcript targets of TDP-43. Here, we show for the first time the detection of CEs in a single-nuclei RNA sequencing (snRNA-seq) dataset obtained from frontal and occipital cortices of C9ORF72 patients that phenotypically span the ALS-FTD disease spectrum. We assessed each cellular cluster for detection of recently described TDP-43-induced CEs. Transcripts containing CEs in the genes STMN2 and KALRN were detected in the frontal cortex of all C9ORF72 disease groups with the highest frequency in excitatory neurons in the C9ORF72-FTD group. Within the excitatory neurons, the cluster with the highest proportion of cells containing a CE had transcriptomic similarities to von Economo neurons, which are known to be vulnerable to TDP-43 pathology and selectively lost in C9ORF72-FTD. Differential gene expression and pathway analysis of CE-containing neurons revealed multiple dysregulated metabolic processes. Our findings reveal novel insights into the transcriptomic changes of neurons vulnerable to TDP-43 pathology.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Transcriptoma , Doença de Pick/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Análise de Sequência de RNA
11.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769256

RESUMO

Herpes simplex virus 1 (HSV-1) enters sensory neurons with the potential for productive or latent infection. For either outcome, HSV-1 must curtail the intrinsic immune response, regulate viral gene expression, and remove host proteins that could restrict viral processes. Infected cell protein 0 (ICP0), a virus-encoded E3 ubiquitin ligase, supports these processes by mediating the transfer of ubiquitin to target proteins to change their location, alter their function, or induce their degradation. To identify ubiquitination targets of ICP0 during productive infection in sensory neurons, we immunoprecipitated ubiquitinated proteins from primary adult sensory neurons infected with HSV-1 KOS (wild-type), HSV-1 n212 (expressing truncated, defective ICP0), and uninfected controls using anti-ubiquitin antibody FK2 (recognizing K29, K48, K63 and monoubiquitinated proteins), followed by LC-MS/MS and comparative analyses. We identified 40 unique proteins ubiquitinated by ICP0 and 17 ubiquitinated by both ICP0 and host mechanisms, of which High Mobility Group Protein I/Y (HMG I/Y) and TAR DNA Binding Protein 43 (TDP43) were selected for further analysis. We show that ICP0 ubiquitinates HMG I/Y and TDP43, altering protein expression at specific time points during productive HSV-1 infection, demonstrating that ICP0 manipulates the sensory neuronal environment in a time-dependent manner to regulate infection outcome in neurons.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Humanos , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células Receptoras Sensoriais/metabolismo
12.
IUBMB Life ; 74(8): 826-841, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35836360

RESUMO

Cholesterol is a ubiquitous and essential component of cellular membranes, as it regulates membrane structure and fluidity. Furthermore, cholesterol serves as a precursor for steroid hormones, oxysterol, and bile acids, that are essential for maintaining many of the body's metabolic processes. The biosynthesis and excretion of cholesterol is tightly regulated in order to maintain homeostasis. Although virtually all cells have the capacity to make cholesterol, the liver and brain are the two main organs producing cholesterol in mammals. Once produced, cholesterol is transported in the form of lipoprotein particles to other cell types and tissues. Upon formation of the blood-brain barrier (BBB) during embryonic development, lipoproteins cannot move between the central nervous system (CNS) and the rest of the body. As such, cholesterol biosynthesis and metabolism in the CNS operate autonomously without input from the circulation system in normal physiological conditions. Nevertheless, similar regulatory mechanisms for maintaining cholesterol homeostasis are utilized in both the CNS and peripheral systems. Here, we discuss the functions and metabolism of cholesterol in the CNS. We further focus on how different CNS cell types contribute to cholesterol metabolism, and how ApoE, the major CNS apolipoprotein, is involved in normal and pathophysiological functions. Understanding these basic mechanisms will aid our ability to elucidate how CNS cholesterol dysmetabolism contributes to neurogenerative diseases.


Assuntos
Sistema Nervoso Central , Metabolismo dos Lipídeos , Animais , Transporte Biológico , Encéfalo , Sistema Nervoso Central/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
13.
J Neural Transm (Vienna) ; 129(1): 95-103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34966974

RESUMO

Bipolar disorder shares symptoms and pathological pathways with other neurodegenerative diseases, including frontotemporal dementia (FTD). Since TAR DNA-binding protein 43 (TDP-43) is a neuropathological marker of frontotemporal dementia and it is involved in synaptic transmission, we explored the role of TDP-43 as a molecular feature of bipolar disorder (BD). Homogenates were acquired from frozen hippocampus of postmortem brains of bipolar disorder subjects. TDP-43 levels were quantified using an ELISA-sandwich method and compared between the postmortem brains of bipolar disorder subjects and age-matched control group. We found higher levels of TDP-43 protein in the hippocampus of BD (n = 15) subjects, when compared to controls (n = 15). We did not find associations of TDP-43 with age at death, postmortem interval, or age of disease onset. Our results suggest that protein TDP-43 may be potentially implicated in behavioral abnormalities seen in BD. Further investigation is needed to validate these findings and to examine the role of this protein during the disease course and mood states.


Assuntos
Transtorno Bipolar , Demência Frontotemporal , Transtorno Bipolar/patologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/diagnóstico , Hipocampo/patologia , Humanos
14.
Curr Neurol Neurosci Rep ; 22(11): 689-698, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36190653

RESUMO

PURPOSE OF REVIEW: Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS: Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Proteínas de Ligação a DNA/genética , Biomarcadores
15.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555863

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disease that progressively annihilates spinal cord motor neurons, causing severe motor decline and death. The disease is divided into familial and sporadic ALS. Mutations in the TAR DNA binding protein 43 (TDP-43) have been involved in the pathological emergence and progression of ALS, although the molecular mechanisms eliciting the disease are unknown. Transposable elements (TEs) and DNA sequences capable of transposing within the genome become dysregulated and transcribed in the presence of TDP-43 mutations. We performed RNA-Seq in human motor neurons (iMNs) derived from induced pluripotent stem cells (iPSCs) from TDP-43 wild-type-iMNs-TDP-43WT-and mutant-iMNs-TDP-43M337V-genotypes at 7 and 14 DIV, and, with state-of-the-art bioinformatic tools, analyzed whether TDP-43M337V alters both gene expression and TE activity. Our results show that TDP-43M337V induced global changes in the gene expression and TEs levels at all in vitro stages studied. Interestingly, many genetic pathways overlapped with that of the TEs activity, suggesting that TEs control the expression of several genes. TEs correlated with genes that played key roles in the extracellular matrix and RNA processing: all the regulatory pathways affected in ALS. Thus, the loss of TE regulation is present in TDP-43 mutations and is a critical determinant of the disease in human motor neurons. Overall, our results support the evidence that indicates TEs are critical regulatory sequences contributing to ALS neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Elementos de DNA Transponíveis/genética , Neurônios Motores/metabolismo , Mutação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
16.
J Biol Chem ; 295(3): 673-689, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31780563

RESUMO

Insoluble, hyperubiquitylated TAR DNA-binding protein of 43 kDa (TDP-43) in the central nervous system characterizes frontotemporal dementia and ALS in many individuals with these neurodegenerative diseases. The causes for neuropathological TDP-43 aggregation are unknown, but it has been suggested that stress granule (SG) formation is important in this process. Indeed, in human embryonic kidney HEK293E cells, various SG-forming conditions induced very strong TDP-43 ubiquitylation, insolubility, and reduced splicing activity. Osmotic stress-induced SG formation and TDP-43 ubiquitylation occurred rapidly and coincided with colocalization of TDP-43 and SG markers. Washout experiments confirmed the rapid dissolution of SGs, accompanied by normalization of TDP-43 ubiquitylation and solubility. Surprisingly, interference with the SG process using a protein kinase R-like endoplasmic reticulum kinase inhibitor (GSK2606414) or the translation blocker emetine did not prevent TDP-43 ubiquitylation and insolubility. Thus, parallel pathways may lead to pathological TDP-43 modifications independent of SG formation. Using a panel of kinase inhibitors targeting signaling pathways of the osmotic shock inducer sorbitol, we could largely rule out the stress-activated and extracellular signal-regulated protein kinase modules and glycogen synthase kinase 3ß. For arsenite, but not for sorbitol, quenching oxidative stress with N-acetylcysteine did suppress both SG formation and TDP-43 ubiquitylation and insolubility. Thus, sodium arsenite appears to promote SG formation and TDP-43 modifications via oxidative stress, but sorbitol stimulates TDP-43 ubiquitylation and insolubility via a novel pathway(s) independent of SG formation. In conclusion, pathological TDP-43 modifications can be mediated via multiple distinct pathways for which SGs are not essential.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Estresse Oxidativo/genética , Ubiquitinação/genética , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/química , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Proteínas de Choque Térmico/química , Humanos , Indóis/farmacologia , Mutação/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Agregação Patológica de Proteínas/genética , Transporte Proteico/genética , Transdução de Sinais/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Sorbitol/farmacologia
17.
J Biol Chem ; 295(8): 2506-2519, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31911437

RESUMO

TAR DNA-binding protein 43 (TDP-43) has emerged as a key player in many neurodegenerative pathologies, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Hallmarks of both FTLD and ALS are the toxic cytoplasmic inclusions of the prion-like C-terminal fragments of TDP-43 CTD (TDP-43 C-terminal domain), formed upon proteolytic cleavage of full-length TDP-43 in the nucleus and subsequent transport to the cytoplasm. Both full-length TDP-43 and its CTD are also known to form stress granules by coacervating with RNA in the cytoplasm during stress and may be involved in these pathologies. Furthermore, mutations in the PGRN gene, leading to haploinsufficiency and diminished function of progranulin (PGRN) protein, are strongly linked to FTLD and ALS. Recent reports have indicated that proteolytic processing of PGRN to smaller protein modules called granulins (GRNs) contributes to FTLD and ALS progression, with specific GRNs exacerbating TDP-43-induced cytotoxicity. Here we investigated the interactions between the proteolytic products of both TDP-43 and PGRN. Based on structural disorder and charge distributions, we hypothesized that GRN-3 and GRN-5 could interact with the TDP-43 CTD. We show that, under both reducing and oxidizing conditions, GRN-3 and GRN-5 interact with and differentially modulate TDP-43 CTD aggregation and/or liquid-liquid phase separation in vitro GRN-3 promoted insoluble aggregates of the TDP-43 CTD while GRN-5 mediated liquid-liquid phase separation. These results constitute the first observation of an interaction between GRNs and TDP-43, suggesting a mechanism by which attenuated PGRN function could lead to familial FTLD or ALS.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Granulinas/metabolismo , Degeneração Neural/patologia , Príons/química , Príons/metabolismo , Agregados Proteicos , Benzotiazóis/metabolismo , Modelos Biológicos , Oxirredução , Domínios Proteicos , RNA/metabolismo
18.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360978

RESUMO

Transactive response DNA-binding protein 43 (TDP-43) is a nucleic acid-binding protein that is involved in transcription and translation regulation, non-coding RNA processing, and stress granule assembly. Aside from its multiple functions, it is also known as the signature protein in the hallmark inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) patients. TDP-43 is built of four domains, but its low-complexity domain (LCD) has become an intense research focus that brings to light its possible role in TDP-43 functions and involvement in the pathogenesis of these neurodegenerative diseases. Recent endeavors have further uncovered the distinct biophysical properties of TDP-43 under various circumstances. In this review, we summarize the multiple structural and biochemical properties of LCD in either promoting the liquid droplets or inducing fibrillar aggregates. We also revisit the roles of the LCD in paraspeckles, stress granules, and cytoplasmic inclusions to date.


Assuntos
Amiloide/metabolismo , Proteínas de Ligação a DNA/química , Gotículas Lipídicas/metabolismo , Proteinopatias TDP-43/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos
19.
J Biol Chem ; 294(16): 6306-6317, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30814253

RESUMO

Pathological aggregation of the transactive response DNA-binding protein of 43 kDa (TDP-43) is associated with several neurodegenerative disorders, including ALS, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer's disease. TDP-43 aggregation appears to be largely driven by its low-complexity domain (LCD), which also has a high propensity to undergo liquid-liquid phase separation (LLPS). However, the mechanism of TDP-43 LCD pathological aggregation and, most importantly, the relationship between the aggregation process and LLPS remains largely unknown. Here, we show that amyloid formation by the LCD is controlled by electrostatic repulsion. We also demonstrate that the liquid droplet environment strongly accelerates LCD fibrillation and that its aggregation under LLPS conditions involves several distinct events, culminating in rapid assembly of fibrillar aggregates that emanate from within mature liquid droplets. These combined results strongly suggest that LLPS may play a major role in pathological TDP-43 aggregation, contributing to pathogenesis in neurodegenerative diseases.


Assuntos
Amiloide/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Agregação Patológica de Proteínas , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos
20.
J Biol Chem ; 294(18): 7360-7376, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837270

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, primarily autosomal dominant disease caused by a short GCN expansion in the PABPN1 (polyadenylate-binding protein nuclear 1) gene that results in an alanine expansion at the N terminus of the PABPN1 protein. Expression of alanine-expanded PABPN1 is linked to the formation of nuclear aggregates in tissues from individuals with OPMD. However, as with other nuclear aggregate-associated diseases, controversy exists over whether these aggregates are the direct cause of pathology. An emerging hypothesis is that a loss of PABPN1 function and/or aberrant protein interactions contribute to pathology in OPMD. Here, we present the first global proteomic analysis of the protein interactions of WT and alanine-expanded PABPN1 in skeletal muscle tissue. These data provide both insight into the function of PABPN1 in muscle and evidence that the alanine expansion alters the protein-protein interactions of PABPN1. We extended this analysis to demonstrate altered complex formation with and loss of function of TDP-43 (TAR DNA-binding protein 43), which we show interacts with alanine-expanded but not WT PABPN1. The results from our study support a model where altered protein interactions with alanine-expanded PABPN1 that lead to loss or gain of function could contribute to pathology in OPMD.


Assuntos
Alanina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Oculofaríngea/metabolismo , Proteínas Nucleares/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Proteômica , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroporação , Feminino , Masculino , Camundongos , Peso Molecular , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , Estudo de Prova de Conceito , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa