Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 300(5): 107254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569934

RESUMO

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Assuntos
Conectina , Proteínas com Domínio LIM , Proteínas Musculares , Miócitos Cardíacos , Proteínas do Tecido Nervoso , Proteínas Nucleares , Sarcômeros , Animais , Humanos , Camundongos , Ratos , Conectina/metabolismo , Conectina/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Sarcômeros/metabolismo , Fatores de Transcrição
2.
Clin Genet ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015008

RESUMO

Limb-girdle muscular dystrophy type 2G/R7 (LGMD2G/R7) is an ultra-rare condition initially identified within the Brazilian population. We aimed to expand clinical and genetic information about this disease, including its worldwide distribution. A multicenter historical cohort study was performed at 13 centers in Brazil in which data from index cases and their affected relatives from consecutive families with LGMD2G/R7 were reviewed from July 2017 to August 2023. Additionally, a systematic literature review was conducted to identify case reports and series of the disease worldwide. Forty-one LGMD2G/R7 cases were described in the Brazilian cohort, being all subjects homozygous for the c.157C>T/(p.Gln53*) variant in TCAP. Survival curves showed that the median disease duration before individuals required walking aids was 21 years. Notably, women exhibited a slower disease progression, requiring walking aids 13 years later than men. LGMD2G/R7 was frequently reported not only in Brazil but also in China and Bulgaria, with 119 cases identified globally, with possible founder effects in the Brazilian, Eastern European, and Asian populations. These findings are pivotal in raising awareness of LGMD2G/R7, understanding its progression, and identifying potential modifiers. This can significantly contribute to the development of future natural history studies and clinical trials for this disease.

3.
Neurogenetics ; 23(1): 37-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982307

RESUMO

Limb-girdle muscular dystrophy (LGMD) is a group of clinically and genetically heterogeneous neuromuscular disorders. LGMD-R7, which is caused by telethonin gene (TCAP) mutations, is one of the rarest forms of LGMD, and only a small number of LGMD-R7 cases have been described and mostly include patients from Brazil. A total of two LGMD-R7 patients were enrolled at a Chinese neuromuscular center. Demographic and clinical data were collected. Laboratory investigations and electromyography were performed. Routine and immunohistochemistry staining of muscle specimens was performed, and a next-generation sequencing panel array for genes associated with hereditary neuromuscular disorders was used for analysis. The patients exhibited predominant muscle weakness. Electromyography revealed myopathic changes. The muscle biopsy showed myopathic features, such as increased fiber size variation, muscle fiber atrophy and regeneration, slight hyperplasia of the connective tissue, and disarray of the myofibrillar network. Two patients were confirmed to have mutations in the open reading frame of TCAP by next-generation sequencing. One patient had compound heterozygous mutations, and the other patient harbored a novel homozygous mutation. Western blotting analysis of the skeletal muscle lysate confirmed the absence of telethonin in the patients. We described two LGMD-R7 patients presenting a classical LGMD phenotype and a novel homozygous TCAP mutation. Our research expands the spectrum of LGMD-R7 due to TCAP mutations based on patients from a Chinese neuromuscular center.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , China , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Fenótipo
4.
Basic Res Cardiol ; 116(1): 14, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637999

RESUMO

Titin truncating variants are a well-established cause of cardiomyopathy; however, the role of titin missense variants is less well understood. Here we describe the generation of a mouse model to investigate the underlying disease mechanism of a previously reported titin A178D missense variant identified in a family with non-compaction and dilated cardiomyopathy. Heterozygous and homozygous mice carrying the titin A178D missense variant were characterised in vivo by echocardiography. Heterozygous mice had no detectable phenotype at any time point investigated (up to 1 year). By contrast, homozygous mice developed dilated cardiomyopathy from 3 months. Chronic adrenergic stimulation aggravated the phenotype. Targeted transcript profiling revealed induction of the foetal gene programme and hypertrophic signalling pathways in homozygous mice, and these were confirmed at the protein level. Unsupervised proteomics identified downregulation of telethonin and four-and-a-half LIM domain 2, as well as the upregulation of heat shock proteins and myeloid leukaemia factor 1. Loss of telethonin from the cardiac Z-disc was accompanied by proteasomal degradation; however, unfolded telethonin accumulated in the cytoplasm, leading to a proteo-toxic response in the mice.We show that the titin A178D missense variant is pathogenic in homozygous mice, resulting in cardiomyopathy. We also provide evidence of the disease mechanism: because the titin A178D variant abolishes binding of telethonin, this leads to its abnormal cytoplasmic accumulation. Subsequent degradation of telethonin by the proteasome results in proteasomal overload, and activation of a proteo-toxic response. The latter appears to be a driving factor for the cardiomyopathy observed in the mouse model.


Assuntos
Cardiomiopatias/genética , Edição de Genes , Mutação de Sentido Incorreto , Proteínas Quinases/genética , Fatores Etários , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Conectina/metabolismo , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Proteólise , Proteoma , Transcriptoma , Função Ventricular Esquerda
5.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802723

RESUMO

The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.


Assuntos
Cardiomiopatias/metabolismo , Proteínas Musculares/metabolismo , Doenças Musculares/metabolismo , Animais , Humanos , Modelos Biológicos , Proteínas Musculares/química , Proteínas Musculares/genética , Mutação/genética
6.
Pacing Clin Electrophysiol ; 43(8): 838-846, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588437

RESUMO

BACKGROUND: Telethonin (TCAP) is a Z-disk protein that maintains cytoskeletal integrity and various signaling pathways in cardiomyocytes. TCAP is shown to modulate α-subunit of the human cardiac sodium channel (hNav 1.5) by direct interactions. Several TCAP variants are found in cardiomyopathies. We sought to investigate whether TCAP variants are associated with arrhythmia syndromes. METHODS: Mutational analyses for TCAP were performed in 303 Japanese patients with Brugada syndrome, arrhythmogenic right ventricular cardiomyopathy, and J-wave pattern ECG. Using patch-clamp techniques, electrophysiological characteristics of hNav 1.5 were studied in HEK-293 cells stably expressing hNav 1.5 and transiently transfected with wild-type (WT) or variant TCAP. RESULTS: We identified two TCAP variants, c.145G>A:p.E49K and c.458G>A:p.R153H, in four individuals. p.E49K was found in two patients with ARVC or BrS. p.R153H was found in two patients with BrS or J-wave pattern ECG. No patient had variant hNav 1.5. Patch-clamp experiments demonstrated that peak sodium currents were significantly reduced in cells expressing p.R153H and p.E49K compared with WT-TCAP (66%, p.R153H; 72%, p.E49K). Voltage dependency of peak IV curve was rightward-shifted by 5 mV in cells expressing p.E49K compared with WT-TCAP. Voltage dependency of activation was not leftward-shifted by p.R153H, while voltage dependency of steady-state inactivation was leftward-shifted by p.E49K. CONCLUSIONS: We found two TCAP variants in the patients with BrS, J-wave pattern ECG, and ARVC that can cause loss-of-function of the hNav 1.5 in heterologous expression systems. Our observation suggests that these variants might impair INa and be associated with the patients' electrophysiological phenotypes. Further studies linking our experimental data to clinical phenotypes are warranted.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Síndrome de Brugada/genética , Conectina/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adolescente , Adulto , Idoso , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Síndrome de Brugada/fisiopatologia , Eletrocardiografia , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp
7.
Protein Expr Purif ; 140: 74-80, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28811266

RESUMO

Telethonin anchors the N-terminal region of titin in the Z-disk of the sarcomere by binding to two immunoglobulin-like (Ig) domains (Z1 and Z2) of titin (Z1Z2). Thereby telethonin plays an important role in myofibril assembly and in muscle development and functional regulation. The expression and purification of recombinant telethonin is very challenging. In previous studies, recombinant telethonin expressed from E. coli was refolded in the presence of Z1Z2. Here, we report various strategies to establish a reliable and efficient protocol for the preparation of telethonin and titin Z1Z2 protein. First, a co-expression strategy was designed to obtain soluble Z1Z2/telethonin complexes. The concentration of antibiotics and the type of expression vector were found to be important for achieving high yields of purified complex. Second, the five cysteine residues of telethonin were mutated to serine to avoid severe problems with cysteine oxidation. Third, a short version of telethonin (telethonin1-90) was designed to avoid the proteolytic degradation observed for longer constructs of the protein. The short telethonin formed a highly stable complex with Z1Z2 with no degradation being observed for 30 days at 4 °C. Fourth, an improved refolding protocol was developed to achieve high yields of Z1Z2/telethonin complex. Finally, based on the crystal structure in which Z1Z2 and telethonin1-90 assemble into a 2:1 complex, a single chain fusion protein was designed, comprising two Z1Z2 modules that are connected by flexible linkers N- and C-terminally of the telethonin1-90. Expression of this fusion protein, named ZTZ, affords high yields of soluble expressed and purified protein.


Assuntos
Conectina/isolamento & purificação , Complexos Multiproteicos/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Conectina/biossíntese , Conectina/química , Conectina/genética , Escherichia coli/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Musculares/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sarcômeros/química , Sarcômeros/genética
8.
Muscle Nerve ; 49(2): 261-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23716353

RESUMO

INTRODUCTION: Creatine kinase (CK) and myoglobin (Mb) do not possess all good qualities as biomarkers of skeletal muscle damage. We investigated the utility of troponin I (TnI) and telethonin (Tcap) as markers and examined their temporal profiles after skeletal muscle damage. METHODS: Plasma profiles were measured before and after exercise in 3 groups: subjects affected by either Becker muscular dystrophy or McArdle disease, and healthy subjects. RESULTS: Mb and TnI appeared early in the blood, and the increase of TnI was only observed in patients with muscle disease. The CK increase was more delayed in plasma. Tcap was not detectable at any time. CONCLUSIONS: Our results suggest that TnI is a marker of more severe damage signifying sarcomeric damage, and it could therefore be an important supplement to CK and Mb in clinical practice. Tcap is not useful as a marker for skeletal muscle damage.


Assuntos
Conectina/sangue , Exercício Físico/fisiologia , Doença de Depósito de Glicogênio Tipo V/fisiopatologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Troponina I/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Creatina Quinase/metabolismo , Metabolismo Energético/fisiologia , Feminino , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo V/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/sangue , Projetos Piloto , Sarcômeros/metabolismo , Sarcômeros/patologia , Adulto Jovem
9.
BMC Clin Pathol ; 14: 41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25298746

RESUMO

BACKGROUND: Limb girdle muscular dystrophy type 2G (LGMD2G) is a subtype of autosomal recessive muscular dystrophy caused by mutations in the telethonin gene. There are few LGMD2G patients worldwide reported, and this is the first description associated with early tibialis anterior sparing on muscle image and myopathic-neurogenic motor unit potentials. CASE PRESENTATION: Here we report a 31 years old caucasian male patient with progressive gait disturbance, and severe lower limb proximal weakness since the age of 20 years, associated with subtle facial muscle weakness. Computed tomography demonstrated soleus, medial gastrocnemius, and diffuse thigh muscles involvement with tibialis anterior sparing. Electromyography disclosed both neurogenic and myopathic motor unit potentials. Muscle biopsy demonstrated large groups of atrophic and hypertrophic fibers, frequent fibers with intracytoplasmic rimmed vacuoles full of autophagic membrane and sarcoplasmic debris, and a total deficiency of telethonin. Molecular investigation identified the common homozygous c.157C > T in the TCAP gene. CONCLUSION: This report expands the phenotypic variability of telethoninopathy/ LGMD2G, including: 1) mixed neurogenic and myopathic motor unit potentials, 2) facial weakness, and 3) tibialis anterior sparing. Appropriate diagnosis in these cases is important for genetic counseling and prognosis.

10.
J Neuromuscul Dis ; 10(1): 91-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36463458

RESUMO

AIM: We describe a cohort of five patients with limb-girdle muscular dystrophy (LGMD) 2G/LGMD-R7 in a South-east Asian cohort. BACKGROUND: LGMD2G/LGMD-R7-telethonin-related is caused by mutations in the TCAP gene that encodes for telethonin. METHODS: We identified consecutive patients with LGMD2G/LGMD-R7-telethonin-related, diagnosed at the National Neuroscience Institute (NNI) and National University Hospital (NUH) between January 2000 and June 2021. RESULTS: At onset, three patients presented with proximal lower limb weakness, one patient presented with Achilles tendon contractures, and one patient presented with delayed gross motor milestones. At last follow up, three patients had a limb girdle pattern of muscle weakness and two had a facioscapular humeral pattern of weakness. Whole body muscle MRI performed for one patient with a facioscapular-humeral pattern of weakness showed a pattern of muscle atrophy similar to facioscapular-humeral dystrophy. One patient had histological features consistent with myofibrillar myopathy; electron microscopy confirmed the disruption of myofibrillar architecture. One patients also had reduced staining to telethonin antibody on immunohistochemistry. CONCLUSION: We report the unique clinical and histological features of a Southeast Asian cohort of five patients with LGMD2G/LGMD-R7-telethonin-related muscular dystrophy and further expand its clinical and histopathological spectrum.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , População do Sudeste Asiático , Humanos , Conectina/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/genética , Debilidade Muscular
11.
Front Physiol ; 12: 732020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566695

RESUMO

Aims: In cardiac myocytes, the sarcomeric Z-disc protein telethonin is constitutively bis-phosphorylated at C-terminal residues S157 and S161; however, the functional significance of this phosphorylation is not known. We sought to assess the significance of telethonin phosphorylation in vivo, using a novel knock-in (KI) mouse model generated to express non-phosphorylatable telethonin (Tcap S157/161A). Methods and Results: Tcap S157/161A and wild-type (WT) littermates were characterized by echocardiography at baseline and after sustained ß-adrenergic stimulation via isoprenaline infusion. Heart tissues were collected for gravimetric, biochemical, and histological analyses. At baseline, Tcap S157/161A mice did not show any variances in cardiac structure or function compared with WT littermates and mutant telethonin remained localized to the Z-disc. Ablation of telethonin phosphorylation sites resulted in a gene-dosage dependent decrease in the cardiac telethonin protein expression level in mice carrying the S157/161A alleles, without any alteration in telethonin mRNA levels. The proteasome inhibitor MG132 significantly increased the expression level of S157/161A telethonin protein in myocytes from Tcap S157/161A mice, but not telethonin protein in myocytes from WT mice, indicating a role for the ubiquitin-proteasome system in the regulation of telethonin protein expression level. Tcap S157/161A mice challenged with sustained ß-adrenergic stimulation via isoprenaline infusion developed cardiac hypertrophy accompanied by mild systolic dysfunction. Furthermore, the telethonin protein expression level was significantly increased in WT mice following isoprenaline stimulation but this response was blunted in Tcap S157/161A mice. Conclusion: Overall, these data reveal that telethonin protein turnover in vivo is regulated in a novel phosphorylation-dependent manner and suggest that C-terminal phosphorylation may protect telethonin against proteasomal degradation and preserve cardiac function during hemodynamic stress. Given that human telethonin C-terminal mutations have been associated with cardiac and skeletal myopathies, further research on their potential impact on phosphorylation-dependent regulation of telethonin protein expression could provide valuable mechanistic insight into those myopathies.

12.
Rev Port Cardiol (Engl Ed) ; 39(6): 317-327, 2020 Jun.
Artigo em Inglês, Português | MEDLINE | ID: mdl-32565061

RESUMO

INTRODUCTION AND OBJECTIVES: Hypertrophic cardiomyopathy (HCM) is a genetically and phenotypically heterogeneous disease; there is still a large proportion of patients with no identified disease-causing mutation. Although the majority of mutations are found in the MYH7 and MYBPC3 genes, mutations in Z-disk-associated proteins have also been linked to HCM. METHODS: We assessed a small family with HCM based on family history, physical examination, 12-lead ECG, echocardiogram and magnetic resonance imaging. After exclusion of mutations in eleven HCM disease genes, we performed direct sequencing of the TCAP gene encoding the Z-disk protein titin-cap (also known as telethonin). RESULTS: We present a novel TCAP mutation in a small family affected by HCM. The identified p.C57W mutation showed a very low population frequency, as well as high conservation across species. All of the bioinformatic prediction tools used considered this mutation to be damaging/deleterious. Family members were screened for this new mutation and a co-segregation pattern was detected. Both affected members of this family presented with late-onset HCM, moderate asymmetric left ventricular hypertrophy, atrial fibrillation and heart failure with preserved ejection fraction and low risk of sudden cardiac death. CONCLUSIONS: We present evidence supporting the classification of the TCAP p.C57W mutation, encoding the Z-disk protein titin-cap/telethonin as a new likely pathogenic variant of hypertrophic cardiomyopathy, with a specific phenotype in the family under analysis.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Conectina , Proteínas de Transporte/genética , Conectina/genética , Humanos , Mutação , Portugal
13.
Neuromuscul Disord ; 28(6): 532-537, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29759638

RESUMO

Limb girdle muscular dystrophy (LGMD) type 2G is a rare form of muscle disease, described only in a few patients worldwide, caused by mutations in TCAP gene, encoding the protein telethonin. It is characterised by proximal limb muscle weakness associated with distal involvement of lower limbs, starting in the first or second decade of life. We describe the case of a 37-year-old woman of Greek origin, affected by disto-proximal lower limb weakness. No cardiac or respiratory involvement was detected. Muscle biopsy showed myopathic changes with type I fibre hypotrophy, cytoplasmic vacuoles, lipid overload, multiple central nuclei and fibre splittings; ultrastructural examination showed metabolic abnormalities. Next generation sequencing analysis detected a homozygous frameshift mutation in the TCAP gene (c.90_91del), previously described in one Turkish family. Immunostaining and Western blot analysis showed complete absence of telethonin. Interestingly, Single Nucleotide Polymorphism analysis of the 10 Mb genomic region containing the TCAP gene showed a shared homozygous haplotype of both the Greek and the Turkish patients, thus suggesting a possible founder effect of TCAP gene c.90_91del mutation in this part of the Mediterranean area.


Assuntos
Conectina/genética , Efeito Fundador , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Polimorfismo de Nucleotídeo Único , Adulto , Feminino , Grécia , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia
14.
J Biomol Struct Dyn ; 35(5): 917-928, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27125723

RESUMO

Recent genetic studies have revealed the impact of mutations in associated genes for cardiac sarcomere components leading to dilated cardiomyopathy (DCM). The cardiac sarcomere is composed of thick and thin filaments and a giant muscle protein known as titin or connectin. Titin interacts with T-cap/telethonin in the Z-line region and plays a vital role in regulating sarcomere assembly. Initially, we screened all the variants associated with giant protein titin and analyzed their impact with the aid of pathogenicity and stability prediction methods. V54M mutation found in the hydrophobic core region of the protein associated with abnormal clinical phenotype leads to DCM was selected for further analysis. To address this issue, we mapped the deleterious mutant V54M, modeled the mutant protein complex, and deciphered the impact of mutation on binding with its partner telethonin in the titin crystal structure of PDB ID: 1YA5 with the aid of docking analysis. Furthermore, two run molecular dynamics simulation was initiated to understand the mechanistic action of V54M mutation in altering the protein structure, dynamics, and stability. According to the results obtained from the repeated 50 ns trajectory files, the overall effect of V54M mutation was destabilizing and transition of bend to coil in the secondary structure was observed. Furthermore, MMPBSA elucidated that V54M found in the Z-line region of titin decreases the binding affinity of titin to Z-line proteins T-cap/telethonin thereby hindering the protein-protein interaction.


Assuntos
Códon , Conectina/química , Conectina/genética , Simulação de Dinâmica Molecular , Mutação , Sítios de Ligação , Simulação por Computador , Ligação de Hidrogênio , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
15.
Neuromuscul Disord ; 27(9): 856-860, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28666572

RESUMO

Telethoninopathy is one of the rarest forms of Limb-girdle muscular dystrophy (LGMD). So far, only a small number of LGMD type 2 G (LGMD2G) patients have been described, mostly patients from Brazil. Here we present a 35-year-old female patient of Turkish ethnicity with LGMD2G due to a novel homozygous frame-shift mutation c.90_91del (p.Ser31Hisfs*11) in the telethonin gene, probably leading to truncated protein or nonsense mediated decay. Myalgia and walking on tiptoes were the first symptoms starting in early childhood, around age 22 proximal, later distal leg muscles became affected. Muscle biopsy showed a degenerative myopathy with lobulated fibers, creatine kinase levels were elevated to 1200 U/l. No cardiomyopathy has been detected but ventricular extrasystoles were treated with verapamil. Even though telethoninopathy represents a rare condition, testing for LGMD2G should be included into the diagnostic work-up of mild myopathies with early toe walking and distal and proximal involvement.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Adulto , Conectina/genética , Feminino , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação/genética , Receptores de HIV/metabolismo , Turquia
16.
Neuromuscul Disord ; 26(11): 749-753, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27618135

RESUMO

A 29-year-old man, born from consanguineous parents, started with toe walking and frequent falls during his second year of life. He developed weakness in lower limbs during the first decade that subsequently extended to upper limbs. On examination, the patient had weakness in proximal muscles of all four limbs and in the tibialis anterior muscle. In addition, he had bilateral Achilles and patellar contractures, bilateral scapular winging, asymmetric calves and a positive Beevor sign, an upward movement of the umbilicus on contraction of rectus femoris due to weakness in the lower part. The muscle biopsy showed dystrophic changes and lobulated fibers. Genetic analysis through a next-generation sequencing panel of genes related to neuromuscular disorders revealed a novel homozygous nonsense mutation (p.Tyr85*) in the TCAP gene. Subsequent western blot assay showed a complete telethonin deficiency. Our observation expands the phenotypic spectrum of TCAP mutations and indicates that telethonin deficiency should be considered in the differential diagnosis of patients presenting with asymmetric calves and early joint retractions.


Assuntos
Conectina/deficiência , Conectina/genética , Perna (Membro)/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Adulto , Conectina/metabolismo , Diagnóstico Diferencial , Homozigoto , Humanos , Perna (Membro)/diagnóstico por imagem , Perna (Membro)/fisiopatologia , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Fenótipo
17.
Circ Cardiovasc Genet ; 9(5): 426-435, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27625337

RESUMO

BACKGROUND: High throughput next-generation sequencing techniques have made whole genome sequencing accessible in clinical practice; however, the abundance of variation in the human genomes makes the identification of a disease-causing mutation on a background of benign rare variants challenging. METHODS AND RESULTS: Here we combine whole genome sequencing with linkage analysis in a 3-generation family affected by cardiomyopathy with features of autosomal dominant left ventricular noncompaction cardiomyopathy. A missense mutation in the giant protein titin is the only plausible disease-causing variant that segregates with disease among the 7 surviving affected individuals, with interrogation of the entire genome excluding other potential causes. This A178D missense mutation, affecting a conserved residue in the second immunoglobulin-like domain of titin, was introduced in a bacterially expressed recombinant protein fragment and biophysically characterized in comparison to its wild-type counterpart. Multiple experiments, including size exclusion chromatography, small-angle x ray scattering, and circular dichroism spectroscopy suggest partial unfolding and domain destabilization in the presence of the mutation. Moreover, binding experiments in mammalian cells show that the mutation markedly impairs binding to the titin ligand telethonin. CONCLUSIONS: Here we present genetic and functional evidence implicating the novel A178D missense mutation in titin as the cause of a highly penetrant familial cardiomyopathy with features of left ventricular noncompaction. This expands the spectrum of titin's roles in cardiomyopathies. It furthermore highlights that rare titin missense variants, currently often ignored or left uninterpreted, should be considered to be relevant for cardiomyopathies and can be identified by the approach presented here.


Assuntos
Conectina/genética , Análise Mutacional de DNA/métodos , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Miocárdio Ventricular não Compactado Isolado/genética , Mutação de Sentido Incorreto , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células COS , Chlorocebus aethiops , Biologia Computacional , Conectina/química , Conectina/metabolismo , Bases de Dados Genéticas , Ecocardiografia , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hereditariedade , Humanos , Miocárdio Ventricular não Compactado Isolado/diagnóstico por imagem , Miocárdio Ventricular não Compactado Isolado/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Miócitos Cardíacos/metabolismo , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Ratos , Medição de Risco , Fatores de Risco , Relação Estrutura-Atividade , Transfecção , Adulto Jovem
18.
Neuromuscul Disord ; 25(4): 349-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724973

RESUMO

Limb-girdle muscular dystrophy 2G is caused by mutations in the TCAP gene that encodes for telethonin. Here we describe a 49 year-old male patient of Indian descent presenting a classical LGMD phenotype. He had normal motor milestones but became noticeably slower in his early teens and was wheelchair bound by age 44. The muscle biopsy showed myopathic features and absence of labeling with an antibody to the C-terminal portion of telethonin. Sequence analysis of the TCAP gene revealed a novel homozygous mutation in exon 2, predicted to generate a truncated protein of 81 amino acids. Interestingly, an antibody for the full-length protein showed labeling on sections and a single band of ~10 kDa on Western blot. The truncated protein co-localized with filamin C at the Z-line. Our findings indicate that mutant telethonin can be incorporated into the sarcomere and that other LGMD2G patients with retention of telethonin expression may exist.


Assuntos
Conectina/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Conectina/metabolismo , Músculo Deltoide/metabolismo , Músculo Deltoide/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Sarcômeros/metabolismo , Sarcômeros/patologia
19.
Anat Rec (Hoboken) ; 297(9): 1571-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25125171

RESUMO

It is important to understand how muscle forms normally in order to understand muscle diseases that result in abnormal muscle formation. Although the structure of myofibrils is well understood, the process through which the myofibril components form organized contractile units is not clear. Based on the staining of muscle proteins in avian embryonic cardiomyocytes, we previously proposed that myofibrils formation occurred in steps that began with premyofibrils followed by nascent myofibrils and ending with mature myofibrils. The purpose of this study was to determine whether the premyofibril model of myofibrillogenesis developed from studies developed from studies in avian cardiomyocytes was supported by our current studies of myofibril assembly in mouse skeletal muscle. Emphasis was on establishing how the key sarcomeric proteins, F-actin, nonmuscle myosin II, muscle myosin II, and α-actinin were organized in the three stages of myofibril assembly. The results also test previous reports that nonmuscle myosins II A and B are components of the Z-bands of mature myofibrils, data that are inconsistent with the premyofibril model. We have also determined that in mouse muscle cells, telethonin is a late assembling protein that is present only in the Z-bands of mature myofibrils. This result of using specific telethonin antibodies supports the approach of using YFP-tagged proteins to determine where and when these YFP-sarcomeric fusion proteins are localized. The data presented in this study on cultures of primary mouse skeletal myocytes are consistent with the premyofibril model of myofibrillogenesis previously proposed for both avian cardiac and skeletal muscle cells.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo , Miofibrilas/fisiologia , Sarcômeros/fisiologia , Actinina/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Conectina/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Miofibrilas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Cultura Primária de Células , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa