Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Genes Cells ; 29(5): 438-445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528683

RESUMO

In the nervous system, proteasomes are important for proteolysis and cellular homeostasis of neurons and glial cells and for brain health. Proteasome function declines with age in many tissues, including the nervous system, and this decline affects many of the nervous system processes important to brain health and may be related to age-related cognitive decline. Therefore, we analyzed the factors that contribute to this decline in function using the brain of mice from different months of life. Peptidase activity of proteasomes in crude extracts decreased with aging, while ubiquitinated proteins increased with aging. Additionally, there was a tendency for the number of subunits that form proteasomes to decrease slightly with age. On the other hand, ump1, which is required for proteasome formation, accumulated with age. Therefore, analysis of proteasome dynamics in each month revealed that proteasome formation decreased with aging. This study suggests that with aging, not only 20S proteasome function but also 26 proteasome function decreases, the decline in proteasome function is due to the lack of proteasome formation, the PA28-20S-PA700 complex, which is involved in immunity, increases in the brain, and one factor in this lack of proteasome formation is that the proteins called UMP1.


Assuntos
Envelhecimento , Encéfalo , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Envelhecimento/metabolismo , Encéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Masculino
2.
Metab Eng ; 83: 61-74, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522576

RESUMO

5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Mol Biol Rep ; 50(3): 2269-2281, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36574092

RESUMO

BACKGROUND: BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS: In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS: We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS: Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/diagnóstico , COVID-19/genética , Teste para COVID-19 , Expressão Gênica , Genes MHC Classe I , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico , SARS-CoV-2
4.
New Phytol ; 232(2): 625-641, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273177

RESUMO

Salt stress significantly induces accumulation of misfolded or unfolded proteins in plants. Endoplasmic reticulum (ER)-associated protein degradation (ERAD) and other degradative machineries function in the degradation of these abnormal proteins, leading to enhanced salt tolerance in plants. Here we characterise that a novel receptor-like kinase, Salt-Induced Malectin-like domain-containing Protein1 (SIMP1), elevates ERAD efficiency during salt stress through UMP1A, a putative proteasome maturation factor in Arabidopsis. SIMP1 loss-of-function caused a salt-hypersensitive phenotype. SIMP1 interacts and phosphorylates UMP1A, and the protein stability of UMP1A is positively regulated by SIMP1. SIMP1 modulates the 26S proteasome maturation possibly through enhancing the recruitment of specific ß subunits of the core catalytic particle to UMP1A. Functionally, the SIMP1-UMP1A module plays a positive role in ERAD efficiency in Arabidopsis. The degradation of misfolded/unfolded proteins was impaired in both simp1 and ump1a mutants during salt stress. Consistently, both simp1 and ump1a plants exhibited reduced ER stress tolerance. Phenotypic analysis revealed that SIMP1 regulates salt tolerance through UMP1A at least in part. Taken together, our work demonstrated that SIMP1 modulates plant salt tolerance by promoting proteasome maturation via UMP1A, therefore mitigating ER stress through enhanced ERAD efficiency under saline conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Tolerância ao Sal
5.
Urol Int ; 102(2): 153-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30352443

RESUMO

OBJECTIVE: To compare the efficacy of new percutaneous technique ("ultra-mini PCNL", UMP), shock wave lithotripsy (SWL) and flexible ureteroscopy (FURS) on the treatment of 1-2 cm lower pole kidney stones, and to determine the advantages and disadvantages of each method. MATERIALS AND METHODS: This prospective study was based on data collected from the files of patients between March 2015 and March 2017. This study recruited a total of 180 patients with single radio-opaque lower caliceal calculi of 1-2 cm. All patients were randomly divided into 3 groups: group A was treated with UMP, group B was treated with FURS by using holmium laser and group C was treated with SWL by using the electromagnetic lithotripter. The average age, sex, size of the stone, the time of operation, the rate of no stone, the time of hospitalization, the rate of retreatment, the cost and the complications of the 3 groups were compared. The success of the operation was defined as no residual stone or < 0.3 cm on computed tomography at 3 months postoperatively. RESULTS: The stone burdens of the groups were equivalent. The re-treatment rate in group C was significantly higher than that in group A and B (30 vs. 1.6%, 5%). The average operating time in group B (93.35 ± 21.64 min) was statistically significantly longer than that in group A and C (68.58 ± 15.82 min, 46.33 ± 5.81 min). Although the time of hospitalization of group A (5.32 ± 1.20 day) was longer than that of group B (3.22 ± 0.52 day) and C (1.08 ± 0.28 day; p < 0.05). The stone-free rate (SFR) in UMP, FURS, SWL were 98, 92, and 73% respectively; the highest SFR was in the UMP group (p < 0.05). The complication rates were evaluated by using the Clavien grading system, which were determined to be 16.67% in UMP, 6.67% in SWL and 8.33% in FURS. In particular, the complications of GI and GII were more common in group A (p < 0.05). CONCLUSIONS: UMP, FURS, and SWL are all safe and effective in the treatment of 1-2 cm lower pole kidney stones. UMP and FURS had a better SFR than SWL, but the time of hospitalization in UMP group was longer and there were more complications in the UMP group. In addition, the operation time of FURS is longer as compared to UMP and SWL, and there is a higher rate of postoperative fever. The invasiveness and cost of SWL were lower than that of UMP and FURS, but the re-treatment rate was higher.


Assuntos
Histeroscopia/instrumentação , Cálculos Renais/cirurgia , Lasers de Estado Sólido , Litotripsia a Laser/instrumentação , Nefrolitotomia Percutânea/instrumentação , Ureteroscópios , Adulto , China , Desenho de Equipamento , Feminino , Humanos , Histeroscopia/efeitos adversos , Cálculos Renais/diagnóstico por imagem , Tempo de Internação , Litotripsia a Laser/efeitos adversos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Nefrolitotomia Percutânea/efeitos adversos , Duração da Cirurgia , Maleabilidade , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Indução de Remissão , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
6.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035645

RESUMO

Pyrimidine nucleotides are important metabolites that are building blocks of nucleic acids, which participate in various aspects of plant development. Only a few genes involved in pyrimidine metabolism have been identified in rice and the majority of their functions remain unclear. In this study, we used a map-based cloning strategy to isolate a UMPK gene in rice, encoding the UMP kinase that phosphorylates UMP to form UDP, from a recessive mutant with pale-green leaves. In the mutant, UDP content always decreased, while UTP content fluctuated with the development of leaves. Mutation of UMPK reduced chlorophyll contents and decreased photosynthetic capacity. In the mutant, transcription of plastid-encoded RNA polymerase-dependent genes, including psaA, psbB, psbC and petB, was significantly reduced, whereas transcription of nuclear-encoded RNA polymerase-dependent genes, including rpoA, rpoB, rpoC1, and rpl23, was elevated. The expression of UMPK was significantly induced by various stresses, including cold, heat, and drought. Increased sensitivity to cold stress was observed in the mutant, based on the survival rate and malondialdehyde content. High accumulation of hydrogen peroxide was found in the mutant, which was enhanced by cold treatment. Our results indicate that the UMP kinase gene plays important roles in regulating chloroplast development and stress response in rice.


Assuntos
Cloroplastos/fisiologia , Resposta ao Choque Frio , Núcleosídeo-Fosfato Quinase/metabolismo , Oryza/fisiologia , Desenvolvimento Vegetal , Clonagem Molecular , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Mutação , Núcleosídeo-Fosfato Quinase/genética , Fenótipo , Desenvolvimento Vegetal/genética , Plastídeos/genética , Transcrição Gênica
7.
J Proteome Res ; 17(12): 4042-4050, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30269496

RESUMO

An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing ∼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.


Assuntos
Cromossomos Humanos/genética , Bases de Dados de Proteínas , Proteoma/análise , Genoma Humano , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Projetos Piloto , Proteoma/genética
8.
Photosynth Res ; 137(1): 53-67, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29392476

RESUMO

Isolation of leaf-color mutants is important in understanding the mechanisms of chloroplast biogenesis and development. In this study, we identified and characterized a rice (Oryza sativa) mutant, yellow leaf 2 (yl2), exhibiting pale yellow leaves with a few longitudinal white stripes at the early seedling stage then gradually turning yellow. Genetic analyses revealed that YL2 encodes a thylakoid membrane-localized protein with significant sequence similarity to UMP kinase proteins in prokaryotes and eukaryotes. Prokaryotic UMP kinase activity was subsequently confirmed, with YL2 deficiency causing a significant reduction in chlorophyll accumulation and photochemical efficiency. Moreover, YL2 is also light dependent and preferentially expressed in green tissues. Chloroplast development was abnormal in the yl2 mutant, possibly due to reduced accumulation of thylakoid membranes and a lack of normal stroma lamellae. 2D Blue-Native SDS-PAGE and immunoblot analyses revealed a reduction in several subunits of photosynthetic complexes, in particular, the AtpB subunit of ATP synthase, while mRNA levels of corresponding genes were unchanged or increased compared with the wild type. In addition, we observed a significant decrease (ca. 36.3%) in cpATPase activity in the yl2 mutant compared with the wild type. Taken together, our results suggest that UMP kinase activity plays an essential role in chloroplast development and regulating cpATPase biogenesis in rice.


Assuntos
Cloroplastos/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Oryza/citologia , Proteínas de Plantas/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cloroplastos/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Mutação , Núcleosídeo-Fosfato Quinase/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Tilacoides/metabolismo
9.
Curr Urol Rep ; 19(4): 27, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516304

RESUMO

PURPOSE OF REVIEW: The role of PCNL and the expertise surrounding it has expanded in recent decades. Miniaturisation of equipment and instrument size has formed a part of this innovation. Although an increasing number of studies have been performed on miniaturised PCNL (Mi-PCNL) recently, a critical appraisal on these is lacking. We therefore conducted a systematic review of the literature to evaluate the efficacy, safety and feasibility of Mi-PCNL techniques (< 15 Fr). RECENT FINDINGS: A systematic review was conducted from 1990 to March 2017 on outcomes of Mi-PCNL [micro PCNL (m-PCNL) and ultra-mini PCNL (UMP)] in adult patients. Ten studies (three on m-PCNL and seven on UMP) were included in our study. Across the three studies, 118 patients (mean age 42.2 years, male to female ratio 1.3:1) underwent m-PCNL (4.8 Fr). For a mean stone size of 13.9 mm, a mean stone-free rate (SFR) was 89% and an overall complication rate was 15.2% [Clavien classification I (44%), II (28%), III (28%)], with no Clavien IV or V complications. Across the seven studies, 262 patients (mean age 49.4 years, male to female ratio 1.5:1) underwent UMP (13-14 Fr). For a mean stone size of 18.6 mm, a mean SFR was 88.3% and an overall complication rate was 6.2% [Clavien classification I (57%), II (36%), III (7%)], with no Clavien IV or V complications. While the transfusion rates for m-PCNL was 0.85%, only one case each in m-PCNL and UMP needed conversion to mini PCNL. Our review shows that for small- to medium-sized renal stones, Mi-PCNL can yield good stone-free rates whilst maintaining a low morbidity associated with it. There were no Clavien > III complications and no mortality with only one transfusion reported from this minimally invasive technique.


Assuntos
Cálculos Renais/cirurgia , Nefrolitotomia Percutânea/métodos , Adulto , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos
10.
Biosci Biotechnol Biochem ; 81(7): 1444-1451, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28345447

RESUMO

Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.


Assuntos
Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/efeitos dos fármacos , Ureia/toxicidade , Carbono-Nitrogênio Ligases/deficiência , Carbono-Nitrogênio Ligases/genética , Misturas Complexas/química , Misturas Complexas/farmacologia , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Glucose/farmacologia , Peptonas/metabolismo , Peptonas/farmacologia , Saccharomyces cerevisiae/química , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-34135547

RESUMO

A number of scoring systems for proficiency testing and interlaboratory comparison are in use by the metrology community. The choice of scoring system for a given study is often based on the study coordinator's experience and anecdotal knowledge, perhaps attributable to a historic lack of detailed and formal explanation about the foundation of these systems. This has influenced the development of new scoring systems, some of them departing from the well-established hypothesis testing theory. Often, different scoring systems give different results not because one may be better than the others but because, as they are documented, the user cannot control the confidence level of the test. We present a formal evaluation of seven of these systems under the fixed effects model assuming known variances. Under these sound assumptions, the systems analyzed all have the same statistical properties. Furthermore, these systems are all members of a family of systems based on strictly increasing functions in which the statistical decision problem is invariant. Under the fixed effects model with known variances, no unbiased scoring system can provide greater statistical power than the members of this family of systems. We apply these results to the lead content of water example provided in International Standard ISO 13528:2015 "Statistical methods for use in proficiency testing by interlaboratory comparisons."

12.
J Biol Chem ; 289(27): 18736-51, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24855646

RESUMO

DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties.


Assuntos
Azacitidina/farmacologia , Colesterol/metabolismo , Epigênese Genética/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cricetinae , Metilação de DNA/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Pirimidinas/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
13.
Biochem Biophys Res Commun ; 468(4): 708-12, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26551461

RESUMO

The cyclic pyrimidine nucleotides cCMP and cUMP occur in mammalian cell lines. Recently, cCMP was also identified in mouse organs. Due to technical difficulties, it has not been possible to detect cUMP in organs or tissues yet. Here, we have generated a temporal profile of the occurrence of nucleoside 3',5'-cyclic monophosphates during different developmental stages of embryogenesis and in different organs of the adult zebrafish Danio rerio. Cyclic nucleotides were quantified by high performance liquid chromatography quadrupole tandem mass spectrometry. The identity of cCMP and cUMP in the zebrafish was confirmed by high performance liquid chromatography quadrupole time-of-flight mass spectrometry. We show for the first time that cUMP can be detected during embryogenesis and in adult organs of this vertebrate model system.


Assuntos
CMP Cíclico/metabolismo , Desenvolvimento Embrionário/fisiologia , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Envelhecimento/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Especificidade de Órgãos/fisiologia , Distribuição Tecidual
14.
Biochem Biophys Res Commun ; 450(1): 870-4, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24971548

RESUMO

In addition to the well known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. Soluble guanylyl cyclase and soluble adenylyl cyclase produce all four cNMPs. Several bacterial toxins exploit mammalian cyclic nucleotide signaling. The type III secretion protein ExoY from Pseudomonas aeruginosa induces severe lung damage and effectively produces cGMP. Here, we show that transfection of mammalian cells with ExoY or infection with ExoY-expressing P. aeruginosa not only massively increases cGMP but also cUMP levels. In contrast, the structurally related CyaA from Bordetella pertussis and edema factor from Bacillus anthracis exhibit a striking preference for cAMP increases. Thus, ExoY is a nucleotidyl cyclase with preference for cGMP and cUMP production. The differential effects of bacterial toxins on cNMP levels suggest that cUMP plays a distinct second messenger role.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/biossíntese , Glucosiltransferases/metabolismo , Nucleotídeos Cíclicos/biossíntese , Nucleotidiltransferases/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Uridina Monofosfato/biossíntese , Apoptose , Sobrevivência Celular
15.
Biochem Biophys Res Commun ; 443(4): 1195-9, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24380860

RESUMO

Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1ß1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1ß1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor.


Assuntos
Guanilato Ciclase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular , AMP Cíclico/biossíntese , CMP Cíclico/biossíntese , GMP Cíclico/biossíntese , Guanilato Ciclase/genética , Células HEK293 , Humanos , Manganês/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Nucleotídeos Cíclicos/biossíntese , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sistemas do Segundo Mensageiro , Guanilil Ciclase Solúvel , Transfecção , Uridina Monofosfato/biossíntese
16.
Biochem Biophys Res Commun ; 448(2): 236-40, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24792377

RESUMO

Intact HEK293 cells and B103 neuroblastoma cells possess high basal concentrations of the established second messengers cAMP and cGMP and of the emerging second messengers cCMP and cUMP. We asked the question which nucleotidyl cyclase accounts for the high basal cNMP concentrations. Activators and inhibitors of soluble guanylyl cyclase had no major effects on cNMPs, and the activator of membranous adenylyl cyclase forskolin increased only cAMP. Addition of bicarbonate to medium increased, whereas removal of bicarbonate decreased levels of all four cNMPs. The inhibitor of soluble adenylyl cyclase, 2-(1H-benzo[d]imidazol-2-ylthio)-N'-(5-bromo-2-hydroxybenzylidene) propanehydrazide (KH7), reduced bicarbonate-stimulated cNMPs. In conclusion, bicarbonate-stimulated soluble adenylyl cyclase plays an important role in the regulation of basal cellular cNMP levels, most notably cCMP and cUMP.


Assuntos
Adenilil Ciclases/metabolismo , CMP Cíclico/metabolismo , Neuroblastoma/metabolismo , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Benzimidazóis/farmacologia , Bicarbonatos/farmacologia , Linhagem Celular Tumoral , Colforsina/farmacologia , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Humanos , Hidrazinas/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Guanilil Ciclase Solúvel
17.
Adv Sci (Weinh) ; 11(21): e2309525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460165

RESUMO

Metabolic abnormalities contribute to the pathogenesis of obesity and its complications. Yet, the understanding of the interactions between critical metabolic pathways that underlie obesity remains to be improved, in part owing to the lack of comprehensive metabolomics studies that reconcile data from both hydrophilic and lipophilic metabolome analyses that can lead to the identification and characterization of key signaling networks. Here, the study conducts a comprehensive metabolomics analysis, surveying lipids and hydrophilic metabolites of the plasma and omental adipose tissue of obese individuals and the plasma and epididymal adipose tissue of mice. Through these approaches, it is found that a significant accumulation of ceramide due to inhibited sphingolipid catabolism, while a significant reduction in the levels of uridine monophosphate (UMP), is critical to pyrimidine biosynthesis. Further, it is found that UMP administration restores sphingolipid homeostasis and can reduce obesity in mice by reversing obesity-induced inhibition of adipocyte hypoxia inducible factor 2a (Hif2α) and its target gene alkaline ceramidase 2 (Acer2), so as to promote ceramide catabolism and alleviate its accumulation within cells. Using adipose tissue Hif2α-specific knockout mice, the study further demonstrates that the presence of UMP can alleviate obesity through a HIF2α-ACER2-ceramide pathway, which can be a new signaling axis for obesity improvement.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ceramidas , Obesidade , Transdução de Sinais , Animais , Obesidade/metabolismo , Obesidade/genética , Ceramidas/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Masculino , Ceramidase Alcalina/metabolismo , Ceramidase Alcalina/genética , Modelos Animais de Doenças , Humanos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Metabolômica/métodos
18.
Front Sports Act Living ; 6: 1403215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076851

RESUMO

Purpose: A short period of disuse of 1-2 weeks due to factors such as illness or injury can lead to muscle atrophy, affecting both athletic performance and health. Recent research has shown that uridine 5'-monophosphate (5'-UMP) can counteract disuse-induced muscle atrophy by increasing PGC-1α expression and inhibiting atrogin-1 expression. However, the effect of 5'-UMP on disuse muscle atrophy in humans remains unknown. Therefore, the aimed of this study was to explore the effects of 5'-UMP supplementation during detraining on short-term disuse muscle atrophy in healthy men. Methods: Following a 6-week resistance training program on upper arm, healthy men were randomized to either a UMP group (n = 11) or a placebo group (n = 10), taking their respective supplements during the 2-week detraining period. Muscle thickness, an indicator of muscle hypertrophy and atrophy, was measured at 3 positions (MT50, MT60, and MT70) at baseline, 1 week, and 2 weeks after detraining. Results: Both groups showed a significant decrease in muscle thickness at MT70. The relative decrease was greater in the placebo group (2.4 ± 2.8%) than in the UMP group (0.0 ± 2.0%), significantly (p = 0.034) at 1 week. However, no significant difference was observed at MT50 and MT60. Conclusion: After the hypertrophy, 5'-UMP may prevent muscle atrophy due to the detraining within the first week.

19.
Biochem Biophys Res Commun ; 437(1): 162-7, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23806686

RESUMO

UMP kinase (PyrH) is an essential enzyme found only in bacteria, making it ideal as a target for the discovery of antibacterials. To identify inhibitors of PyrH, an assay employing Staphylococcus aureus PyrH coupled to pyruvate kinase/lactate dehydrogenase was developed and was used to perform a high throughput screen. A validated aminopyrimidine series was identified from screening. Kinetic characterization of this aminopyrimidine indicated it was a competitive inhibitor of ATP. We have shown that HTS can be used to identify potential leads for this novel target, the first ATP competitive inhibitor of PyrH reported.


Assuntos
Trifosfato de Adenosina/farmacologia , Inibidores Enzimáticos/farmacologia , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Cinética , Testes de Sensibilidade Microbiana , Núcleosídeo-Fosfato Quinase/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Reprodutibilidade dos Testes
20.
Surg Pathol Clin ; 16(1): 27-44, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739165

RESUMO

Thyroid pathology is notoriously fraught with high interobserver variability, and follicular-patterned tumors are among some of the most challenging to assess accurately and reproducibly. Given that encapsulated or well-circumscribed follicular-patterned tumors often have similar molecular profiles, that is, frequent RAS or RAS-like alterations, the diagnosis usually relies on histopathologic examination alone. Unfortunately, many of the features that are used for diagnosis and prognosis of these tumors have long been controversial and frequently debated topics, both due to their subjectivity and their evolving (or not yet resolved) definitions. In more recent years, the introduction of noninvasive follicular thyroid neoplasm with papillary-like nuclear features has added further complexity to this discussion. In particular, the criteria and significance of nuclear features of papillary thyroid carcinoma, architectural patterns, and invasive growth still pose significant diagnostic challenges and confusion. This review explores some of the challenges in evaluating encapsulated follicular-patterned tumors, focusing on those histologic elements.


Assuntos
Adenocarcinoma Folicular , Neoplasias da Glândula Tireoide , Humanos , Adenocarcinoma Folicular/diagnóstico , Adenocarcinoma Folicular/patologia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/patologia , Invasividade Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa