Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35142363

RESUMO

TDP-43 (also known as TARDBP) is a nuclear splicing factor functioning in pre-mRNA processing. Its C-terminal 35-kDa fragment (TDP-35) forms inclusions or aggregates in cytoplasm, and sequesters full-length TDP-43 into the inclusions through binding with RNA. We extended the research to investigate whether TDP-35 inclusions sequester other RNA-binding proteins (RBPs) and how RNA-binding specificity has a role in this sequestration process. We have characterized T-cell restricted intracellular antigen-1 (TIA1) and other RBPs that can be sequestered into the TDP-35 inclusions through specific RNA binding, and found that this sequestration leads to the dysfunction of TIA1 in maturation of target pre-mRNA. Moreover, we directly visualized the dynamic sequestration of TDP-43 by the cytoplasmic TDP-35 inclusions by live-cell imaging. Our results demonstrate that TDP-35 sequesters some specific RBPs and this sequestration is assisted by binding with RNA in a sequence-specific manner. This study provides further evidence in supporting the hijacking hypothesis for RNA-assisted sequestration and will be beneficial to further understanding of the TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Proteinopatias TDP-43 , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/metabolismo , RNA/genética , RNA/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteinopatias TDP-43/metabolismo
2.
Gynecol Endocrinol ; 40(1): 2328613, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38497425

RESUMO

OBJECTIVE: We aimed to screen and construct a predictive model for pregnancy loss in polycystic ovary syndrome (PCOS) patients through machine learning methods. METHODS: We obtained the endometrial samples from 33 PCOS patients and 7 healthy controls at the Reproductive Center of the Second Hospital of Lanzhou University from September 2019 to September 2020. Liquid chromatography tandem mass spectrometry (LCMS/MS) was conducted to identify the differentially expressed proteins (DEPs) of the two groups. Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to analyze the related pathways and functions of the DEPs. Then, we used machine learning methods to screen the feature proteins. Multivariate Cox regression analysis was also conducted to establish the prognostic models. The performance of the prognostic model was then evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). In addition, the Bootstrap method was conducted to verify the generalization ability of the model. Finally, linear correlation analysis was performed to figure out the correlation between the feature proteins and clinical data. RESULTS: Four hundred and fifty DEPs in PCOS and controls were screened out, and we obtained some pathways and functions. A prognostic model for the pregnancy loss of PCOS was established, which has good discrimination and generalization ability based on two feature proteins (TIA1, COL5A1). Strong correlation between clinical data and proteins were identified to predict the reproductive outcome in PCOS. CONCLUSION: The model based on the TIA1 and COL5A1 protein could effectively predict the occurrence of pregnancy loss in PCOS patients and provide a good theoretical foundation for subsequent research.


Assuntos
Síndrome do Ovário Policístico , Gravidez , Humanos , Feminino , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/genética , Proteômica , Prognóstico , Curva ROC
3.
J Virol ; 96(12): e0068622, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638780

RESUMO

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Assuntos
Infecções por Coronavirus , Endorribonucleases , Vírus da Bronquite Infecciosa , Grânulos de Estresse , Replicação Viral , Animais , Antivirais/farmacologia , Embrião de Galinha , Galinhas , Infecções por Coronavirus/veterinária , Endorribonucleases/genética , Vírus da Bronquite Infecciosa/enzimologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , RNA de Cadeia Dupla
4.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298167

RESUMO

Eosinophilic/T-cell chorionic vasculitis (ETCV) is an idiopathic lesion composed of eosinophils, CD3+ T lymphocytes, and histiocytes. In twins, ETCV may affect only one chorionic plate, a feature defined as "discordant". We present a case of ETCV discordance in a diamniotic dichorionic placenta at 38 weeks of gestation, in which the female twin was small for gestational age, weighing 2670 g (25th percentile). The corresponding placental territory presented ETCV in two close chorionic vessels with concordance of the fetal inflammatory response. Immunohistochemistry showed an abundance of CD3+/CD4+/CD25+T lymphocytes, CD68 PG M1+ macrophages, and scattered CD8+ T cells with focal TIA-1 positivity. Granzyme B, CD20 B lymphocytes, and CD56 natural killer cells were negative. High-grade villitis of unknown etiology (VUE) was additionally found and displayed comparable ETCV findings, except for an equivalent ratio of CD4+/CD8+ T cells, but TIA-1 was focally expressed. VUE was associated with chronic histiocytic intervillositis (CHI). The combination of ETCV, VUE, and CHI may have been responsible for reduced fetal growth. Concordance was observed in the ETCV and TIA-1 expression, both in ETCV and in VUE, which is a maternal response. These findings may suggest a common antigen or chemokine pathway to which both mother and fetus accordingly responded.


Assuntos
Doenças Placentárias , Vasculite , Feminino , Gravidez , Humanos , Placenta/metabolismo , Doenças Placentárias/metabolismo , Córion/metabolismo , Linfócitos T CD8-Positivos , Vilosidades Coriônicas/metabolismo
5.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175905

RESUMO

Muscarinic acetylcholine receptor M3 (M3R) has repeatedly been shown to be prominently expressed in human colorectal cancer (CRC), playing roles in proliferation and cell invasion. Its therapeutic targetability has been suggested in vitro and in animal models. We aimed to investigate the clinical role of MR3 expression in CRC for human survival. Surgical tissue samples from 754 CRC patients were analyzed for high or low immunohistochemical M3R expression on a clinically annotated tissue microarray (TMA). Immunohistochemical analysis was performed for established immune cell markers (CD8, TIA-1, FOXP3, IL 17, CD16 and OX 40). We used Kaplan-Meier curves to evaluate patients' survival and multivariate Cox regression analysis to evaluate prognostic significance. High M3R expression was associated with increased survival in multivariate (hazard ratio (HR) = 0.52; 95% CI = 0.35-0.78; p = 0.001) analysis, as was TIA-1 expression (HR = 0.99; 95% CI = 0.94-0.99; p = 0.014). Tumors with high M3R expression were significantly more likely to be grade 2 compared to tumors with low M3R expression (85.7% vs. 67.1%, p = 0.002). The 5-year survival analysis showed a trend of a higher survival rate in patients with high M3R expression (46%) than patients with low M3R expression CRC (42%) (p = 0.073). In contrast to previous in vitro and animal model findings, this study demonstrates an increased survival for CRC patients with high M3R expression. This evidence is highly relevant for translation of basic research findings into clinically efficient treatments.


Assuntos
Neoplasias Colorretais , Receptores Muscarínicos , Animais , Humanos , Neoplasias Colorretais/genética , Receptor Muscarínico M3/metabolismo
6.
Cancer Immunol Immunother ; 71(3): 565-578, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275008

RESUMO

BACKGROUND: B7 homolog 4 (B7-H4) is a negative regulator of immune responses, but its immunoregulatory role in the tumor microenvironment of upper urinary tract urothelial carcinoma (UTUC) remains unclear. METHODS: We measured the immunohistochemical expression of B7-H4, CD8 and T cell intracellular antigen 1 (TIA-1), a marker of activated CD8, in 133 patients with UTUC who underwent nephroureterectomy. We also studied the relationship between B7-H4, CD8 and TIA-1 expression and clinicopathological characteristics. RESULTS: B7-H4 was mainly expressed on the surface in tumor cells, while CD8 and TIA-1 were often expressed in tumor-infiltrating lymphocytes. Elevated expression of B7-H4 in tumor cells was associated with a poorer histological grade, higher pT stage, regional lymph node metastasis, lymphovascular invasion, poorer response of recurrent metastatic lesions to systemic chemotherapy and shorter overall survival. Expression of CD-8 or TIA-1 alone did not correlate directly with clinicopathological characteristics, but among the patients with higher B7-H4 expression in the primary tumors, those with higher CD8 or TIA-1 expression had a better response to systemic chemotherapy, and longer survival, than these with lower CD8 or TIA-1 expression. Cox multivariate regression analysis revealed that higher expression of B7-H4 was associated with shorter overall survival. CONCLUSIONS: These findings suggest that B7-H4 expression in the tumor microenvironment influences the progression of UTUC through cancer immunity and metabolic activity. Tumor cell-associated B7-H4 might be a potential target for cancer immunotherapies.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Urológicas/genética , Neoplasias Urológicas/patologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais
7.
Fish Shellfish Immunol ; 121: 478-486, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35085738

RESUMO

T-cell intracellular antigen (TIA)-1 is a prion-related RNA-binding protein involved in splicing and translational repression, and regulates translation in response to stress conditions by isolating target mRNAs in stress granules (SGs). However, little is known about the potential roles of fish TIA-1 and how it works in viral infection. In this study, the TIA-1 (EcTIA-1) homolog from orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) sequence of EcTIA-1 encoded a 388 amino acid protein with predicted molecular mass of 42.73 kDa. EcTIA-1 contains three conserved domains of RNA recognition motif (RRM) that may interact with RNA via its second and third RRMs. Overexpression of EcTIA-1 inhibited red-spotted grouper nervous necrosis virus (RGNNV) replication and positively regulated interferon immune response, which was increased by knockdown of EcTIA-1. RGNNV induced formation of SGs in cells with EcTIA-1 overexpression. These results provide a novel insight into understanding the roles of fish TIA-1 in response to RNA viruses.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Infecções por Vírus de RNA , Antígeno-1 Intracelular de Células T/imunologia , Animais , Bass/genética , Bass/imunologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata , Necrose , Nodaviridae , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/veterinária , Antígeno-1 Intracelular de Células T/genética
8.
Vet Pathol ; 59(6): 931-939, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052863

RESUMO

The expression of cytotoxic molecules in feline intestinal T-cell lymphoma cells was examined immunohistochemically using endoscopic samples of 50 cases. Cases included 14 large-cell lymphomas (LCLs) and 36 small-cell lymphomas (SCLs). Most LCL and some SCL exhibited marked erosion and villous atrophy. Clonal T-cell receptor (TCR) gene rearrangement was detected in 10/14 (71%) LCL cases and 33/36 (92%) SCL cases. No clonal immunoglobulin heavy chain (IgH) gene rearrangement was detected. Immunohistochemically, all cases were positive for CD3 and negative for CD79α, CD30, CD56, and Foxp3. LCLs were positive for CD8 in 13/14 cases (93%), T-cell intracellular antigen 1 (TIA1) in 14/14 cases (100%), and granzyme B in 6/14 cases (43%). SCLs were positive for CD8 in 28/36 cases (78%), TIA1 in 33/36 cases (92%), and granzyme B in 2/36 cases (6%). TIA1- and granzyme B-positive neoplastic lymphocytes were predominantly observed in the mucosal epithelium of 10/50 cases (20%) and 6/50 cases (12%), respectively. No significant differences in survival time were found based on cell size or epitheliotropism. However, cases with TIA1+ and/or granzyme B+ neoplastic lymphocytes predominantly in the mucosal epithelium had significantly shorter survival times (P < .05), suggesting that mucosal epithelium infiltration of neoplastic cells with a cytotoxic immunophenotype is a negative prognostic factor. Therefore, intraepithelial cytotoxic lymphocytes may be associated with mucosal injury and impaired intestinal function, leading to a poor prognosis in cats with intestinal T-cell lymphoma.


Assuntos
Doenças do Gato , Linfoma de Células T , Animais , Gatos , Fatores de Transcrição Forkhead , Granzimas , Cadeias Pesadas de Imunoglobulinas , Linfoma de Células T/patologia , Linfoma de Células T/veterinária , Prognóstico , Receptores de Antígenos de Linfócitos T
9.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163320

RESUMO

T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is expressed in many tissues and in the vast majority of species, although it was first discovered as a component of human cytotoxic T lymphocytes. TIA1 has a dual localization in the nucleus and cytoplasm, where it plays an important role as a regulator of gene-expression flux. As a multifunctional master modulator, TIA1 controls biological processes relevant to the physiological functioning of the organism and the development and/or progression of several human pathologies. This review summarizes our current knowledge of the molecular aspects and cellular processes involving TIA1, with relevance for human pathophysiology.


Assuntos
Núcleo Celular , Proteínas de Ligação a RNA , Antígeno-1 Intracelular de Células T , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo , Linfócitos T/metabolismo
10.
Mol Biol Rep ; 48(9): 6349-6361, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34410578

RESUMO

BACKGROUND: Neuronal development is a tightly controlled process involving multi-layered regulatory mechanisms. While transcriptional pathways regulating neurodevelopment are well characterized, post-transcriptional programs are still poorly understood. TIA1 is an RNA-binding protein that can regulate splicing, stability, or translation of target mRNAs, and has been shown to play critical roles in stress response and neurodevelopment. However, the identity of mRNAs regulated by TIA1 during neurodevelopment under unstressed conditions is still unknown. METHODS AND RESULTS: To identify the mRNAs targeted by TIA1 during the first stages of human neurodevelopment, we performed RNA immunoprecipitation-sequencing (RIP-seq) on human embryonic stem cells (hESCs) and derived neural progenitor cells (NPCs), and cortical neurons under unstressed conditions. While there was no change in TIA1 protein levels, the number of TIA1 targeted mRNAs decreased from pluripotent cells to neurons. We identified 2400, 845, and 330 TIA1 mRNA targets in hESCs, NPC, and neurons, respectively. The vast majority of mRNA targets in hESC were genes associated with neurodevelopment and included autism spectrum disorder-risk genes that were not bound in neurons. Additionally, we found that most TIA1 mRNA targets have reduced ribosomal engagement levels. CONCLUSION: Our results reveal TIA1 mRNA targets in hESCs and during human neurodevelopment, indicate that translation repression is a key process targeted by TIA1 binding and implicate TIA1 function in neuronal differentiation.


Assuntos
Neurogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo , Transtorno do Espectro Autista/genética , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Imunoprecipitação/métodos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ribossomos/metabolismo , Análise de Sequência de RNA/métodos , Transfecção
11.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884582

RESUMO

T-cell intracellular antigen 1 (TIA1) is a multifunctional RNA-binding protein involved in regulating gene expression and splicing during development and in response to environmental stress, to maintain cell homeostasis and promote survival. Herein, we used TIA1-deficient murine embryonic fibroblasts (MEFs) to study their role in mitochondria homeostasis. We found that the loss of TIA1 was associated with changes in mitochondrial morphology, promoting the appearance of elongated mitochondria with heterogeneous cristae density and size. The proteomic patterns of TIA1-deficient MEFs were consistent with expression changes in molecular components related to mitochondrial dynamics/organization and respiration. Bioenergetics analysis illustrated that TIA1 deficiency enhances mitochondrial respiration. Overall, our findings shed light on the role of TIA1 in mitochondrial dynamics and highlight a point of crosstalk between potential pro-survival and pro-senescence pathways.


Assuntos
Respiração Celular , Embrião de Mamíferos/patologia , Metabolismo Energético , Fibroblastos/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Antígeno-1 Intracelular de Células T/fisiologia , Animais , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
12.
Dev Biol ; 455(2): 420-433, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31330130

RESUMO

Temporally-regulated maternal RNA translation is essential for embryonic development, with defective degradation resulting in stalled 2-cell embryos. We show that DDX1, a DEAD box protein implicated in RNA transport, may be a key regulator of maternal RNA utilization. DDX1 protein localizes exclusively to cytoplasmic granules in both oocytes and early stage mouse embryos, with DDX1 requiring RNA for retention at these sites. Homozygous knockout of Ddx1 causes stalling of mouse embryos at the 2-4 cell stages. These results suggest a maternal RNA-dependent role for DDX1 in the progression of embryos past the 2-4 cell stage. The change in appearance of DDX1-containing granules in developing embryos further supports a role in temporally-regulated degradation of RNAs. We carried out RNA-immunoprecipitations (RNA-IPs) to identify mRNAs bound to DDX1 in 2-cell embryos, focusing on 16 maternal genes previously shown to be essential for embryonic development past the 1- to 2-cell stages. Five of these RNAs were preferentially bound by DDX1: Ago2, Zar1, Tle6, Floped and Tif1α. We propose that DDX1 controls access to subsets of key maternal RNAs required for early embryonic development.


Assuntos
RNA Helicases DEAD-box/metabolismo , Desenvolvimento Embrionário/fisiologia , Animais , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Técnicas de Cultura de Tecidos
13.
Eur J Immunol ; 49(2): 277-289, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30578631

RESUMO

Immune cells sense and programme its cellular machinery appropriately to the environmental changes through the activation of cytoprotective adaptive pathway so-called the "integrated stress response (ISR)". However, the mechanisms implicated in ISR-induced protective responses are poorly understood. Here, we show that ISR activation by arsenite (Ar) results in suppression of IL-1ß production in macrophages and inhibition of DSS-induced colitis in a murine model through a novel posttranscriptional and translation regulatory (PTR) mechanism. Ar triggers PTR events through eIF2α-phosphorylation, which results in the attenuation of active polysome formation leading to the accumulation of translationally stalled IL-1ß mRNAs. Translationally stalled IL-1ß mRNAs recruit RNA-binding proteins (TIA-1/TIAR), resulting in the formation of RBP-RNA complexes known as stress granules (SGs). The SGs bound IL-1ß mRNAs might undergo degradation through induction of autophagy. Also, we show that Ar posttranslationally impairs processing and secretion of IL-1ß by diminishing inflammasome activation. Altogether, this study unveils a novel mechanism of IL-1ß regulation and further suggests that pharmacological activation of cytoprotective ISR pathway might provide an effective therapeutic intervention against inflammatory diseases.


Assuntos
Colite/imunologia , Interleucina-1beta/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Biossíntese de Proteínas/imunologia , Estabilidade de RNA/imunologia , Estresse Fisiológico/imunologia , Animais , Arsenitos/farmacologia , Linhagem Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/farmacologia , Inflamassomos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Fisiológico/efeitos dos fármacos
14.
Neurochem Res ; 45(12): 2884-2893, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025330

RESUMO

Amyotrophic lateral sclerosis (ALS) is a degenerative disorder caused by motor neuron loss. T-cell intracellular antigen-1 (TIA-1), a cytotoxic T lymphocyte granule-associated RNA binding protein, is a key component of stress granules. However, it remains uncertain whether ALS-causing superoxide dismutase-1 (SOD1) toxicity alters the dynamics of stress granules. Thus, through mouse and cell line models, and human cells and tissues, we showed the subcellular location of TIA-1 and its recruitment by stress granules following mutant SOD1-related stimuli. An overexpression of MTSOD1 resulted in increased TIA-1-positive cytoplasmic inclusions in the spinal cord tissue of SOD1G93A transgenic mouse and the SOD1G86S familial ALS patient. Moreover, we demonstrated the stages of ALS-like disease-dependent increase in TIA-1 in the spinal cord of transgenic mice. A similar increase of TIA-1 was found in the spinal cord of the SOD1G86S patient and induced pluripotent stem cell-derived neural stem cells from the SOD1G17S patient. By using immunoprecipitation assays in wild type (WT) human SOD1 (hSOD1) or mutant (MT) hSOD1-transfected motor neuronal cell lines and SOD1G93A transgenic mouse model, we observed that MTSOD1 interacts with TIA-1. In WT or MT hSOD1-transfected HEK293 and NSC-34 cells, the formation of TIA-1-positive stress granules was delayed in MTSOD1 by sodium arsenite treatment. These findings suggest that MTSOD1 could affect the dynamics of stress granules through the abnormal MTSOD1-TIA-1 interaction. Consequently, the resulting pathological TIA-1 may be involved in RNA metabolism found in ALS.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Superóxido Dismutase-1/metabolismo , Antígeno-1 Intracelular de Células T/metabolismo , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética
15.
Acta Neuropathol ; 137(2): 259-277, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30465259

RESUMO

RNA binding proteins (RBPs) are strongly linked to the pathophysiology of motor neuron diseases. Recent studies show that RBPs, such as TIA1, also contribute to the pathophysiology of tauopathy. RBPs co-localize with tau pathology, and reduction of TIA1 protects against tau-mediated neurodegeneration. The mechanism through which TIA1 reduction protects against tauopathy, and whether TIA1 modulates the propagation of tau, are unknown. Previous studies indicate that the protective effect of TIA1 depletion correlates with both the reduction of oligomeric tau and the reduction of pathological TIA1 positive tau inclusions. In the current report, we used a novel tau propagation approach to test whether TIA1 is required for producing toxic tau oligomers and whether TIA1 reduction would provide protection against the spread of these oligomers. The approach used young PS19 P301S tau mice at an age at which neurodegeneration would normally not yet occur and seeding oligomeric or fibrillar tau by injection into hippocampal CA1 region. We find that propagation of exogenous tau oligomers (but not fibrils) across the brain drives neurodegeneration in this model. We demonstrate that TIA1 reduction essentially brackets the pathophysiology of tau, being required for the production of tau oligomers, as well as regulating the response of neurons to propagated toxic tau oligomers. These results indicate that RNA binding proteins modulate the pathophysiology of tau at multiple levels and provide insights into possible therapeutic approaches to reduce the spread of neurodegeneration in tauopathy.


Assuntos
Encéfalo/patologia , Antígeno-1 Intracelular de Células T/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Tauopatias/patologia
16.
Biochem Biophys Res Commun ; 503(4): 2569-2575, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30017198

RESUMO

T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis by controlling global gene expression in response to dynamic regulatory changes and environmental stress. Here, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF/TOF) to identify protein changes associated with the down-regulated expression of TIA proteins. We detected 30 differentially expressed proteins (DEPs), 24 of which were identified, and some of these DEPs were validated by western blotting. In silico analysis showed that DEPs were associated with metabolic processes, detoxification and proteostasis. We mapped the DEPs to the available biological pathways and networks, which included the metabolism of small molecules such as sugars, lipids, amino acids, and nucleotides. Our findings support previous studies and suggest that low expression of TIA proteins might act as a potential adaptive switch to link gene expression reprogramming to a proliferative phenotype mediated by a hormesis phenomenon.


Assuntos
Antígenos/metabolismo , Perfilação da Expressão Gênica , Hormese , Proteômica/métodos , Linfócitos T/imunologia , Animais , Eletroforese em Gel Bidimensional , Redes Reguladoras de Genes , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Biochem Biophys Res Commun ; 497(4): 1117-1122, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29496454

RESUMO

Precise and early diagnosis is critical to improve the survival rate of hepatocellular carcinoma (HCC) patients. Although several genetic and protein markers have been developed and are currently used for diagnosis, prognosis, risk stratification, and therapeutic monitoring, application of these markers still needs to be improved for better specificity and efficacy. In this study, we investigated the relative expression of mitochondrial dynamics-regulating factors including T-cell intercellular antigen protein-1 (TIA-1), mitochondrial fission factor (MFF), microRNA (miR)-200a-3p, and miR-27a/b in the liver tissues from HCC patients. The expressions of TIA-1 and MFF were augmented in the cancerous liver tissues compared to the corresponding non-tumor tissues at mRNA and protein level, while the levels of miR-200a-3p and miR-27a/b were relatively lower in the cancerous liver tissues. In addition, high levels of TIA-1 and MFF mRNA were related to the poor survival rate of HCC patients. Our results indicated that the expressions of TIA-1, MFF, miR-200a-3p, and miR-27a/b in the cancerous liver tissues differed to these in non-cancerous tissues of HCC patients, demonstrating that these gene expressions could be potential markers for the diagnosis and prognosis of HCC.


Assuntos
Biomarcadores/análise , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Proteínas de Membrana/análise , MicroRNAs/análise , Proteínas Mitocondriais/análise , Taxa de Sobrevida , Antígeno-1 Intracelular de Células T/análise
18.
Cell Immunol ; 334: 42-48, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30327138

RESUMO

Ulcerative colitis (UC) is a persistent inflammatory illness, which is clinically categorised as Inflammatory bowel disease (IBD), affecting millions of people worldwide. The precise cause behind the pathology of the disease remains unknown. However, the involvement of multiple factors including genetic predisposition, immunological deregulations, microbiota imbalance, and environmental triggers has been suggested. Amongst all these factors, the over-active immunological response reported in UC patients seems to be a promising target for therapy. Moreover, identification of gene signatures associated with disease onset and progression would help in better understanding of the molecular mechanisms involved in the disease pathogenesis. Here, we have conducted meta-analysis of gene expression profiles of UC patient microarray datasets accessible in public databases and further validated the in-silico findings in UC patients' blood samples. Our study reveals that UC pathogenesis perturbs expression of several inflammatory genes. In addition, we report a novel gene signature comprising of TIA1 (T cell restricted intracellular antigen) and TIAR (TIA1 related protein; also known as TIAL1), which were found to be significantly downregulated in UC patients. TIA1 and TIAR are RNA-binding proteins (RBPs), which function as a translational represser by binding to ARE sequences in the 3' UTR of mRNAs encoding inflammatory mediators including cytokines. Our findings demonstrate that deletion of TIAR using gene specific siRNAs in-vitro results in enhanced production of inflammatory cytokine IL-1ß. In conclusion, the findings of this study reveal that down regulation of TIA1/TIAR genes could be responsible for UC associated inflammation. This study highlights the usefulness of the meta-analysis approach in the identification of unique gene signatures that might deliver mechanistic insights into UC pathogenesis and possibly assist in discovery of prognostic markers and therapeutic interventions.


Assuntos
Colite Ulcerativa/imunologia , Proteínas de Ligação a RNA/imunologia , Transcriptoma/imunologia , Regiões 3' não Traduzidas/imunologia , Regulação para Baixo/imunologia , Expressão Gênica/imunologia , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-1beta/imunologia , RNA Mensageiro/imunologia , Antígeno-1 Intracelular de Células T/imunologia
19.
FASEB J ; 31(4): 1337-1353, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28011649

RESUMO

Mammalian cells respond to various environmental stressors to form stress granules (SGs) by arresting cytoplasmic mRNA, protein translation element, and RNA binding proteins. Virus-induced SGs function in different ways, depending on the species of virus; however, the mechanism of SG regulation of virus replication is not well understood. In this study, Newcastle disease virus (NDV) triggered stable formation of bona fide SGs on HeLa cells through activating the protein kinase R (PKR)/eIF2α pathway. NDV-induced SGs contained classic SG markers T-cell internal antigen (TIA)-1, Ras GTPase-activating protein-binding protein (G3BP)-1, eukaryotic initiation factors, and small ribosomal subunit, which could be disassembled in the presence of cycloheximide. Treatment with nocodazole, a microtubule disruption drug, led to the formation of relatively small and circular granules, indicating that NDV infection induces canonical SGs. Furthermore, the role of SGs on NDV replication was investigated by knockdown of TIA-1 and TIA-1-related (TIAR) protein, the 2 critical components involved in SG formation from the HeLa cells, followed by NDV infection. Results showed that depletion of TIA-1 or TIAR inhibited viral protein synthesis, reduced extracellular virus yields, but increased global protein translation. FISH revealed that NDV-induced SGs contained predominantly cellular mRNA rather than viral mRNA. Deletion of TIA-1 or TIAR reduced NP mRNA levels in polysomes. These results demonstrate that NDV triggers stable formation of bona fide SGs, which benefit viral protein translation and virus replication by arresting cellular mRNA.-Sun, Y., Dong, L., Yu, S., Wang, X., Zheng, H., Zhang, P., Meng, C., Zhan, Y., Tan, L., Song, C., Qiu, X., Wang, G., Liao, Y., Ding, C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Doença de Newcastle/fisiologia , Replicação Viral , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Galinhas , DNA Helicases , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HeLa , Humanos , Vírus da Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/patogenicidade , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Biossíntese de Proteínas , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA , Subunidades Ribossômicas/metabolismo , Antígeno-1 Intracelular de Células T , eIF-2 Quinase/metabolismo
20.
Biochem J ; 474(10): 1669-1687, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28298474

RESUMO

Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis-acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis-acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-ß and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis-acting element and trans-acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Imunoprecipitação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a Poli(A)/antagonistas & inibidores , Proteínas de Ligação a Poli(A)/genética , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/química , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Antígeno-1 Intracelular de Células T
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa