Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 185(21): 3913-3930.e19, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198316

RESUMO

Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Caracteres Sexuais , Tauopatias/genética , Tauopatias/patologia , Tioléster Hidrolases/genética , Proteases Específicas de Ubiquitina , Proteínas tau/genética
2.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722330

RESUMO

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Assuntos
Apoptose , Proliferação de Células , Espermatogênese , Tioléster Hidrolases , Via de Sinalização Wnt , Humanos , Masculino , Células-Tronco Germinativas Adultas/metabolismo , Apoptose/genética , Azoospermia/metabolismo , Azoospermia/genética , Azoospermia/patologia , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Espermatogênese/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Testículo/metabolismo , Testículo/citologia , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Via de Sinalização Wnt/genética
3.
Biochem Biophys Res Commun ; 726: 150275, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38901057

RESUMO

USP11 is overexpressed in colorectal cancer (CRC) and breast cancer tissues compared to normal tissues, suggesting a role in promoting cell proliferation and inhibiting cell death. In this study, we observed that depleting USP11 inhibits cell proliferation and delays cell cycle progression. This depletion leads to increased p53 protein levels due to an extended half-life, resulting in elevated p21 mRNA levels in a p53-dependent manner. The rise in p53 protein upon USP11 depletion is linked to a reduced half-life of MDM2, a known E3 ligase for p53, via enhanced polyubiquitination of MDM2. These findings indicate that USP11 might act as a deubiquitinase for MDM2, regulating the MDM2-p53-p21 axis. Additionally, USP11 depletion promotes the induction of senescent cells in a manner dependent on its deubiquitinase activity. Our findings provide insights into the physiological significance of high USP11 expression in primary tumors and its reduction in senescent cells, highlighting its potential as a therapeutic target.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Mitose , Proteínas Proto-Oncogênicas c-mdm2 , Tioléster Hidrolases , Proteína Supressora de Tumor p53 , Ubiquitinação , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Proliferação de Células , Linhagem Celular Tumoral
4.
Pharmacol Res ; 189: 106707, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36822452

RESUMO

Acute graft-versus-host disease (aGvHD) is considered a result of "cytokine storm." Targeted therapeutic interventions on cytokines via ubiquitination regulatory pathways may provide a potential approach for aGvHD treatment. Ubiquitin-specific peptidase 11 (USP11) has been reported to play key roles in a variety of physiopathological processes by regulating the stability and function of several vital protein molecules. However, its role in aGvHD remains unclear. In this study, we identified USP11 was associated with aGvHD in patients. In the aGvHD mouse model, the colon and liver were more seriously affected in recipient mice who received USP11 wt bone marrow (BM) cells and eased after the donor was treated with a USP11 inhibitor or received USP11 ko BM cells. In mouse models, IL-6 was identified as a major effecter in accelerating aGvHD induced by USP11. In the cell model, IL-6 mRNA transcript was affected by USP11. In addition, USP11 also inhibited IL-6 degradation by affecting IL-6 ubiquitination. Furthermore, the positive correlation between USP11 and IL-6 was confirmed in the GvHD patients' samples. Collectively, all results indicated that USP11 played a critical role in the onset and progression of aGvHD. USP11 might be a potential target for aGvHD treatment.


Assuntos
Doença Enxerto-Hospedeiro , Interleucina-6 , Animais , Camundongos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Citocinas/uso terapêutico , Doença Aguda
5.
Acta Pharmacol Sin ; 44(3): 584-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36045219

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is regarded as a key factor in promoting renal fibrosis during chronic kidney disease (CKD). Signaling transduction of TGF-ß1 starts with binding to TGF-ß type II receptor (Tgfbr2), a constitutively activated kinase that phosphorylates TGF-ß type I receptor (Tgfbr1), and then activates downstream Smad2/3 or noncanonical pathways. Previous studies show that cellular senescence is associated with the progression of CKD, and accelerated tubular cell senescence is implicated in promoting renal fibrosis. In the present study we investigated the renal parenchymal cell senescence in fibrosis from the sight of posttranslational regulation and focused on Tgfbr2, the important gatekeeper for TGF-ß1 downstream signaling. In mice with unilateral ureteral obstruction (UUO) and folic acid (FA)-induced fibrotic kidneys, we found that Tgfbr2 was markedly elevated without obvious change in its mRNA levels. As an important member of deubiquitinating enzymes, ubiquitin-specific protease 11 (Usp11) was also significantly increased in fibrotic kidneys, and co-distributed with Tgfbr2 in tubular epithelial cells. Pretreatment with Usp11 inhibitor mitoxantrone (MTX, 30 mg · kg-1 · d-1, i.p.) twice a week, for 2 weeks significantly attenuated the elevation of Tgfbr2, activation in downstream senescence-related signaling pathway, as well as renal senescence and fibrosis. In cultured mouse tubular epithelial cells (MTECs), treatment with angiotensin II (Ang-II, 10-7, 10-6 M) dose-dependently elevated both Tgfbr2 and Usp11 levels. Inhibition or knockdown on Usp11 attenuated Ang-II-induced elevation in Tgfbr2 level, and attenuated the activation of downstream senescent-related signaling pathway and as well as cell senescence. We conducted Co-IP experiments, which revealed that Usp11 was able to interact with Tgfbr2, and inhibition of Usp11 increased the ubiquitination of Tgfbr2. Taken together, these results demonstrate that the elevation of Usp11 under pathological condition is implicated in promoting renal fibrosis. Usp11 promotes the development of renal fibrosis by deubiquitinating Tgfbr2, reducing Tgfbr2 ubiquitination degradation, and then facilitating the activation of downstream senescent signaling pathway.


Assuntos
Senescência Celular , Enzimas Desubiquitinantes , Insuficiência Renal Crônica , Animais , Camundongos , Senescência Celular/fisiologia , Enzimas Desubiquitinantes/metabolismo , Células Epiteliais/metabolismo , Fibrose/metabolismo , Rim/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitina/metabolismo , Obstrução Ureteral/complicações
6.
J Biol Chem ; 296: 100396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567341

RESUMO

DNA-protein cross-links (DPCs) are toxic DNA lesions that interfere with DNA metabolic processes such as replication, transcription, and recombination. USP11 deubiquitinase participates in DNA repair, but the role of USP11 in DPC repair is not known. SPRTN is a replication-coupled DNA-dependent metalloprotease that cleaves proteins cross-linked to DNA to promote DPC repair. SPRTN function is tightly regulated by a monoubiquitin switch that controls SPRTN auto-proteolysis and chromatin accessibility during DPC repair. Previously, VCPIP1 and USP7 deubiquitinases have been shown to regulate SPRTN. Here, we identify USP11 as an SPRTN deubiquitinase. USP11 interacts with SPRTN and cleaves monoubiquitinated SPRTN in cells and in vitro. USP11 depletion impairs SPRTN deubiquitination and promotes SPRTN auto-proteolysis in response to formaldehyde-induced DPCs. Loss of USP11 causes an accumulation of unrepaired DPCs and cellular hypersensitivity to treatment with DPC-inducing agents. Our findings show that USP11 regulates SPRTN auto-proteolysis and SPRTN-mediated DPC repair to maintain genome stability.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Tioléster Hidrolases/metabolismo , Ubiquitinação , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/química , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Humanos , Proteólise , Tioléster Hidrolases/genética
7.
J Cell Mol Med ; 25(3): 1507-1517, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369124

RESUMO

Ubiquitin-specific protease 11 (USP11) has been implicated in the regulation of DNA repair, apoptosis, signal transduction and cell cycle. It belongs to a USP subfamily of deubiquitinases. Although previous research has shown that USP11 overexpression is frequently found in melanoma and is correlated with a poor prognosis, the potential molecular mechanism of USP11 in melanoma remains indefinitive. Here, we report that USP11 and NONO colocalize and interact with each other in the nucleus of melanoma cells. As a result, the knockdown of USP11 decreases NONO levels. Whereas, overexpression of USP11 increases NONO levels in a dose-dependent manner. Furthermore, we reveal that USP11 protects NONO protein from proteasome-mediated degradation by removing poly-ubiquitin chains conjugated onto NONO. Functionally, USP11 mediated melanoma cell proliferation via the regulation of NONO levels because ablation of USP11 inhibits the proliferation which could be rescued by ectopic expression of NONO protein. Moreover, a significant positive correlation between USP11 and NONO concentrations was found in clinical melanoma samples. Collectively, these results demonstrate that USP11 is a new deubiquitinase of NONO and that the signalling axis of USP11-NONO is significantly involved in melanoma proliferation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Melanoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Tioléster Hidrolases/genética , Ubiquitinação
8.
J Cell Mol Med ; 25(14): 6976-6987, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34114341

RESUMO

Krüppel-like factor 4 (KLF4) is a zinc-finger containing DNA-binding transcription factor involved in tumorigenesis and acts as a tumour suppressor or an oncogene depending on the tissue. In hepatocellular carcinoma (HCC), KLF4 has been considered as a tumour suppressor, although the mechanism underlying its action remains largely unknown. In this study, we identified the ubiquitin-specific peptidase USP11 as a KLF4-interacting deubiquitinating enzyme using a proteomic approach. USP11 destabilizes KLF4 through the removal of K63-dependent polyubiquitination, thereby inhibiting KLF4 expression. We also provide mechanistic insights into KLF4 degradation and show that USP11 depletion inhibits growth and chemoresistance of HCC cells by enhancing KLF4 stability. Importantly, lipid content was reduced and genes involved in fatty acid metabolism were down-regulated in an in vitro steatosis conditions upon USP11 knockout. Finally, elevated USP11 and reduced KLF4 levels were detected both in a hepatic steatosis in vitro model and in public clinical data of non-alcoholic fatty liver disease and HCC patients. Collectively, these findings suggest that USP11, as KLF4-binding partner, is an important mediator of hepatic tumorigenesis that functions via degradation of KLF4 and is a potential treatment target for liver diseases.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fígado Gorduroso/metabolismo , Neoplasias Hepáticas/metabolismo , Tioléster Hidrolases/metabolismo , Ácidos Graxos/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Fator 4 Semelhante a Kruppel/metabolismo , Ligação Proteica , Ubiquitinação
9.
World J Surg Oncol ; 19(1): 67, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685455

RESUMO

BACKGROUND: Circular RNAs (circRNAs) take part in colorectal cancer malignancies. CircRNA dedicator of cytokinesis 1 (circ_DOCK1) is involved in colorectal cancer progression, but the mechanism underlying this circRNA that takes part in colorectal cancer development remains largely undetermined. METHODS: Tumor and normal para-cancerous tissues were collected from 42 colorectal cancer patients. Human colorectal cancer cell lines (HCT116 and SW480) were used for the experiments in vitro. Circ_DOCK1, microRNA (miR)-132-3p, and ubiquitin-specific protease 11 (USP11) levels were measured through quantitative real-time polymerase chain reaction and Western blotting. Cell growth, metastasis, and apoptosis were investigated via colony formation, 5-ethynyl-2'-deoxyuridine (EdU) staining, MTT, flow cytometry, Western blotting, and transwell analyses. The target association was evaluated via dual-luciferase reporter analysis, RNA pull-down, and immunoprecipitation (RIP). Xenograft assay was performed using HCT116 cells. USP11 and Ki67 levels in tumor tissues were detected via immunohistochemistry. RESULTS: Circ_DOCK1 expression was enhanced in colorectal cancer tissues and cells. Silencing circ_DOCK1 repressed cell growth, migration, and invasion, and facilitated apoptosis. Circ_DOCK1 sponged miR-132-3p, and miR-132-3p silence mitigated the effect of circ_DOCK1 interference on cell growth, metastasis, and apoptosis. MiR-132-3p targeted USP11, and circ_DOCK1 could regulate USP11 level by miR-132-3p. MiR-132-3p suppressed cell growth, metastasis, and apoptosis, and USP11 attenuated these effects. Knockdown of circ_DOCK1 decreased colorectal cancer cell xenograft tumor growth. CONCLUSION: Circ_DOCK1 interference suppressed cell growth and metastasis, and increased apoptosis of colorectal cancer via decreasing USP11 by increasing miR-132-3p.


Assuntos
Neoplasias Colorretais , MicroRNAs , Movimento Celular , Neoplasias Colorretais/genética , Humanos , MicroRNAs/genética , Prognóstico , RNA Circular , Tioléster Hidrolases , Proteínas rac de Ligação ao GTP
10.
Proc Natl Acad Sci U S A ; 115(18): 4678-4683, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666278

RESUMO

p21WAF1/CIP1 is a broad-acting cyclin-dependent kinase inhibitor. Its stability is essential for proper cell-cycle progression and cell fate decision. Ubiquitylation by the multiple E3 ubiquitin ligase complexes is the major regulatory mechanism of p21, which induces p21 degradation. However, it is unclear whether ubiquitylated p21 can be recycled. In this study, we report USP11 as a deubiquitylase of p21. In the nucleus, USP11 binds to p21, catalyzes the removal of polyubiquitin chains conjugated onto p21, and stabilizes p21 protein. As a result, USP11 reverses p21 polyubiquitylation and degradation mediated by SCFSKP2, CRL4CDT2, and APC/CCDC20 in a cell-cycle-independent manner. Loss of USP11 causes the destabilization of p21 and induces the G1/S transition in unperturbed cells. Furthermore, p21 accumulation mediated by DNA damage is completely abolished in cells depleted of USP11, which results in abrogation of the G2 checkpoint and induction of apoptosis. Functionally, USP11-mediated stabilization of p21 inhibits cell proliferation and tumorigenesis in vivo. These findings reveal an important mechanism by which p21 can be stabilized by direct deubiquitylation, and they pinpoint a crucial role of the USP11-p21 axis in regulating cell-cycle progression and DNA damage responses.


Assuntos
Ciclo Celular , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Transdução de Sinais , Proteases Específicas de Ubiquitina/metabolismo , Células A549 , Apoptose/genética , Núcleo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Células HEK293 , Humanos , Proteólise , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
11.
J Biol Chem ; 294(2): 424-436, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30373771

RESUMO

Ubiquitin-specific proteases (USPs) reverse ubiquitination and regulate virtually all cellular processes. Defined noncatalytic domains in USP4 and USP15 are known to interact with E3 ligases and substrate recruitment factors. No such interactions have been reported for these domains in the paralog USP11, a key regulator of DNA double-strand break repair by homologous recombination. We hypothesized that USP11 domains adjacent to its protease domain harbor unique peptide-binding sites. Here, using a next-generation phage display (NGPD) strategy, combining phage display library screening with next-generation sequencing, we discovered unique USP11-interacting peptide motifs. Isothermal titration calorimetry disclosed that the highest affinity peptides (KD of ∼10 µm) exhibit exclusive selectivity for USP11 over USP4 and USP15 in vitro Furthermore, a crystal structure of a USP11-peptide complex revealed a previously unknown binding site in USP11's noncatalytic ubiquitin-like (UBL) region. This site interacted with a helical motif and is absent in USP4 and USP15. Reporter assays using USP11-WT versus a binding pocket-deficient double mutant disclosed that this binding site modulates USP11's function in homologous recombination-mediated DNA repair. The highest affinity USP11 peptide binder fused to a cellular delivery sequence induced significant nuclear localization and cell cycle arrest in S phase, affecting the viability of different mammalian cell lines. The USP11 peptide ligands and the paralog-specific functional site in USP11 identified here provide a framework for the development of new biochemical tools and therapeutic agents. We propose that an NGPD-based strategy for identifying interacting peptides may be applied also to other cellular targets.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Reparo do DNA , Recombinação Homóloga , Humanos , Cinética , Ligantes , Camundongos , Dados de Sequência Molecular , Peptídeos/genética , Domínios Proteicos , Tioléster Hidrolases/genética , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação
12.
Biochem Biophys Res Commun ; 529(2): 127-132, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703400

RESUMO

Myeloid leukemia factors (MLF1 and MLF2) are proteins associated with leukemia and several other cancers. However, little is known about the regulatory mechanisms underlying the stability of these proteins. Here, we show that DDB1 and CUL4 associated factor 8 (DCAF8), which can form a functional E3 ligase complex (CRL4DCAF8), has a strong interaction with the MLF2 protein. DCAF8 could promote MLF2 degradation through the ubiquitin-proteasome pathway. In contrast, ubiquitin specific peptidase 11 (USP11) associates with MLF2, thereby increasing its stability. Since MLF1 is highly related to MLF2, we demonstrated that MLF1 also interacts with DCAF8 and USP11, suggesting that CRL4DCAF8 and USP11 may also regulate the expression of MLF1. TCGA analysis revealed that both the myeloid leukemia factors (MLF1 and MLF2) show significant differential expression in various tumors. The results of our study indicate that CRL4DCAF8 and USP11 play opposite roles in the regulation of MLF1 and MLF2, which may, in turn, affect their biological functions in various cancers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Tioléster Hidrolases/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Estabilidade Proteica , Proteólise
13.
J Biol Chem ; 290(25): 15526-15537, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25969536

RESUMO

Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR.


Assuntos
Proteínas Nucleares/metabolismo , Proteína SUMO-1/metabolismo , Tioléster Hidrolases/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação/fisiologia , Ubiquitinas/metabolismo , Motivos de Aminoácidos , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteína SUMO-1/genética , Tioléster Hidrolases/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética
14.
Cell Oncol (Dordr) ; 47(1): 245-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676377

RESUMO

PURPOSE: Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear. METHODS: NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay. RESULTS: The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways. CONCLUSION: RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma Pulmonar de Células não Pequenas , Inibidor de Quinase Dependente de Ciclina p21 , Proteínas do Citoesqueleto , Neoplasias Pulmonares , Proteínas Nucleares , Animais , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Dano ao DNA , Reparo do DNA , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Tioléster Hidrolases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
15.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543064

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal and chronic interstitial lung disease. Intricate pathogenesis of pulmonary fibrosis and only two approved medications with side effects and high cost bring us the challenge of fully understanding this lethal disease and urgency to find more safe and low-cost therapeutic alternatives. PURPOSE: Demethyleneberberine (DMB) has been demonstrated to have various anti-inflammatory, antioxidant, antifibrosis and anti-cancer bioactivities. The objective of this study was to evaluate the effect of DMB on pulmonary fibrosis and investigate the mechanism. METHODS: Bleomycin (BLM)-induced pulmonary fibrosis was established in mice to evaluate the antifibrotic effect of DMB in vivo. A549 and MRC5 cells were used to evaluate the effect of DMB on epithelial-mesenchymal transition (EMT) and fibroblast-myofibroblast transition (FMT) in vitro. High throughput sequencing, biotin-avidin system and site-directed mutagenesis were applied to explore the mechanism of DMB in alleviating pulmonary fibrosis. RESULTS: DMB alleviated BLM-induced pulmonary fibrosis in vivo by improving the survival state of mice, significantly reducing pulmonary collagen deposition and oxidative stress and improving lung tissue morphology. Meanwhile, DMB was demonstrated to inhibit epithelial-mesenchymal transition (EMT) and fibroblast-myofibroblast transition (FMT) in vitro. High throughput sequencing analysis indicated that GREM1, a highly upregulated profibrotic mediator in IPF and BLM-induced pulmonary fibrosis, was significantly downregulated by DMB. Furthermore, USP11 was revealed to be involved in the deubiquitination of GREM1 in this study and DMB promoted the ubiquitination and degradation of GREM1 by inhibiting USP11. Remarkably, DMB was demonstrated to selectively bind to the Met776 residue of USP11, leading to disruption of USP11 deubiquitinating GREM1. In addition, DMB presented an equivalent antifibrotic effect at a lower dose compared with pirfenidone and showed no obvious toxicity or side effects. CONCLUSIONS: This study revealed that USP11/GREM1 could be a potential target for IPF management and identified that DMB could promote GREM1 degradation by inhibiting USP11, thereby alleviating pulmonary fibrosis.

16.
Burns ; 50(3): 641-652, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38097445

RESUMO

BACKGROUND: Keloid scars occur as a result of abnormal wound healing caused by trauma or inflammation of the skin. The progression of keloids is dependent on genetic and environmental influences. The incidence is more prevalent in people with darker skin tones (African, Asian and Hispanic origin). Studies have demonstrated that transforming growth factor (TGF) ß/Smad signalling has an essential function in keloid as well as that USP11 could modulate the activation of TGFß/Smad signalling and impact the progression of the fibrotic disease. Nonetheless, the potential mechanisms of USP11 in keloid were still unclear. The authors postulated that USP11 up-regulates and augments the ability of proliferation, invasion, migration and collagen deposition of keloid-derived fibroblasts (KFBs) through deubiquitinating TGF-ß receptor II (TßRII). METHODS: Fibroblast cells were isolated from keloid scars in vitro. Lentivirus infection was utilized to knockdown and over-express the USP11 in KFBs. Influence of USP11 on proliferation, invasion and migration of KFBs, and expression level of TßRII, Smad2, Smad3, α-SMA, collagen1 and collagen3 were assayed by CCK8, scratching, transwell, Western blot and real-time quantitative polymerase chain reaction. The interactions between USP11 and TßRII were examined using ubiquitination assays and co-immunoprecipitation. To further confirm the role of USP11 in keloid growth, we performed animal experiments. RESULTS: Results show that down-regulated USP11 markedly suppressed the ability of proliferation, invasion and migration of keloid derived-fibroblasts in vitro and reduce the expression of TßRII, Smad2, Smad3, αSMA, collagen1 and collagen3. In addition, over-expression of USP11 demonstrated the contrary tendency. Ubiquitination experiments and co-immunoprecipitation demonstrated that USP11 was interacting with TßRII and deubiquitinated TßRII. Interferences with USP11 inhibited growth of keloid in vivo. Additionally, we have verified that knockdown of USP11 has no significant effect on normal skin fibroblasts. CONCLUSION: USP11 elevates the ability of proliferation, collagen deposition, invasion and migration of keloid-derived fibroblasts by deubiquitinating TßRII.


Assuntos
Queimaduras , Queloide , Animais , Humanos , Queimaduras/patologia , Proliferação de Células , Células Cultivadas , Colágeno , Fibroblastos , Queloide/metabolismo , Tioléster Hidrolases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
17.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139829

RESUMO

BACKGROUND: Ubiquitin-specific protease 11 (USP11), one of the principal phosphatase and tensin homolog (PTEN) deubiquitinases, can reserve PTEN polyubiquitination to maintain PTEN protein integrity and inhibit PI3K/AKT pathway activation. The aim of the current study was to investigate the associations between immunohistochemical USP11 staining intensities and prognostic indicators in individuals with prostate cancer. METHODS: Tissue microarrays (TMAs) were performed for human prostate cancer and normal tissue (control) samples. Data on patient's age, Gleason score, plasma prostate-specific antigen (PSA) titer, disease stage, and presence of seminal vesicles, lymph nodes, and surgical margin involvement were collected. A pathologist who was blinded to the clinical outcome data scored the TMA for USP11 staining intensity as either positive or negative. RESULTS: Cancerous tissues exhibited lower USP11 staining intensity, whereas the neighboring benign peri-tumoral tissues showed higher USP11 staining intensity. The degree of USP11 staining intensity was lower in patients with a higher PSA titer, higher Gleason score, or more advanced disease stage. Patients who showed positive USP11 staining were more likely to have more optimal clinical and biochemical recurrence-free survival statistics. CONCLUSIONS: USP11 staining intensity in patients with prostate cancer is negatively associated with several prognostic factors such as an elevated PSA titer and a high Gleason score. It also reflects both biochemical and clinical recurrence-free survival in such patients. Thus, USP11 staining is a valuable prognostic factor in patients with prostate cancer.

18.
ESC Heart Fail ; 10(4): 2499-2509, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37287426

RESUMO

AIMS: Atherosclerosis is a huge threaten to the human health, C1q/TNF-related protein 9 (CTRP9) has been previously reported possessing vascular protective functions. Our study is aimed to reveal the mechanism of the regulative effects of CTRP9 on the foam cell formation. METHODS AND RESULTS: Primary human macrophages were isolated from human monocytes donated by healthy volunteers. CCK-8 assay was performed for determining the cell viability. Oil Red O staining was employed for measuring the lipid accumulation. Cholesterol ester and cholesterol concentration were detected by commercial kits for evaluating the intracellular cholesterol. Ubiquitination assay was performed to reveal the ubiquitination level of CD36, cycloheximide assay was applied for determining the half-life of CD36 protein. Quantitative real-time PCR and western blot assays were performed for detecting the mRNA and protein expression. Pre-treatment with CTRP9 in primary human macrophages markedly suppressed the cholesterol accumulation concentration after oxidized low-density lipoprotein treatment. CD36 was significantly increased after oxidized low-density lipoprotein exposure while was reduced by CTRP9 treatment. Up-regulation of CD36 significantly reversed the CTRP9-mediated protective effects in foam cells. The differential expression levels of several deubiquitinating enzymes preliminarily indicated that USP11 was obviously decreased after CTRP9 treatment. USP11 knockdown decreased the CD36 protein expression and pre-treatment with 10 µg/mL MG132 significantly maintained the CD36 level from USP11 knock down. Up-regulation of CD36 reversed the alterations on the cholesterol metabolism caused by CTRP9 or USP11 knockdown. CONCLUSIONS: CTRP9 regulates the USP11/CD36 axis to protect the macrophages form transforming into foam cells by suppressing intracellular lipid and cholesterol accumulation, which is a potential therapeutic agent for atherosclerosis.


Assuntos
Aterosclerose , Antígenos CD36 , Humanos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Complemento C1q/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Colesterol/metabolismo , Aterosclerose/genética , Proteases Específicas de Ubiquitina/metabolismo , Tioléster Hidrolases/metabolismo
19.
Brain Res ; 1807: 148321, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898475

RESUMO

Ubiquitin-specific protease 11 (USP11) is a ubiquitin-specific protease involved in the regulation of protein ubiquitination. However, its role in traumatic brain injury (TBI) remains unclear. This experiment suggests that USP11 is possibly involved in regulating neuronal apoptosis in TBI. Therefore, we use precision impactor device to established a TBI rat model and assayed the role of USP11 by overexpressing and inhibiting USP11. We found that Usp11 expression increased after TBI. In addition, we hypothesized that pyruvate kinase M2 (PKM2) is a potential USP11 target and experimentally confirmed that upregulation of Usp11 increased Pkm2 expression. Furthermore, elevated USP11 levels exacerbate blood-brain barrier damage, brain edema, and neurobehavioral impairment and cause apoptosis induction through Pkm2 upregulation. Moreover, we hypothesize that PKM2-induced neuronal apoptosis is mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Our findings were confirmed by changes in Pi3k and Akt expression with Usp11 upregulation and downregulation and PKM2 inhibition. In conclusion, our findings show that USP11 exacerbates injury in TBI through PKM2 and causes neurological impairment and neuronal apoptosis through the PI3K/AKT signaling pathway.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Lesões Encefálicas Traumáticas/metabolismo , Apoptose
20.
Cell Rep ; 42(3): 112234, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897778

RESUMO

A successful HIV-1 cure strategy may require enhancing HIV-1 latency to silence HIV-1 transcription. Modulators of gene expression show promise as latency-promoting agents in vitro and in vivo. Here, we identify Su(var)3-9, enhancer-of-zeste, and trithorax (SET) and myeloid, Nervy, and DEAF-1 (MYND) domain-containing protein 5 (SMYD5) as a host factor required for HIV-1 transcription. SMYD5 is expressed in CD4+ T cells and activates the HIV-1 promoter with or without the viral Tat protein, while knockdown of SMYD5 decreases HIV-1 transcription in cell lines and primary T cells. SMYD5 associates in vivo with the HIV-1 promoter and binds the HIV trans-activation response (TAR) element RNA and Tat. Tat is methylated by SMYD5 in vitro, and in cells expressing Tat, SMYD5 protein levels are increased. The latter requires expression of the Tat cofactor and ubiquitin-specific peptidase 11 (USP11). We propose that SMYD5 is a host activator of HIV-1 transcription stabilized by Tat and USP11 and, together with USP11, a possible target for latency-promoting therapy.


Assuntos
HIV-1 , HIV-1/genética , Lisina/genética , Metiltransferases/metabolismo , RNA , RNA Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa